| Department of A | pplied Science | en [fe | | - | | | |---|---|---|--|---|--|--| | B.Tech. | Semester | 2nd | | | | | | (ITA,ITB,ITC,ECA,ECB) | | | | | | | | BSC-103 | Subject Title | Math | ematics-I | | | | | 1 | | | | | | | | | | | | ngh | | | | | Coordinator (s) | | | _ | | | | 24 | Time Duration | | | | | | | 31-3-2023 | | Tilou | 30 minutes | | | | | | Kon Number | | | | | | | | | | | | | | | Ouestion | | | COL | 1.0 | | | | | c | | RBT level | Mark | | | | al equation: $p = \log(px - y)$ | Y=CT-P | 1 | CO5, | 2 | | | | | 10 10 101 | , | • | _ | | | | y=0 (1) | Ca (5-33)/C | | | 2 | | | | | | | , | | | | | ial equation $v'' - 6v' + 0$. | 3x | | | 4 | | | | 3% 32/ | by method of variation | of | | | | | | é 4 (2 é 6) + 109 | 2.39-39 | | | c. | | | | 1.00 | | | | Sant. | | | | (y)p-x=0 | 4-01/9-26 | 4-1 | CO5 | 4 | | | | | 2 /0 / | 7-4 | 12 1315 | 4 | | | | $dx + (xy^3 + 2y^4 - 4x)dy = 0$ | dy+22 19 | _ | | | | | | | TO TO TO | 2 | | 4 | | | | dy | 0 | , | | | | | | $4x\frac{dy}{dx} + 8y = 4x^3 + 2\sin(\log x)$ | x) <1x+(2x+2x2 | | | 8 | | | | - 5 10.8 110P | m1 +7 61 1 1 am | ١ | L2,L3,L5 | | | | | 34 | CAN TA SIMILAGINA | | | | | | | 21 | 37 | | | | | | | calculus and linear algebra | | | | | | | | of improper integrals to spid. | Engineering problems | | liv_ | _ | | | | aylor's theorem in error analysis | Beta and Gamma functions | | | | | | | of rank to solow | ols. | | | | | | | of stelling in the | at equations and diagonalia | otion - | C | | | | | ve ordinary and linear different | ial emoti- | ation o | t matrices. | | | | | we ordinary and linear different
nce of infinite series. | tial equations. | auon o | matrices. | | | | | | B.Tech.
(ITA,ITB,ITC,ECA,ECB) BSC-103 1 24 31-3-2023 Question ial equation: $p = \log(px - y)$ $y = 0$ ial equation $y' - 6y' + 9y = -\frac{3}{2}$ $y' = 0$ =$ | (ITA,ITB,ITC,ECA,ECB) BSC-103 Subject Title Course Coordinator(s) 24 Time Duration Roll Number Question Question $y = 0$ | B.Tech. (ITA,ITB,ITC,ECA,ECB) BSC-103 Subject Title Course Coordinator(s) Pf. Ra Course Coordinator(s) Pf. Su Dr. Sa 24 Time Duration I hou All equation: $p = \log(px - y)$ $y = 0$ ial equation $y' - 6y' + 9y = \frac{e^{3x}}{x^2}$ by method of variation of $y' - 2y' + 2y' - 4x' + 2y' + 2y' + 3y' 3y$ | B.Tech. (ITA,ITB,ITC,ECA,ECB) BSC-103 Subject Title Course Coordinator(s) Pf. Rajbir
Kaur Pf. Sukhminder Sir Dr. Sandeep chauh 24 Time Duration Roll Number CO's, RBT level al equation: $p = \log(px - y)$ $y = 0$ | | | Guru Nanak Dev Engineering College, Ludhiana | | Lower Order 7 | hinking Levels (| LOTS) | Higher Orde | r Thinking Lo | vels (HOTS) | | |---------------------|---------------|------------------|----------|-------------|---------------|-------------|--| | RBT Level
Number | LI | L2 | L3 | L4 | 1.5 | reis (HOTS) | | | RBT Level | Remembering | Understanding | Applying | Analyzing | Evaluating | L6 | | log or = | | G | uru Nanak Dev Eng | ineering College, Ludhiana | 1 | 1 | | |----------------------------|--|--|--|-----------|--------------------|-------| | | | Department (| of Applied Science | | and a | | | ogran | and the | B.Tech.
(ECA,ECB,ITC) | Semester | 2nd | 1 | - | | bject | | BSC-103 | Subject Title | Mathe | matics-I | | | | nester Test (MST) No. | 2 | Course Coordinator(s) | | chminder Sin | gh | | ax. M | | 24 | Time Duration | | 30 minutes | 0 | | ate of | • | 22-5-2023 | Roll Number | 11041 | 20 | | | ote: A | ttempt all questions. | No. | | .5. | | | | .No. | | Question | | 1 | CO's, RBT
Jevel | Marks | | 1) | Using Cayley Hamilton | n theorem, find the inv | erse of $\begin{bmatrix} 1 & -2 \\ -5 & 4 \end{bmatrix}$. | 5-1 | CO1,
L2,L3,L5 | 2 | | 2 | Evaluate the improper | CO2,
L2,L3,L5 | 2 | | | | | 23 | Expand $\cos x$ in power $\cos x = \frac{1}{12} \left(\frac{x}{12} \right)$ | CO3,
L2,L3,L5 | 4 | | | | | 24 | For what values of k ,
$4x + v + 10z = k^2$ hay | the equations $x + y + x$
we a solution and solve | | | CO4,
L2, L3,L5 | 4 | | 25 | Test the convergence of | of the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ | - using Cauchy integral test | | CO6,
L2,L3,L5 | 3010 | | 26) | Diagonalize the matrix | $\begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ and obtain | in the modal matrix. | • | CO4,
L2,L3,L5 | 8 | | C ours e
Student | e Outcomes (CO) | | | * | | | | | Analyze the use of calc | culus and linear algebra | to Engineering problems | | | | | | Apply the concept of in | nproper integrals to stu | idy Beta and Gamma functions | S | | | | | TE Is in whility of Toyle | ar's theorem in error and | alvsis | 2 | matrices | | | | Apply the concept of ra | ank to solve system of l | linear equations and diagonaliz | zation of | maurices. | | | 5 | Recognize and solve or | rdinary and linear differ | rential equations. | | 7 7 1-5 | | | | Infer the convergence | 0. 0 . | | | | | | RBT | Lower Order | Thinking Levels (| LOTS) | Higher Orde | r Thinking Lev | els (HOTS) | |--------------------------|-------------|-------------------|----------|-------------|----------------|------------| | Classification RBT Level | L1 | L2 | t L3 | L4 | L5 | L6 | | Number
RRT Level | Remembering | Understanding | Applying | Analyzing | Evaluating | Creating | Hia MATH Math | | | | K Dev Engineering College, Legartment of Applied Science | | | | | |-----------|--|------------------------------------|---|---|---------------|-------|--| | Program | · · · · · · · · · · · · · · · · · · · | B.Tech. (CSE B,C,D, | Semester Science | TI | | | | | Togram | | CE A,B EE-A,B) | Semester | 1 | | | | | Subject (| Code | BSC-103 | Subject Title | Mathematic | s I | | | | Mid Sem | | 2 | Course Coordinator | Prof Rajbir | | | | | Test No. | | | | | Kaur Choul | nan | | | | | | | Dr. Gagandeep Kaur | | | | | Max. Ma | | 24 | Time Duration | 1 hour 30 m | inutes | | | | Date of N | IST | 20-12-2020 | Roll Number | | | | | | Note: At | tempt a | all questions | | | | | | | Q. No. | | | Question | 1.5 | COs,RBT level | Marks | | | Q1 | Examine the convergence of $\sum \left(\frac{1.2.3.4n}{3.5.72n+1}\right)^2$ | | | | CO6, | 2 | | | 3 | $\frac{1}{3.5.72n+1}$ | | | | L1,L4 | | | | 22) | Check whether A is similar to B or not where $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ | | | | CO1, | 2 | | | | | L2, L4 | | | | | | | Q3 | For w | CO4, | 4 | | | | | | | 1 | | tem of equations x+y+z=1 , 2 | , | L1,L3 | - | | | | | +10z=k ² have solution. | | | , , , , | | | | Q4) | Exam | nine the convergence of | the series $\frac{\sqrt{2}-1}{3^3-1} + \frac{\sqrt{3}-1}{4^3-1} + \frac{\sqrt{4}-1}{5^3-1}$ | -1 , | CO6, | | | | | | | | | L2, L4 | 4 | | | Q5 | Annly | Caylor Hamilton the | in to find A^{-1} , where $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \\ 1 & -1 \end{bmatrix}$ | 1 1] | CO1, | 4 | | | | Apply | Cayley Hamilton theoren | in to find A^{-1} , where $A = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$ | 2 -1 | L3 | | | | | | | / L1 - | 1 2 J | | | | | Q6 | | | [1 1 3 | 31 | | | | | 3 | Cons | truct a matrix P which t | ransforms the matrix $\begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 3 \\ 3 & 1 & 3 \end{bmatrix}$ | 1 into a | CO4, | -8 | | | | diago | nal form. | l3 1 1 | 1] | L5 | -0 | | | Course | | nes (CO)Students will b | a abla ta | | | 1 | | | | | | | | | | | | 2 | Analy | the agreement C: | linear algebra to Engineering pro | blems. | | | | | | Apply | in utility of Table 2 4 | ntegrals to study Beta and Gamm | a functions. | | | | | }
 - | Applai | in utility of Taylor's theore | em in error analysis. | | | | | | | Apply | nize and solver all | ve system of linear equations and | diagonalization | of matrices. | | | | | | | d linear differential equation. | | 1 | | | | | Inter th | he convergence of infinite | series. | | | | | | RBT Classification | Lower Order | Thinking Levels | Higher Ord | der Thinking | Levels | | |--------------------|-------------|-----------------|------------|--------------|------------|---------| | RBT Level Number | L1 | L2 | L3 | L4 | L5 | L6 | | RBT Level Name | Remembering | Understanding | Applying | Analyzing | Evaluating | Creatin | 8 27 - 63 + 36 1- 63 | 7 | Type equation | i nere.Guru Nanai | C Dev Engineering College | , Ludh | iana | | |---------------------------|--|---|--|--|-------------------|------| | Program | | B.Tech.
(CEA,CE B,
CS B, CS C,
CS D, EE A) | of Applied Science Semester | 2nd | 1.10 | | | Subject
Mid Sen
No. | Code
nester Test (MST) | BSC-103 | Subject Title Course Coordinator(s) | Mathematics 1 Prof. Rajbir Kaur, Dr. Gagandeep Kaur, Dr. Sandeep Chauhan | | | | Max. M | arks # 2 | 24 | Time Duration | | 30 minutes | | | Date of | MST | 14 th Nov., 2022 | Roll Number | -x - | | | | Note: A
Q.
No. | ttempt all questions | Questi | on the transfer |) - \ | COs,
RBT level | Mark | | QI | Solve the differential of | equation: $(y - px)(p$ | (p-1)=p. | 1 | CO5,
L2,L3 | 2 | | (Q2) | State Necessary, and S $Mdx + Ndy = 0, \text{ to}$ | ufficient condition for be exactwhere M , N | or the differential equation y are functions of x , y . | 97 | CO5,
L2,L1 | 2 | | Q3 | Solve the following di $(x^2 + y^2 + x)dx + x$ | fferential equation: $ydy = 0.$ | with method of variation of | | CO5,
L2,L5 | 4 | | | Solve the following di | Herential equation b | y the method of variation of $CF = C_1 e^{-3x} + C_2 x e^{-3x}$ | - 3× | CO5,L2,
L3,L5 | 4 | | 1 | Solve the differential | equation: $\frac{d^2y}{dx^2} - y$ | $= x + \sin x + (1 + x^2)e^x.$ | | CO5,
L2,L5 | 4 | | Q5 | | - d ² 2. | $2x^{dy} - 20y - (x + 1)^2$ | | CO5, | 8 | | Q5 | Solve the differential | | $\frac{2x \frac{1}{dx} - 20y - (x + 1)}{x^{9} + C_{2}u^{-5} - \frac{1}{18}u^{2} - \frac{1}{10}}$ | | L2,L3,L5 | | | RBT Classification | g Levels (LOTS) | | Higher Order T | hinking Levels (HC | OTS) | | |--------------------|-----------------|---------------|----------------|--------------------|------------|----------| | RBT Level Number | LI | L2 | L3 | L.4 | L5 | L6 | | RBT Level | Remembering | Understanding | Applying | Analyzing | Evaluating | Creating | | Program | | B.Tech.(CE) | Semester 1/2 | | | |----------------|--|--------------------|------------------------------------|-------|--| | Subject C | Code | BSC-103 | Subject Title: Applied Maths | 1 - 1 | | | Mid Sem
No. | ester Test (MST) | 1 | Course Coordinator(s) | | | | Max. Ma | arks | 24 | Time Duration 90 min. | | | | Date of I | MST | Feb 2020 | Roll Number 1914103 | | | | Q. No. | | Quest | tion | Marks | | | (D) | Give an example of a non linear differential equation of second order and second degree. | | | | | | Q2 | What is solution of differential equation give an example. | | | | | | Q3 | Solve y logy dx+(x-lo | gy)dy = 0 | | 4 | | | 94) | Write the method for equation. | or finding complen | nentary function of a differential | 4 | | | 98) | Solve the differenti | | ax | 4 | | | ا | Solve $\frac{d^2y}{dx^2} + y = \cos \theta$ | ecx, by the method | d of variation of parameters. | 8 | | | D warmen market | Coffee | Dengel | gincering College, Lodhis | HILL | - many |
---|--|--|--
--|--| | Program | The same of sa | In to have or | t of Applied Science | The second secon | and the second | | Subject | Carried Comments of the Comments of the Carried Commen | B Jech (EE) CE
BSC-103 E | Samola Complete | Market and the second of the second | and the same of the same | | Mid Sey | mester Test (MST) | And the second section of section of the second section of the second section of the second section of the | Course Coordinator(*) | Mathematics-I
Rupinderiit Kaur | | | Appropriate the second | "No resident space or comme | | Time Duration | I how 30 minu | form | | Date of | | 16 September,
2019 | Roll Number | ATTION OF THE STATE STAT | | | Jule: V | tempt all questions | भवाक्षित्तं कार्याः भविष्यः प्रोत्तेक्षायाम् अते वः । भविष्यक्षात्रः स्व वर्षे क्षाव्यः स्व प्रकार विष्या स्वा
स्व | real reparts one control terms are represented as a control of the | | The Manager and confinence of the Telephone of | | Carried and and and and and and and and and an | | Questi | SH | CO.,
RBT lev | Marks | | 21 | Find the solution of | $p^2 - 7p + 12 = 0$ | und kirjand and market various and production of the design that the design temperature and production of the design desi | COS, L2 | Photography and the comment of c | | 罢. | Define exact differe | nual equation | detailed textend file committee たんだいが サンドロンドフィットから ない 時間 | COS, LI | 1 2 | | | Solve r'ydr - (r' | | | CO5, 1.3 | 4 | | (H) | Solve di . y | 2 XX, | enter en mentre de la propositio de la companya de
La companya de la del companya del companya de la del la companya de | CO5, L3 | | | (S) | Use method of vani | ation of parameters | to solve $\frac{d^2y}{dx^2} + y = \sec x$. | CO5, L5 | | | 0. | Solve $(2x+3)^2 \frac{d^2}{dx}$ | $\frac{y}{1} - 2(2x + 3) \frac{dy}{dx} -$ | 12y = 6x | CO5, L5 | 8 | | | Outcomes (CO) will be able to | ere et en de la mental me | | - Anna Carlo | | | 1 | Analyze the use of | calculus and linear | algebra to Engineering probl | icms. | NEW COLUMN TO THE THE PARTY OF | | 2 | | | s to study Beta and Gamma | | A THE RESERVE OF THE PARTY T | | Simple class relaction activities — spirit | Explain utility of Ta | ylor's theorem in e | mor analysis. | The state of s | | | 4 | Apply the concept of | of rank to solve syst | em of linear equations and c | lagonalization of | matrices | | * | Recognize and solve | e ordinary and linea | ir differential equations | Marketter of the following the second of the first | Christian Control of the Control | | 6 | Infer the convergent | ce of infinite series. | | | | | RHT
Classification | Lower Order | Thinking Levels | (LOTS) | Higher Order Thinking Levels (HOTS) | | | | |-----------------------|-------------|-----------------|----------|-------------------------------------|------------|----------|--| | RBT Level
Number | 1.1 | 12 | L3 | LA | L5 | L6 | | | RBT Level
Name | Remembering | Understanding | Applying | Analyzing | Evaluating | Creating | | | | Trop equation | hara Curu Nanak | Day Engineering College | , Ludi | ATTEMPTER | | |--|--|--|---------------------------------------|---|--|---------------| | 1617 1 | Type equation | Donartment | Dev Engineering College | | ************************************** | ℓ | | | | | of Applied Science | 2nd | 137 | | | rogram | · CAR | B.Tech. | Semester | | | | | | | (CEA,CEB, | | | The state of s | | | | | CS B, CS C, | | | | | | | | CS D, EE A) | | | motics 1 | | | 11: AC | a d a | BSC-103 | Subject Title | Mathematics 1 | | WALL SHA | | Subject C | | | Course Coordinator(s) | Prof. | Rajbir Kaur, | | | Mid Semester Test (MST) No. | | 11 | Course Cool dimator
(5) | In C | agandeeD Na | LLL 9 HOLE TO | | | | | | Dr S | andeep Chaul | nan | | | | | | 11.00 | r 30 minutes | 1.7 | | Max. Ma | rks | 24 | Time Duration | | | | | Date of N | | 14th Nov., 2022 | Roll Number | 1221 | 60 5 <i>8</i>) | | | Date of N | 101 | 14 1101., 2022 | | | | | | | | | | | | 135 1 | | | tempt alliquestions | 0 | | | COs, | Mark | | Q. | | Questi | on | | RBT level | | | No. | | | • | | | (0 | | Solve the differential equation: $(y - px)(p - 1) = p$. | | | | | CO5, | \2 | | | | | | | L2,L3 | ~ 34. | | | State Necessary and Sufficient condition for the differential equation | | | | CO5, | -2 | | (Q2) | State Necessary and | Sufficient condition in | d are functions of x. V. | | L2,L1 | | | | $\int Mdx + Ndy = 0,$ | to be exactwhere M , N | are functions of My. | | , | . 1 | | | To the state of the state of | differential equation: | ••• | | CO5, | 4 | | Q_3 | Solve the following | differential equation: | (y | | L2,L5 | | | | $\int (x^2 + y^2 + x) dx +$ | -xvdv=0. | | | | 1.7 | | | 1, | | | | | | | Q4 | Solve the following | differential equation b | by the method of variation of | | CO5,L2, | 4 | | (4) | ' i | | | | L3,L5 | | | - } | parameters: $\frac{d^2y}{dx^2}$ | $+6\frac{dy}{dx} + 9y = \frac{1}{x^3}e^{-3x}.$ | | | | | | 1.0 | | 70 | | | | | | Q5 | Solve the different | ial equation: $\frac{d^2y}{dt^2} - y$ | $=x+\sin x+(1+x^2)e^x.$ | | CO5, | 4 | | | Solve the different | dx^2 | | | L2,L5 | | | (Q6) | 1000 | interpolations and d ² y | $2x\frac{dy}{dx} - 20y = (x+1)^2.$ | | CO5, | 8 | | (10) | Solve the different | ial equation: $x^{-} \frac{dx^{2}}{dx^{2}}$ | $2x\frac{d}{dx} - 20y = (x + 1).$ | | L2,L3,L5 | | | Course | Outcomes (CO) | | | | , , , , , , | | | | will be able to | | | | | | | | | • | | *************************************** | | | | 1 | Analyze the use of calculu | and linear algebra to Engineer | ring problems | | | | | 3 | Apply the concept of impr
Explain utility of Taytor's t | oper integrals to study Beta an
heorem in error analysis. | u Gamma functions. | | | | | 4 | Apply the concept of rank | to solve system of linear equat | ions and diagonalization of matrices. | | | | | 5 | Recognize and solve ordin | ary and linear dilterential equa | | | | | | 6 | Infer the convergence of in | nfinite series. | | | | | | RBT Classification | Lower Order Thinkin | g Levels (LOTS) | | Higher Order Thinking Levels (HOTS) | | | | |--------------------|---------------------|-----------------|----------|-------------------------------------|------------|----------|--| | RBT Level Number | 1.1 | L2 | L3 | 1.4 | L5 | L6 | | | RBT Level | Remembering | Understanding | Applying | Analyzing | Evaluating | Creating | | # Confishency water Phis # 10 mater on & Har ad 14 MORNING Math Please check that this question paper contains 9 questions and 2 printed pages within first ten minutes. [Total No. of Questions: 09] [Total No. of Pages: 2] Uni. Roll No. Program: B.Tech. (Batch 2018 onward) Semester: 2 Name of Subject: Mathematics I Subject Code: BSC-103 Paper ID: 15927 Time Allowed: 03 Hours Max. Marks: 60 NOTE: 1) Parts A and B are compulsory 2) Part-C has Two Questions Q8 and Q9. Both are compulsory, but with internal choice 3) Any missing data may be assumed appropriately Part - A [Marks: 02 each] 01. Define Clairaut's equation and write its solution. Test the convergence of the improper integral $\int_{0}^{\infty} e^{-x} dx$. Evaluate $\lim_{x\to 0} \frac{x\cos x - \log(1+x)}{x^2}$. Using Cayley Hamilton theorem, Find the inverse of the matrix $\begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$. Examine the convergence of the series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\sqrt{n}}$. Evaluate $\int_{0}^{\frac{\pi}{2}} \sqrt{\tan \theta} d\theta$. gamq finth on Part-B [Marks: 04 each] Solve the differential equation $(x^2 + y^2 + 2x)dx + 2ydy = 0$. Expand log(1+x) using Maclaurin's Theorem. Q4. Prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$. Page 1 of 2 P.T.O. # MORNING 24 JUN 2022 Test the convergence of the series $\sum_{n=1}^{\infty} ne^{-n^2}$ using Cauchy Integral test. Discuss the consistency of the following system of equations. Find the solution if consistent. $$4x-2y+6z=8,x+y-3z=-1,15x-3y+9z=21$$ Solve $\frac{d^2y}{dx^2} + 4y = \sec 2x$ by variation of parameter method. [Marks: 12 each(06 for each subpart if any)] Q8. (a) Solve the differential equation $\frac{dy}{dx} + y = y^2$. (b) Solve $y = 2px + p^2y$. $y = py = 2px + y(1-p^2) = 2px + y = 2px - 2px$ OR y = 2px - 2px - 2pxSolve $x^2 \frac{d^2y}{dx^2} - 4x \frac{dy}{dx} + 8y = 4x^3 + 2\sin(\log x)$. y = 2px - 2px Diagonalise the matrix $A = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ and obtain its modal matrix. Discuss the convergence of the series $x + \frac{2^2 x^2}{2!} + \frac{3^3 x^3}{3!} + \frac{4^4 x^4}{4!} + \dots \infty$. $= \frac{n\pi}{n!} \times \frac{(n+1)!}{(n+1)!}$ $= \frac{n\pi}{n!} \times \frac{(n+1)!}{(n+1)!}$ $= \frac{n\pi}{n!} \times \frac{(n+1)!}{(n+1)!}$ $= \frac{n\pi}{n!} \times \frac{(n+1)!}{(n+1)!}$ # Please check that this question paper contains 9 questions and 02 printed pages within first ten minutes. [Total No. of Questions: 09] [Total No. of Pages: 02] Uni. Roll No. 22 033.4.7... Program: B.Tech. (Batch 2018 onward) Semester: 1/2 Name of Subject: Mathematics-I Subject Code: BSC-103 Paper ID: 15927 Scientific calculator is Not Allowed Time Allowed: 03 Hours Max. Marks: 60 #### NOTE: 1) Parts A and B are compulsory 2) Part-C has Two Questions Q8 and Q9. Both are compulsory, but with internal choice 3) Any missing data may be assumed appropriately Part - A [Marks: 02 each] Q1 a) State Cayley Hamilton Theorem. Evaluate $\lim_{x\to\infty} (1+x)^{1/x}$. $\rightarrow 1$ my Prove that $\frac{1}{D}X = \int X dx$ where $D = \frac{dy}{dx}$ and X is a function of x. Give an example of a series which is conditionally convergent but not absolutely convergent. Evaluate the improper integral $\int_{0}^{\infty} e^{-2x} x^{5} dx$. Solve the equation $xp^{2} - yp + a = 0$. $yp = 2p^{2} + 9$ y = 2p + pq y = cx + cq Part - B Marks: 04 eachl Q2. Expand $\log x$ in powers of (x-1) using Taylor Theorem. Using Cauchy Integral test, discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{n}{(n^2+1)^2}$. (Q4) Find the general solution of the differential equation $(3x^{2}y^{3}e^{y} + y^{3} + y^{2})dx + (x^{3}y^{3}e^{y} - xy)dy = 0.$ Q5. Prove that $$\int_{0}^{\pi/2} \sin^{p} \theta \cos^{q} \theta d\theta = \frac{\sqrt{\frac{p+1}{2}} \sqrt{\frac{q+1}{2}}}{2\sqrt{\frac{p+q+2}{2}}}.$$ Hence Evaluate $\sqrt{\frac{1}{2}}$. Discuss the consistency of the following system of equations 2x + 3y + 4z = 11, $\begin{cases} 2x + 3y + 4z = 11, \\ 2x + 5y + 7z = 15, 3x + 11y + 13z = 25. \text{ If found consistent, solve it.} \end{cases}$ $\begin{cases} 2x + 3y + 4z = 11, \\ 2x + 3y + 4z = 11, \\ 2x + 3y + 4z = 11, \end{cases}$ Solve by method of variation of parameter $\frac{d^2y}{dx^2} + y = \cos ec x$. parameter $$\frac{d^2y}{dx^2} + y = \cos ecx$$. $C_1 \cos x + C_2 \sin x - x \cos x + \log (\cos ecx) \sin x$ Part - C [Marks: 12 each(06 for each subpart if any)] Solve $x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + 5y = \sin(\log x)$. $n^2 (C, \omega_s \log x) + C_2 \sin(\log x) + \frac{1}{8} (\cos(\log x))$ (i) Solve the differential equation $xy(1+xy^2)\frac{dy}{dx} = 1$ (ii) Solve p(p + y) = x(x + y). Discuss for what values of x does the series $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} x^{2n}$ converge/ diverge? Find a matrix P which transforms the matrix $\begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ into a diagonal form. Page 2 of 2 8 -7(-2)2+34 $-8 - 7(4) + 36 \qquad 1 - 7 + 36 \qquad -8 \qquad 8 - 28 + 36$ $36) + 36 \qquad 5 + 28 \qquad -1 - 7 + 36 \qquad -8 - 28 + 36$ | Please check that this question paper contains | questions and | _printed pages within first ten minutes. | |--|---------------|--| |--|---------------|--| [Total No. of Questions: 09] [Total No. of Pages: 2] Uni. Roll No. Program: B.TECH Semester: .2 Name of Subject: Mathematics-1 Subject Code: BSC103 Paper ID: 15927 Time Allowed: 02 Hours Max. Marks: 60 25-01-2022(E) NOTE: 1) Each question is of 10 marks. 2) Attempt any six questions out of nine 3) Any missing data may be assumed appropriately 1 Solve the differential equation $\frac{d^2x}{dt^2} + \frac{g}{l}x = \frac{g}{l}L$ where g,I,L are constants subject to the condition $$x = a$$, $\frac{dx}{dt} = 0$ at $t = 0$ Solve $$(1+x)^2 \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = \sin 2\{\log(1+x)\}$$ Find rank of the matrix $$\begin{bmatrix} 2 & 3-2 & 4 \\ 3 & -2 & 1 & -3 \\ 3 & 2 & 3 & 4 \\ -2 & 4 & 0 & 5 \end{bmatrix}$$ find all the Eigen valued and vectors the matrix $$A = \begin{bmatrix} 2 & -1 & 1 \\ -2 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$ 5 Prove that $$\int_{0}^{\infty} \frac{x^4 (1+x^5)}{(1+x)^{15}} dx = 1/5005 \dots$$ - 6 Expand f(z) = a/bz + c about $z_0 = 0$ - 7 Find Limit $x \to 0 (1/\sin x 1/x)$ - 8 Solve the initial value problem $e^y \frac{dy}{dx} = 2x, x \rightarrow \sqrt{3}, y(2) = 0$ Evaluate - $9 \int_{2}^{\infty} (x+3)/(x-1)(x^2+1)dx$ 6 ****** Please check that this question paper contains 09 questions and 02 printed pages within first ten minutes. [Total No. of Questions: 09] [Total No. of Pages: 02] Uni. Roll No. Program: B.Tech Semester: 1 Subject Code: BSC-103 Paper ID: 15927 01-03-2022(M) Max. Marks: 60 Time Allowed: 02 Hours # NOTE: 1) Each question is of 10 marks. - 2) Attempt any six questions out of nine - 3) Any missing data may be assumed appropriately [Marks: 10 each, 05 marks for each sub-part if any] Solve the differential equation $\tan y \frac{dy}{dx} + \tan x = \cos y \cos^3 x$. Q2. (a) Expand $\sin x$ in ascending powers of $\left(x - \frac{\pi}{2}\right)$ using Taylor Theorem. (b) Evaluate
$\lim_{x\to 0} (\sin x)^{\tan x}$. (b) Solve $$(3x^2y^4 + 2xy)dx + (2x^3y^3 - x^2)dy = 0$$ - (b) For what values of λ and μ do the system of equations x+3y+2z=2, 3x+3y+2z=5, $2x+12y+\lambda z=\mu$ have (i) no solution (ii) unique solution (iii) more than one solution? - Solve the differential equation $\frac{d^2y}{dx^2} + 4y = \sec x$ by method of variation of parameter. - Q7. (a) Using Beta and Gamma functions, evaluate $\int_{0}^{1} x^{5} (1-x^{3})^{3} dx$. - (b) Evaluate the improper integral $\int_{0}^{1} \frac{dx}{\sqrt{1-x}}$. - Q8. Solve the differential equation $x^2 \frac{d^2y}{dx^2} x \frac{dy}{dx} + 4y = \cos(\log x) + x \sin(\log x)$. - Show that the matrix $\begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ is diagonalizable. ******** [Total No. of Questions: 09] [Total No. of Pages: 02] Uni. Roll No. Program: B.Tech (Batch 2018 onward) Semester: 2 Name of Subject: Mathematics I Subject Code: BSC-103 Paper ID: 15927 16-07-21(M) Max. Marks: 60 Time Allowed: 02 Hours NOTE: 1) Each question is of 10 marks. 2) Attempt any six questions out of nine 3) Any missing data may be assumed appropriately Q1. Solve the differential equation $\frac{dy}{dx} + y = 3e^x y^3$. Q2. (a) For what values of λ and μ do the system of equations x+2y+3z=6, $$x+3y+5z=9$$ and $2x+5y+\lambda z=\mu$ have (i) No solution (ii) a unique solution (iii) more than one solution ? (6 marks) Using Cayley Hamilton Theorem, Find the inverse of the matrix $\begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix}$. (4 marks) (5 marks) **O3.** (a) Solve $(x - y^2)dx + 2xydy = 0$. (5 marks) (b) Solve $y = 2px + y^2p^3$ (a) Test the convergence of the series $\sum_{n=1}^{\infty} \frac{n}{(n^2+1)^2}$ using Cauchy Integral test. (6 marks) (4 marks) (b) Find the Maclaurin series for $f(x) = \cos x$. Discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{(n+1)}{n^3} x_n^n.$ Q6. (a) Evaluate the integral $\int_{0}^{1} \frac{x}{\sqrt{1-x^5}} dx$ in terms of gamma function. (6 marks) $un = \frac{(n+1)^{2}}{(n+2)^{3}}$ $un+1 = \frac{(n+2)^{3}}{(n+2)^{3}} - \frac{(n+1)^{2}}{(n+2)^{3}}$ Page 1 of 2 P.T.O. - Q7. Solve by method of variation of parameter $y'' 2y' + y = e^x \log x$. - Solve the differential equation $x^2 \frac{d^2y}{dx^2} 2x \frac{dy}{dx} + 2y = x^2 + \sin(\log x)$. - Q9. Find the eigen values and eigen vectors of the matrix $\begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$. ********* [Total No. of Questions: 09] [Total No. of Pages: 02] Uni. Roll No. Program: B.Tech. (Batch 2018 onward) Semester:1 Name of Subject: Mathematics I Subject Code: BSC-103 Faper ID: 15927 Time Allowed: 03 Hours r stike abadi Max. Marks: 60 #### NOTE: 1) Parts A and B are compulsory 2) Part-C has Two Questions Q8 and Q9. Both are compulsory, but with internal choice 3) Any missing data may be assumed appropriately Part - A [Marks: 02 each] Q1. a) Define Clairaut's equation. Test the convergence or divergence of the improper integral $\int_{0}^{\infty} e^{-x} dx$. Part-B [Marks: 04 each] Find the Maclaurin series for $f(x) = \sin x$. Solve the differential equation $(3xy^2 - y^3)dx - (2x^2y - xy^2)dy = 0$. Solve $y'' - 6y' + 9y = \frac{e^{3x}}{x^2}$ by variation of parameter method. Page 1 of 2 0.8 MAR 2021. Use the rank method to test the consistency of the system of equations 2x + 3y + 4z = 11, x+5y+7z=15, 3x+11y+13z=25. Test the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{2n-1}{n(n+1)(n+2)} = \frac{1}{(2)(3)} = \frac{1}{6}$ Part - C [Marks: 12 each] Solve the differential equation $x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + 2y = x \log x$. OR Solve $x \frac{dy}{dx} + y = x^3 y^6$. Solve the equation $3x^4p^2 - px - y = 0$. Diagonalise the matrix $A = \begin{bmatrix} 3 & 1 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$ and obtain its modal matrix. OR Discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{4.7.10.....(3n+1)}{1.2.3.....n} x^n$ # Please elleck that this question paper contains 9 questions and 2 printed pages within first ten minutes. [Total No. of Questions: 09] Uni. Roll No. MORNING [Total No. of Pages: 02] 04 DEC 2019 Program/Course: B.Tech.(Batch 2018 onward) Semester: 1, 2 Name of Subject: Mathematics-I Subject Code: BSC-103 Paper ID: 15927 Time Allowed: 03 Hours Max. Marks: 60 ### NOTE: (1) Parts A and B are compulsory. 2) Part -C has Two questions Q8 and Q9. Both are compulsory, but with internal choice. 3) Any missing data may be assumed appropriately. Part -A [Marks:02 each] Q1. (a) Test the convergence or divergence of the improper integral $\int_{0}^{\infty} \frac{dx}{9+x^2}$ Define Clairaut's equation and write its solution, Evaluate $\lim_{x \to a} \frac{x^3 - a^3}{x - a}$ Find the rank of the matrix $\begin{bmatrix} 1 & 4 & 3 \\ 2 & 6 & 8 \\ 3 & 7 & 22 \end{bmatrix}$. Test the convergence of the series $\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2}$. Qub \nearrow Find the particular integral of $(D^3 - 3D^2 + 4)y = e^{2x}$. Part -B Prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$. Q3. Solve p(p+y) = x(x+y). Solve the following differential equation by method of variation of parameters: Q5. Solve 2x-2y+z=1, x+2y+2z=2, 2x+y-2z=7 by rank method. Test the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{(n+1)^2}$ using Cauchy integral test. Expand $\tan x$ in powers of $\left(x - \frac{\pi}{4}\right)$ upto first four terms. Part -C MORNING 04 DEC 2019 [Marks: 12 each] - Q8.(a) Solve $x^2y'' 4xy' + 8y = 4x^3 + 2\sin(\log x)$. - OR (b) (i) Solve the following differential equation: $\frac{dy}{dx} + y = xy^{3}.$ - Solve the following differential equation: $(x^2y-2xy^2)dx-(x^3-3x^2y)dy=0.$ - (Q9.) a) Discuss the convergence of the series: $$1 + \frac{2x}{2!} + \frac{3^2 x^2}{3!} + \frac{4^3 x^3}{4!} + \frac{5^4 x^4}{5!} + \dots \infty.$$ OR (b) Diagonalize the matrix $$\begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$ and obtain its modal matrix. ***** [Total No. of Questions:09] Uni. Roll No. Z 1 MAY 2019 [Total No. of Pages:02] Program/ Course: B.Tech. (Sem. 1/2) Name of Subject: Mathematics-I Subject Code: BSC-103 Paper ID: 15927 Time Allowed: 03 Hours Max. Marks:60 NOTE: 2) Part-C has two Questions Q8 and Q9. Both are compulsory, but with internal choice 3) Any missing data may be assumed appropriately Part - A [Marks: 02 each] Q1. Prove that $\int_0^{\frac{\pi}{2}} \sqrt{\tan \theta} \, d\theta = \frac{\left[\frac{1}{2}\right]^{\frac{3}{2}}}{\frac{1}{2}}$. Evaluate improper integral $\int_0^{\infty} \frac{dx}{1+x^2}$. Why is it convergent? Solve $p = \sin(y - px)$. Test for convergence of $\sum \left(\frac{n}{n+1}\right)^{n^2} 332 \cdot \sqrt{20}$ State Taylor and Maclaurian theorems Define rank of a matrix. [Marks: 04 each] Q2. Evaluate $\int_0^\infty x^{\frac{1}{4}}e^{-\sqrt{x}} dx$. Solve $(x^2y - 2xy^2)dx - (x^3 - 3x^2y)dy = 0$. Test the convergence of series $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$ using Cauchy integral test. Q5. Expand $\sin x$ in the powers of $\left(x - \frac{\pi}{2}\right)$. Evaluate $\lim_{x\to \frac{\pi}{2}} (\sec x - \tan x)$. Solve x + y - z = 0, 2x - y + z = 3, 4x + 2y - 2z = 2. [Marks: 12 each (06 each part)] Q8. (i) Prove that $\int_0^{\frac{\pi}{2}} \sin^p x \cos^q x dx = \frac{\left[\frac{p+1}{2}\right]\frac{q+1}{2}}{2\left[\frac{p+q+2}{2}\right]}$. Hence evaluate $\left[\frac{1}{2}\right]$. Solve $\frac{dy}{dx} + y = xy^3$. Solve $x^2y'' - 4xy' + 8y = 4x^3 + 2\sin(\log x)$. Q9. Discuss the convergence of the series $1 + \frac{\alpha \cdot \beta}{1 \cdot \gamma} x + \frac{\alpha(\alpha+1)\beta(\beta+1)}{1 \cdot 2 \cdot \gamma(\gamma+1)} x^2 + \frac{\alpha(\alpha+1)(\alpha+2)\beta(\beta+1)(\beta+2)}{1 \cdot 2 \cdot 3 \cdot \gamma(\gamma+1)(\gamma+2)} x^3 + \cdots$ GE 1 OF 2 P.T.O # MORNING Show that the matrix $A = \begin{pmatrix} 3 & 1 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 2 \end{pmatrix}$ is diagonalizable. Hence find $P^{-1}AP$ is a diagonal matrix, and then obtain the matrix $B = A^2 + 5A + 3I$.) is diagonalizable. Hence find P such that [Total No. of Questions: 9] [Total No. of Pages: 2] Uni. Roll No. Program/ Course: B. Tech. (Sem-1/2) Name of Subject: Mathematics-I Subject Code: BSC-18103 Paper ID: 15927 Time Allowed: 03 Hours Max. Marks: 60 ## NOTE: 2) Part- C has two Questions Q8 & Q9 and both are compulsory, but with internal choice. 3) Any missing data may be assumed appropriately. Part - A [Marks: 02 each] Q1. Test for convergence or divergence of the improper integral $\int_{-\infty}^{\infty} \frac{dx}{a^2 + x^2}$. Solve $p = \log(px - y)$, where $p = \frac{dy}{dx}$. State Cauchy's Integral test for the convergence of an infinite series. d) Evaluate $\lim_{x\to\infty} (e^x + x)^{\frac{1}{x}}$. Prove that $\frac{1}{D-a}X = e^{ax} \int Xe^{-ax} dx$, where $D = \frac{dy}{dx}$ and X is a function of x. 5) State Cayley Hamilton theorem. Part - B [Marks: 04 each] . Derive the relation between Beta and Gamma functions . Solve $(xy^2 + 2x^2y^3)dx + (x^2y - x^3y^2)dy = 0$. Solve by the method of variation of parameters the following differential equation: $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = \sin(e^x).$ Obtain the first four terms of Taylor's series of $\cos x$ about $x = \frac{\pi}{4}$. For what values of x the power series $$1 - \frac{1}{2}(x-2) + \frac{1}{4}(x-2)^2 - \frac{1}{8}(x-2)^3 + ---\infty$$ converges? What is its sum? Find the value of k so that the equations x + y + 3z = 0, 4x + 3y + kz = 0, 2x + y + 2z = 0have a non-trivial solution. Part - C [Marks: 12 each] State and prove the necessary and sufficient condition for the differential equation M(x,y)dx + N(x,y)dy = 0 to be exact. Solve $$x^2 \frac{d^2 y}{dx^2} + 3x \frac{dy}{dx} + y = \frac{1}{(1-x)^2}$$. Show that the matrix $A = \begin{bmatrix} 3 & 1 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$ is diagonalizable. Hence find the modal matrix P such that $P^{-1}AP$ is a diagonal matrix RBT Classification RBT Level Number RBT Level | | |
Department | ineering College, Ludhiana of Applied Science | | | | |----------|---|---------------------------------|--|--|--|--| | rogram | 1 | B.Tech.
(CE/ME/EE/ECE) | Semester | lu. | | | | ubject (| Code | BSC-103 | Subject Title | Mathematics 1 Prof. Rajbir Kaur, Prof. Sukhminder Singh, Prof. Neeraj Kumar 1 hour 30 minutes | | | | | nester Test (MST) No. | 2 nd | Course Coordinator(s) | | | | | lax. Ma | irks | 24 | Time Duration | | | | | ate of N | | 6th Nov., 2023 | Roll Number | | | | | ote: All | questions are compulsory | , | | | | | | No. | Question | | | COs, RBT level | Marks | | |)1 | Find the rank of the following matrix $\begin{bmatrix} 1 & -1 & 0 \\ 2 & -3 & 0 \\ 3 & -3 & 1 \end{bmatrix}$. | | | | 2 | | | 22 | Prove the necessary con | CO6, L5 | 2 | | | | |)3 | Test the convergence o | f the series: | ne series: | | | | | | $1 + \frac{2x}{2!} + \frac{3^2x^2}{3!} + \frac{4^3x^3}{4!}$ | | | | | | | 1 | Solve the following diffe | erential equation: | | CO5, L3 | 4 | | | | $\frac{d^{2}y}{dx^{2}} + \frac{1}{x}\frac{dy}{dx} = \frac{1}{x^{2}} 12 \log x$ | | | | - | | | | 4.4 | | uations | CO4, L5 | . 4 | | | 5 | Determine, for what val
x + 2y + 3z = 6, $x + 3$ | | | | | | | | x + 2y + 3z = 0, $x + 3z = 0$ | a unique solution (iii) mo | ore than one solution. | en en en en antales de considerante | y-01 | | | 06 | | hich transforms the mat | [1 1 3] | CO4, L5 | 8 | | | ourse Ou | itcomes (CO) | | | | | | | | | d linear algebra to Engineering | g problems | | | | | | Apply the concept of imprope | er integrals to study beta | | | | | | | Explain utility of Taytor's the | rolve system of linear equation | is and diagonalization of matrices. | | | | | | | | ons. | enale true | | | | | Apply the concept of rank to solve system Recognize and solve ordinary and linear differential equations. Infer the convergence of infinite series. | | | | | | | | Infer the convergence of this | | | Harry March Street | 1137 | | | | | | Higher Order Thinkle | ng Levels (HOTS) | The Control of Co | | | | | TO SHARE | THE RESERVE OF THE PERSON T | THE RESERVE THE PARTY OF PA | Low | | | DOT (| Classification Lower Order | Thinking Levels (LOTS) | THE RESERVE AND ASSESSED FOR THE PARTY OF TH | L5
lusting Creating | | | | | | (| Guru Nanak Dev E | ngineering Co | llege, Ludhiai | na | | The Part Control | | |---|---|------------|-----------------------------|---------------------------------
--|---------|---|--------------------------|--| | | | | | it of Applied | Statement broken by the state of o | | | Antonia Space (MCNI) and | | | Program | | | B.Tech.(CE/ME/EE/ECE) Semes | | ster | 1 | AND ASSESSMENT OF THE PARTY | | | | Subject Code Mid Semester Test (MST) No. | | | BSC-103 | Subje | Subject Title Course Coordinator(s) | | Mathematics-I | | | | | | | 1 | The second second second second | | | Sukhminder Singh
Rajbir Kaur
Neeraj Kumar | | | | Max. M: | arks | | 24 | Time | Time Duration | | I hour 30 minutes | | | | Date of l | | | 25-9-2023 | Roll ? | Sumber | | | | | | Note: At | ttempt all | questions | | and the second second second | | | | | | | Note: Attempt all questions. Q.No. Question | | | | | | | CO's,
RBT level | Mark | | | Q1 State Necessary and Sufficient conditions for the differential equation Mdx+Ndy = 0 to be exact. | | | | | | | CO5.
L2/L3 | 2 | | | Q22 Solve the differential equation: $p = \log(px - y)$ | | | | | | | CO5.
L3/L5 | 2 | | | Q3 Solve: $(\sin x \cos y + e^{2x})dx + (\cos x \sin y + \tan y)dy = 0$ | | | | | | | CO5,
L3/L5 | 4 | | | Q4 | Q4 Solve: $x^2 y dx - (x^3 + y^3) dy = 0$ | | | | | | CO5,
L3/L5 | 4 | | | Solve the differential equation $y'' - 6y' + 9y = \frac{e^{3x}}{x^2}$ by method of variation of L3/L5 parameters. | | | | | | 4 | | | | | Q6 Solve: $(D-2)^2 y = 8(e^{2x} + \sin 2x + x^2)$ | | | | | | | CO5,
L3/L5 | 8 | | | | e Outcon | able to | * | | 2' | | | | | | CO5 | Recog | | ordinary and linear di | | tions. | 71 | - TI- (ITO) | ·C) | | | RBT | | Lower Orde | r Thinking Levels (| LOIS) | Higher Order | Ininkin | g Levels (HU) | 3) | | | Classification RBT Level L1 L2 L3 | | | L3 | L4 | L5 | L5 L | | | | | Number RBT Level Remember | | | g Understanding | Applying | Analyzing | Evalua | ating Cre | ating | | | | | | | The state of s | |--|---|----------------------|---|--| | | | | | 1.1 to Gest ton minutes | | | 0 | | 2 | and a design within ill'st ten minutes | | and the section names contains | y | auestions and | | nrintea naves with J | | Please check that this question paper contains | | your controlled when | | printed pages within first ten minutes | | PIPARP CHECK INGLINIS QUESTION FOR | | • | | CHILLIAN AND AND AND AND AND AND AND AND AND A | [Total No. of Questions: 09] [Total No. of Pages: 02] Uni. Roll No. Program: B.Tech. (Batch 2018 onward) Semester: 1st/2nd Name of Subject: Mathematics-I Subject Code: BSC-103 Paper ID:15927 Time Allowed: 03 Hours Max. Marks: 60 # NOTE: 1) Parts A and B are compulsory - 2) Part-C has Two Questions Q8 and Q9. Both are compulsory, but with internal choice - 3) Any missing data may be assumed appropriately [Marks: 02 each] Q1. - a) Evaluate the improper integral $\int_0^\infty \frac{1}{1+x^2} dx$. - b) Solve the differential equation $y = px + \sqrt{a^2p^2 + b^2}$, where $p = \frac{dy}{dx}$. - c) Prove the necessary condition for the convergence of a positive term series $\sum_{n=1}^{\infty} u_n$. - d) Prove that $\frac{1}{D-a}X = e^{ax} \int X e^{-ax} dx$, where $D = \frac{d}{dx}$ and X is any function of x. - e) Reduce the matrix $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \\ 3 & 0 & 5 & -10 \end{bmatrix}$ to normal form and hence find its rank. - f) Evaluate $\lim_{x\to 0} \left(\frac{\tan x}{x}\right)^{\frac{1}{x^2}}$ [Marks: 04 each] Q2. Prove the following relation of beta and gamma functions: $$\beta(m,n)=\frac{\gamma(m)\gamma(n)}{\gamma(m+n)}.$$ Q3. Solve the following differential equation: Page 1 of 2 $$\left(1+e^{\frac{x}{y}}\right)dx+\left(1-\frac{x}{y}\right)e^{\frac{x}{y}}dy=0.$$ Solve the following differential equation using the method of variation of parameter: $$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = \frac{e^{3x}}{x^2}.$$ - Q5. Expand log(1+x) in powers of x using Maclaurin's series. -
Q6. Determine for what values of a and b do the equations $$x + 2y + 3z = 6$$, $x + 3y + 5z = 9$, $2x + 5y + \alpha z = b$ (iii) more than one solution. have: (i) no solution (ii) a unique solution Test the convergence of the series $\sum_{n=1}^{\infty} \frac{n!2^n}{n^n}$. Solve the following differential equation: $$(3x+2)^{2}\frac{d^{2}y}{dx^{2}}+3(3x+2)\frac{dy}{dx}-36y=3x^{2}+4x+1.$$ OR Solve the following differential equation: (i) $$3x^4p^2 - px - y = 0$$, where $p = \frac{dy}{dx}$. (6) (ii) $$(2x^2y^2 + y)dx + (3x - x^3y) dy = 0.$$ (6) Q9. Let $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$, then: - (3) Find eigen values of A (i) Find eigen vectors corresponding to each eigen value (ii) - (3) Show that A is diagonalizable (3)(iii) - Find modal matrix P of A. **(3)** (iv) Prove that the series $x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + - - - \infty$ is convergent for $-1 < x \le 1$. 173,2 Also write the interval of convergence. ***** Page 2 of 2 | Please check that this question | paper contains 09 questions and 02 printed pa | iges within first ten minutes. | |--|--|--| | | 100 | | | | le de le | | | [Total No. of Questions: 09 | [Total] | No of Pages: 02] | | Uni. Roll No. Con The Trans. | | (=0) | | Um. Ron No.Cara. 4.4 | Program: B.Tech. (Batch 2018 onward | 1) (/52) | | | Semester: 1/2 | (60) | | | Name of Subject: Mathematics-I | | | The same of sa | Subject Code: BSC-103 | | | | Paper ID: 15927 | | | | Scientific calculator is Not Allowed | | | Time Allowed: 03 Hours | Scientific careament is a second | Max. Marks: 60 | | NOTE: | | | | NOIE. | | | | 1) Parts A and B are c | compulsory | land with internal choice | | 2) Part-C has Two Qu | nestions Q8 and Q9. Both are compulsory | , but with internal choice | | 3) Any missing data n | nay be assumed appropriately | | | | Part - A | [Marks: 02 each] | | Q1 | and the same of th | a long multi-stoke a | | ✓ a) Define | Legendre's linear equation. | | | (cb) Evaluat | te $\lim_{x\to 0} x \log x$. \mathbf{L} | The same of sa | | | | | | | an eigen value of a non-singular matrix | A. Then prove that λ is an | | | value of A^{-1} . | 3-1 00 00-1 | | d) Evaluat | te the improper integral $\int_{-1}^{1} \frac{dx}{x^{2/3}}$. | x value of A -1 | | | | | | (e) Solve | $p^2 - 7p + 12 = 0$, where $p = \frac{dy}{dx}$. | | | | that $\sum \left(\frac{n+1}{3n}\right)^n$ is convergent. $\frac{1}{3}$ | | | | Part – B | [Marks: 04 each] | | G loo die | fformatial aquation as he as he had | 0 N /elx 1 = 0 | | Q2. Solve the dif | fferential equation $y dx - x dy + \log x dx =$ | スメス | | $(3.)$ Prove that γ | $\left(\frac{1}{2}\right) = \sqrt{\pi}$. | | | (04.) For what val | lue of k the system of equations $x + y + z$ | z = 2, x + 2y + z = -2 | | x+y+(k-1) | 5)z = k has no solution. | 2, | | | | | | Deel | | | | | Page 1 of 2 | | | · ' U | | | Expand log(1+x) using Maclaurin's Theorem. Q6. Test the convergence of the series $\sum \frac{n^2+1}{n^3+1}$. Q7) Solve $\frac{d^2y}{dx^2} + y = \sec x$ by variation of parameter method. [Marks: 12 each(06 for each subpart if any)] (Q8.) Solve $x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + 2y = x \log x$. PIZZ e - (i) Solve (px y)(py + x) = 2p, where $p = \frac{dy}{dx}$. - (ii) Solve the differential equation $xy(1+xy^2)\frac{dy}{dx} = 1$. Show that the matrix $\begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ is diagonalizable. Hence find modal matrix P such that $P^{-1}AP$ is a diagonal matrix. For what value of x the power series $$1 - \frac{1}{2}(x-2) + \frac{1}{4}(x-2)^2 - \frac{1}{8}(x-2)^3 + \dots + \left(-\frac{1}{2}\right)^n (x-2)^n + \dots + \infty$$ converges? What is its sum?