
MEAN Final PYQ
2marks
d) how express handles the requests in MEAN project?
Ans=>In a MEAN (MongoDB, Express.js, Angular, Node.js) project, Express.js serves as the
backend web framework that handles HTTP requests. It acts as middleware between the client
(Angular) and the database (MongoDB). Here's how it works:

1. Routing: Express defines routes (e.g., GET, POST, PUT, DELETE) to handle
requests from the Angular frontend.

2. Middleware: It can process requests through middleware functions to handle tasks
like authentication, validation, logging, and parsing request data.

3. Request Handling: Express receives client requests, processes them, and
communicates with MongoDB through Mongoose or native drivers.

4. Response: After processing, Express sends back a response (JSON data or status) to
the Angular frontend.

Example:

app.get('/api/users', (req, res) => {

 User.find().then(users => res.json(users));

});

This route handles a GET request for users and sends a JSON response.

e) How to Structuring an AngularJS web application?

To build a scalable AngularJS application, it is important to organize code into a modular
and maintainable structure. A typical AngularJS project can be structured as follows:

1. Folder Structure:

/app

 /controllers → Contains controller files

 /services → Reusable business logic and API calls

 /directives → Custom directives

 /views → HTML templates (partials)

 /filters → Custom filters

 /assets → CSS, images, etc.

 app.js → Main AngularJS module and routing

 index.html → Main HTML file

2. Use of Modules:

AngularJS encourages breaking the app into modules using angular.module() to separate
concerns (e.g., userModule, productModule).

3. Routing Configuration:

Use ngRoute or ui-router to define routes:

app.config(function($routeProvider) {

 $routeProvider

 .when('/home', {

 templateUrl: 'views/home.html',

 controller: 'HomeController'

 });

});

4. Controller Separation:

Each controller should handle the logic of a specific view:

app.controller('HomeController', function($scope) {

 $scope.message = "Welcome to Home Page";

});

5. Services and Factories:

Use them to handle reusable logic and API calls:

app.factory('UserService', function($http) {

 return {

 getUsers: () => $http.get('/api/users')

 };

});

6. Use of Custom Directives:

To create reusable UI components:

app.directive('userCard', function() {

 return {

 templateUrl: 'views/user-card.html'

 };});

f) Differentiate the concept of One-way and Two-way data binding

Aspect One-way Data Binding Two-way Data Binding

Definition
Data flows from the component to
the view only

Data flows between component and view
in both directions

Direction
Single direction (Component →
View)

Bidirectional (Component ↔ View)

DOM
Update

View updates when data changes
in the component

View and component both update when
either changes

Control More control over how data flows
Less control, as synchronization is
automatic

Complexity Simpler to debug and manage
Can become complex in large
applications

Used In Angular, React (by default)
AngularJS (with ng-model), Angular
(with [(ngModel)])

Example
{{ name }} – binds data one-way
to template

<input ng-model="name"> – syncs input
and model

e) Differentiate between various data models used for designing in MongoDB

Data Model Description Use Case Example

Embedded Data
Model

Stores related data in the
same document

When related data is
mostly accessed
together

A blog post with
embedded comments

Referenced Data
Model

Uses references (_id) to
link documents in
different collections

When data is reused in
multiple places

A post references a
user document by
user ID

Flat Data Model
Stores data in a flat, non-
nested structure

For simple datasets and
fast querying

A user document
with name, age,
email fields

Normalized Data
Model

Similar to relational
model; separates data into
collections

To avoid duplication,
better for large data
sets

Separate collections
for students and
courses

Denormalized
Data Model

Combines related data to
avoid joins and improve
read performance

When read
performance is more
important than storage

Product document
includes embedded
category info

e) What is the main use of node in Mean Stack?
Main Uses of Node.js in MEAN Stack:

1. Server-side Execution:
It allows JavaScript to run on the server, enabling full-stack development using a
single language (JavaScript).

2. Non-blocking I/O:
Node.js handles multiple client requests efficiently using its event-driven,
asynchronous architecture.

3. Backend Support:
Acts as the foundation for Express.js, which handles routing and APIs.

4. Real-time Applications:
Useful for building real-time apps like chat apps and live notifications using
WebSockets.

5. Package Management:
Provides npm (Node Package Manager) to install libraries and dependencies easily.

Differentiate Express.js and Node.js

Aspect Node.js Express.js

Definition
Node.js is a runtime environment that
allows execution of JavaScript on the
server side.

Express.js is a lightweight web
application framework built on top
of Node.js.

Type Runtime Environment Framework

Purpose
Used to build server-side and
networking applications

Used to build web applications and
RESTful APIs

Level of
Abstraction

Low-level APIs High-level abstraction

HTTP Handling
Requires manual handling of requests
and responses using http module

Provides simplified methods like
app.get(), app.post() etc.

Speed of
Development

Slower, more boilerplate code needed
Faster, with built-in routing and
middleware support

Routing Must be implemented manually
Built-in routing system makes it
easy to define endpoints

Middleware
Support

No built-in support
Built-in support for middleware
(e.g., for logging, authentication)

File Structure No structure enforced
Encourages MVC pattern and
better organization

Aspect Node.js Express.js

Third-party
Integration

Manually configured
Easy integration with third-party
middleware like body-parser, cors,
etc.

Learning Curve
Requires deeper understanding of
core modules

Easier to learn after understanding
Node.js basics

4Marks
Discuss the concepts of Mongoose schema. Also write a code how to a create schema.
Discuss the Concepts of Mongoose Schema

Mongoose is an Object Data Modeling (ODM) library for MongoDB and Node.js. It provides
a way to define the structure of documents and data validation using schemas.

Concepts of Mongoose Schema:

1. Schema Definition:
A Mongoose schema defines the structure of a MongoDB document — what fields it
will have and what data types those fields are.

2. Data Types:
Fields in a schema can have types like String, Number, Date, Boolean, Array, or even
nested objects.

3. Validation:
Schemas allow for built-in and custom validation rules (e.g., required, minLength).

4. Defaults:
Fields can have default values if no data is provided.

5. Methods and Statics:
You can define custom methods (for instances) and statics (for the model) within the
schema.

6. Middleware (Hooks):
Functions that run before or after certain actions (e.g., save, remove).

7. Virtuals:
Computed properties that are not stored in the database but behave like regular fields.

Code Example: Creating a Schema in Mongoose

const mongoose = require('mongoose');

// Define a schema

const userSchema = new mongoose.Schema({

 name: { type: String, required: true },

 email: { type: String, required: true, unique: true },

 age: { type: Number, default: 18 },

 createdAt: { type: Date, default: Date.now }

});

// Create a model from the schema

const User = mongoose.model('User', userSchema);

// Export the model

module.exports = User;

Q6. How to design a single-page web application with Angular?
A Single Page Application (SPA) loads a single HTML page and dynamically updates
content without reloading the page. Angular is a powerful framework for building SPAs using
components, routing, and services.

Steps to Design an SPA with Angular:

1. Set Up Angular Project:

Use Angular CLI to create a new project:

ng new my-spa-app

cd my-spa-app

ng serve

2. Create Components:

Each section of the SPA is built as a component.

ng generate component home

ng generate component about

3. Configure Routing:

Define navigation routes using Angular’s Router module.

// app-routing.module.ts

import { NgModule } from '@angular/core';

import { RouterModule, Routes } from '@angular/router';

import { HomeComponent } from './home/home.component';

import { AboutComponent } from './about/about.component';

const routes: Routes = [

 { path: '', component: HomeComponent },

 { path: 'about', component: AboutComponent }

];

@NgModule({

 imports: [RouterModule.forRoot(routes)],

 exports: [RouterModule]

})

export class AppRoutingModule {}

4. Add Navigation Links:

Use routerLink to switch between views.

<!-- app.component.html -->

<nav>

 Home

 About

</nav>

<router-outlet></router-outlet>

5. Use Services for Data Handling:

Create services to fetch and share data.

ng generate service data

6. Dynamic Content Loading:

Data is loaded and updated dynamically in components without page refresh.

Illustrate, how the cornponents of the simple Angular app fit together'? Explain its
working.
How the Components of a Simple Angular App Fit Together

In an Angular application, different components, services, and modules work together to
create a seamless user experience. Let’s break down how they interact in a simple Angular
app.

1. Angular Modules:

 App Module (app.module.ts): This is the root module of an Angular application. It
imports necessary Angular modules (like BrowserModule, FormsModule, etc.) and
declares components that are part of the application.

2. Components:

 Component (app.component.ts): The fundamental building block of an Angular
application. A component controls a part of the user interface (UI). Each component
consists of:

o HTML Template: Defines the structure of the view.

o CSS Styles: Defines the look and feel of the component.

o TypeScript Class: Contains logic and properties for the component.

3. Templates:

 A component's template defines the view. It binds to the data in the component's class
using Angular’s binding syntax like {{variable}} for interpolation and [(ngModel)]
for two-way data binding.

4. Services:

 Services: Angular services are used to share data and business logic across different
components. Services are injected into components via dependency injection.

5. Routing:

 Routing (app-routing.module.ts): Angular uses the RouterModule to handle
navigation between different views or components. It enables the dynamic loading of
components without reloading the page.

6. Dependency Injection:

 Angular uses Dependency Injection to provide services to components.

Illustration of a Simple Angular App Structure

/src

 /app

 app.component.ts -> Main component (UI and logic)

 app.component.html -> Template for UI

 app.component.css -> Styles for the main component

 app.module.ts -> Root module (imports BrowserModule, declarations of
components)

 app-routing.module.ts -> Routing module (defines routes for navigation)

 /services

 data.service.ts -> A service to fetch or manage data

 /components

 home.component.ts -> A component for the home page

 about.component.ts -> A component for the about page

 /models

 user.model.ts -> Model representing a user (optional)

How it Works:

1. App Module:

o The root module imports BrowserModule and AppRoutingModule to make the
app work in a browser and handle routing.

o It declares AppComponent and any other components that are part of the
application.

2. Component and Template Binding:

o AppComponent binds data from its TypeScript class to the template using
Angular’s data binding.

o When data in the component changes, the view automatically updates (two-
way binding).

3. Routing:

o The router configuration in app-routing.module.ts defines paths like /home
and /about, mapping them to HomeComponent and AboutComponent.

o When the user clicks on a link (Home), the
corresponding component is dynamically loaded without refreshing the page.

4. Service Injection:

o The service (data.service.ts) is injected into the component to handle data
fetching, such as from an API.

o The component calls methods from the service to fetch data and updates the
view based on the received data.

How do you configure an Express application to render views using a templating

engine? Provide a brief example.
Express.js can be configured to render views by using a templating engine. A templating
engine allows us to separate the HTML structure from the logic of the application and
provides dynamic rendering capabilities.

Common templating engines for Express include EJS, Pug, and Handlebars. Below is how
to configure an Express application to use a templating engine, EJS, for rendering views.

Steps to Configure Express with a Templating Engine (e.g., EJS):

1. Install the Templating Engine:

First, install the templating engine via npm. For EJS, run:

npm install ejs

2. Set the View Engine in Express:

In the Express app, specify the view engine and the location where views will be stored. This
is done using the app.set() method.

const express = require('express');

const app = express();

// Set EJS as the view engine

app.set('view engine', 'ejs');

// Specify the folder where view files will be stored (optional, default is './views')

app.set('views', './views');

3. Create Views:

Create an EJS file (or other templating engine files) in the specified views folder.

For example, create a file called index.ejs in the views folder:

<!-- views/index.ejs -->

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>Express Example</title>

</head>

<body>

 <h1>Welcome, <%= name %>!</h1>

 <p>Your age is: <%= age %></p>

</body>

</html>

4. Render the View:

In the route handler, render the view using the res.render() method. You can pass dynamic
data to the view as an object.

app.get('/', (req, res) => {

 const data = {

 name: 'John Doe',

 age: 30

 };

 // Render the 'index' view and pass data

 res.render('index', data);

});

5. Start the Server:

Finally, start the Express server to see the rendered view in the browser.

app.listen(3000, () => {

 console.log('Server is running on http://localhost:3000');

});

Full Example:

const express = require('express');

const app = express();

// Set the view engine to EJS

app.set('view engine', 'ejs');

// Define a route

app.get('/', (req, res) => {

 const data = {

 name: 'John Doe',

 age: 30

 };

 // Render the view and pass the data

 res.render('index', data);

});

// Start the server

app.listen(3000, () => {

 console.log('Server is running on http://localhost:3000');

});

Q6. Write a Node.js script that sets up a basic web server using the http module. The

server should respond with "Hello, World!" when accessed at the root URL.
for 12 marks
How do you create a simple server in Node.js that returns Hello World?

// Load the http module to create an HTTP server

const http = require('http');

// Create an HTTP server that handles requests and responses

const server = http.createServer((req, res) => {

 // Check if the request URL is the root URL '/'

 if (req.url === '/') {

 // Set the response HTTP header

 res.writeHead(200, { 'Content-Type': 'text/plain' });

 // Send the "Hello, World!" response

 res.end('Hello, World!\n');

 } else {

 // For other URLs, respond with a 404 (Not Found)

 res.writeHead(404, { 'Content-Type': 'text/plain' });

 res.end('Not Found\n');

 }

});

// Set the server to listen on port 3000

server.listen(3000, () => {

 console.log('Server running at http://localhost:3000/');

});

How It Works:

1. Require the http module:

o This module allows you to create HTTP servers in Node.js.

2. Create the HTTP server:

o The http.createServer() function is used to create the server.

o The callback function receives the request (req) and response (res) objects.

3. Handle requests:

o Inside the callback, we check if the request URL is / (the root).

o If the URL is /, we send a 200 OK response with the content "Hello, World!".

o If the URL is not /, we send a 404 Not Found response.

4. Listen on port 3000:

o The server is set to listen on port 3000. When you navigate to
http://localhost:3000/, the server responds with "Hello, World!".

Write an AngularJS component that demonstrates two-way data binding. The
component should include a text input field that updates a displayed message as the user
types.
AngularJS Two-Way Data Binding Component Example

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>AngularJS Two-Way Data Binding Example</title>

 <script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.8.2/angular.min.js"></script>

</head>

<body ng-app="myApp">

 <div ng-controller="myController">

 <h1>Two-Way Data Binding Example</h1>

<!-- Text Input Field with Two-Way Data Binding -->

 <input type="text" ng-model="message" placeholder="Type something..." />

 <!-- Display the message dynamically as the user types -->

 <p>Your message: {{ message }}</p>

 </div>

 <script>

 // Define the AngularJS application

 var app = angular.module('myApp', []);

 // Define the controller for the app

 app.controller('myController', function($scope) {

 // Initialize the model variable

 $scope.message = '';

 });

 </script>

</body>

</html>

Explanation:

1. AngularJS Script:
The script is included from the Google CDN (angular.min.js), which makes it easy to
add AngularJS functionality to the page.

2. ng-app Directive:
The ng-app="myApp" directive initializes the AngularJS application. It binds the
AngularJS framework to the HTML document.

3. ng-controller Directive:
The ng-controller="myController" directive binds the myController controller to the
<div> tag, which encapsulates the logic for this component.

4. Two-Way Data Binding:

o The ng-model="message" directive binds the input field to the message model
on the $scope. This creates a two-way data binding, meaning that any changes
to the input field will automatically update the message variable in the
controller and vice versa.

o The {{ message }} in the <p> tag will dynamically update the displayed
message as the user types in the input field.

5. Controller:

o The controller (myController) initializes the message variable in the $scope to
an empty string.

o As the user types in the text input, the message variable is automatically
updated, and the displayed text (Your message: {{ message }}) reflects the
change in real-time.

Explain the Working of Routing and Services in Angular with Example
1. Routing in Angular

Routing in Angular allows navigation between different views or components without
reloading the entire page. Angular uses the RouterModule to define routes and load
components dynamically.

Key Concepts:

 Routes: Define path-to-component mapping.

 RouterModule: Angular module that handles navigation.

 routerLink: Directive to link to a route in templates.

 router-outlet: Placeholder where the routed component is displayed.

Example of Routing:

// app-routing.module.ts

import { NgModule } from '@angular/core';

import { RouterModule, Routes } from '@angular/router';

import { HomeComponent } from './home/home.component';

import { AboutComponent } from './about/about.component';

const routes: Routes = [

 { path: '', component: HomeComponent },

 { path: 'about', component: AboutComponent }

];

@NgModule({

 imports: [RouterModule.forRoot(routes)],

 exports: [RouterModule]

})

export class AppRoutingModule {}

<!-- app.component.html -->

<nav>

 Home

 About

</nav>

<router-outlet></router-outlet>

Explanation:

 When the user clicks "Home", HomeComponent is rendered inside <router-outlet>.

 When "About" is clicked, AboutComponent is rendered.

2. Services in Angular

Services are used to organize and share data or logic across multiple components. They are
commonly used for:

 Fetching data from an API

 Business logic

 Shared state

Creating a Service:

ng generate service data

data.service.ts

import { Injectable } from '@angular/core';

@Injectable({

 providedIn: 'root'

})

export class DataService {

 getMessage() {

 return "Hello from Data Service!";

 }

}

Using Service in a Component:

// home.component.ts

import { Component, OnInit } from '@angular/core';

import { DataService } from '../data.service';

@Component({

 selector: 'app-home',

 template: `<h2>{{ message }}</h2>`

})

export class HomeComponent implements OnInit {

 message: string = '';

 constructor(private dataService: DataService) {}

 ngOnInit() {

 this.message = this.dataService.getMessage();

 }

}

Explanation:

 DataService provides a method getMessage().

 HomeComponent injects the service using dependency injection and calls the
method in ngOnInit() to assign the message.

Q7. How to design a single-page web application with Angular?
A Single-Page Application (SPA) is a web app that loads a single HTML page and
dynamically updates the view without reloading the whole page. Angular is well-suited for
SPAs because of its powerful features like components, routing, and data binding.

Steps to Design a SPA Using Angular:

1. Set Up Angular Project

Use Angular CLI to generate a new project:

ng new my-spa-app

cd my-spa-app

2. Create Components

Each view/page in SPA is a separate Angular component.

Example:

ng generate component home

ng generate component about

3. Configure Routing

Define routes to connect URLs to components.

app-routing.module.ts

import { NgModule } from '@angular/core';

import { RouterModule, Routes } from '@angular/router';

import { HomeComponent } from './home/home.component';

import { AboutComponent } from './about/about.component';

const routes: Routes = [

 { path: '', component: HomeComponent },

 { path: 'about', component: AboutComponent }

];

@NgModule({

 imports: [RouterModule.forRoot(routes)],

 exports: [RouterModule]

})

export class AppRoutingModule {}

4. Set Up Navigation

Use routerLink for navigation between components without reloading the page.

app.component.html

<nav>

 Home

 About

</nav>

<router-outlet></router-outlet>

5. Run the Application

ng serve

Open your browser at http://localhost:4200.

What is the difference between MongoDB database, collection, and document?
In MongoDB, the terms database, collection, and document refer to different levels of data
organization. Here's the difference between them:

1. Database

 A database is the highest level of data organization in MongoDB.

 It acts like a container for collections.

 Each database has its own set of files and is independent of others.

 Example: A database named school might contain data related to students, teachers,
and courses.

2. Collection

 A collection is a group of MongoDB documents.

 It is the equivalent of a table in relational databases, but more flexible.

 Collections do not enforce a schema, so documents in the same collection can have
different structures.

 Example: In the school database, you might have a collection called students.

3. Document

 A document is the basic unit of data in MongoDB.

 It is stored in BSON (Binary JSON) format, which allows rich data types.

 A document is like a row in a relational table but can store nested data.

 Example:

{

 "name": "Alice",

 "age": 20,

 "courses": ["Math", "Science"]

}

Summary Table:

Term Description Analogy in RDBMS

Database Container for collections Database

Collection Group of documents Table

Document Individual data record in BSON format Row (Record)

Discuss the role of Angular JS in the MEAN stackRole of AngularJS in MEAN Stack

1. Front-End Development: AngularJS provides a structured framework for building
interactive and responsive web applications, handling UI components efficiently.

2. Model-View-Controller (MVC) Architecture: It organizes code in a logical manner,
separating concerns between data (model), UI (view), and application logic
(controller).

3. Two-Way Data Binding: AngularJS synchronizes the model and the view, reducing
the need for manual DOM manipulations and making the development process more
intuitive.

4. RESTful API Integration: It communicates with the Express.js backend via HTTP
services, retrieving and updating data stored in MongoDB.

5. Reusable Components: Directives and components allow developers to create
modular and reusable UI elements, enhancing code maintainability.

6. Dependency Injection: AngularJS simplifies service management and boosts
efficiency by injecting dependencies where needed.

7. Routing and Single-Page Applications (SPA): Using the built-in routing module,
AngularJS ensures smooth transitions between views without requiring full page
reloads.

12Marks
How to design a common MEAN stack architecture using a REST API built in

Node.js, Express, and MongoDB? Explain with detail examples.

Designing a common MEAN stack architecture involves integrating
MongoDB, Express.js, Angular, and Node.js to build full-stack web
applications. The REST API is typically built using Node.js, Express,
and MongoDB, while Angular is used for the front-end.

脥� Overview of MEAN Stack(Explain all it in details)

 MongoDB: NoSQL database to store data in JSON-like format.

 Express.js: Web framework for Node.js to create API endpoints.

 Angular: Front-end framework for building dynamic SPAs
(Single Page Applications).

 Node.js: JavaScript runtime for building the server-side logic.

괂���������� Folder Structure (Backend - Node/Express)

/backend

│

├── server.js

├── /routes

│ └── studentRoutes.js

├── /models

│ └── Student.js

├── /controllers

│ └── studentController.js

 Step-by-Step: Build REST API with Node.js, Express, and MongoDB

1. Install Dependencies

npm init -y

npm install express mongoose cors body-parser

2. Connect to MongoDB (server.js)

const express = require('express');

const mongoose = require('mongoose');

const cors = require('cors');

const studentRoutes = require('./routes/studentRoutes');

const app = express();

app.use(cors());

app.use(express.json());

mongoose.connect('mongodb://localhost:27017/school', {

 useNewUrlParser: true,

 useUnifiedTopology: true

})

.then(() => console.log("MongoDB connected"))

.catch(err => console.error(err));

app.use('/api/students', studentRoutes);

app.listen(3000, () => console.log('Server running on port 3000'));

3. Define MongoDB Schema (models/Student.js)

const mongoose = require('mongoose');

const studentSchema = new mongoose.Schema({

 name: String,

 age: Number,

 courses: [String]

});

module.exports = mongoose.model('Student', studentSchema);

4. Create Controller (controllers/studentController.js)

const Student = require('../models/Student');

exports.getAllStudents = async (req, res) => {

 const students = await Student.find();

 res.json(students);

};

exports.createStudent = async (req, res) => {

 const newStudent = new Student(req.body);

 await newStudent.save();

 res.status(201).json(newStudent);

};

exports.getStudentById = async (req, res) => {

 const student = await Student.findById(req.params.id);

 res.json(student);

};

exports.updateStudent = async (req, res) => {

 const student = await Student.findByIdAndUpdate(req.params.id, req.body, { new: true });

 res.json(student);

};

exports.deleteStudent = async (req, res) => {

 await Student.findByIdAndDelete(req.params.id);

 res.json({ message: 'Student deleted' });

};

5. Set Up Routes (routes/studentRoutes.js)

const express = require('express');

const router = express.Router();

const studentController = require('../controllers/studentController');

router.get('/', studentController.getAllStudents);

router.post('/', studentController.createStudent);

router.get('/:id', studentController.getStudentById);

router.put('/:id', studentController.updateStudent);

router.delete('/:id', studentController.deleteStudent);

module.exports = router;

것겄겅겆겇 Sample API Endpoints

 GET /api/students – List all students

 POST /api/students – Add a new student

 GET /api/students/:id – Get a student by ID

 PUT /api/students/:id – Update a student

 DELETE /api/students/:id – Delete a student

Write a code how the POST, GET, PUT, and DELETE ETTI) request methods

to common CRUD operations in MEAN Web application with examples.

곸곹곺곻과곽 Backend: Node.js + Express + MongoDB

1. Model (models/student.js)

const mongoose = require('mongoose');

const studentSchema = new mongoose.Schema({

 name: String,

 age: Number,

 course: String

});

module.exports = mongoose.model('Student', studentSchema);

2. Controller (controllers/studentController.js)

const Student = require('../models/student');

// GET all students

exports.getAll = async (req, res) => {

 const students = await Student.find();

 res.json(students);

};

// GET one student

exports.getById = async (req, res) => {

 const student = await Student.findById(req.params.id);

 res.json(student);

};

// POST create student

exports.create = async (req, res) => {

 const student = new Student(req.body);

 await student.save();

 res.status(201).json(student);

};

// PUT update student

exports.update = async (req, res) => {

 const updated = await Student.findByIdAndUpdate(req.params.id, req.body, { new: true });

 res.json(updated);

};

// DELETE student

exports.remove = async (req, res) => {

 await Student.findByIdAndDelete(req.params.id);

 res.json({ message: 'Deleted' });

};

3. Routes (routes/studentRoutes.js)

const express = require('express');

const router = express.Router();

const studentCtrl = require('../controllers/studentController');

router.get('/', studentCtrl.getAll);

router.get('/:id', studentCtrl.getById);

router.post('/', studentCtrl.create);

router.put('/:id', studentCtrl.update);

router.delete('/:id', studentCtrl.remove);

module.exports = router;

4. Server Entry (server.js)

const express = require('express');

const mongoose = require('mongoose');

const cors = require('cors');

const studentRoutes = require('./routes/studentRoutes');

const app = express();

app.use(cors());

app.use(express.json());

mongoose.connect('mongodb://localhost:27017/school', { useNewUrlParser: true });

app.use('/api/students', studentRoutes);

app.listen(3000, () => console.log('Server running on port 3000'));

냫냬냭냮냯 Frontend: Angular Example Using HttpClient

1. Angular Service (student.service.ts)

import { HttpClient } from '@angular/common/http';

import { Injectable } from '@angular/core';

import { Observable } from 'rxjs';

export interface Student {

 _id?: string;

 name: string;

 age: number;

 course: string;

}

@Injectable({

 providedIn: 'root'

})

export class StudentService {

 private apiUrl = 'http://localhost:3000/api/students';

 constructor(private http: HttpClient) {}

 getStudents(): Observable<Student[]> {

 return this.http.get<Student[]>(this.apiUrl);

 }

 getStudent(id: string): Observable<Student> {

 return this.http.get<Student>(`${this.apiUrl}/${id}`);

 }

 createStudent(data: Student): Observable<Student> {

 return this.http.post<Student>(this.apiUrl, data);

 }

 updateStudent(id: string, data: Student): Observable<Student> {

 return this.http.put<Student>(`${this.apiUrl}/${id}`, data);

 }

 deleteStudent(id: string): Observable<any> {

 return this.http.delete(`${this.apiUrl}/${id}`);

 }

}

2. Example Usage in Component (student.component.ts)

import { Component, OnInit } from '@angular/core';

import { StudentService, Student } from './student.service';

@Component({

 selector: 'app-student',

 template: `<li *ngFor="let s of students">{{s.name}}`

})

export class StudentComponent implements OnInit {

 students: Student[] = [];

 constructor(private studentService: StudentService) {}

 ngOnInit() {

 this.studentService.getStudents().subscribe(data => {

 this.students = data;

 });

 }

 addStudent() {

 const newStudent: Student = { name: 'New', age: 20, course: 'CS' };

 this.studentService.createStudent(newStudent).subscribe();

 }

 updateStudent(id: string) {

 const updated: Student = { name: 'Updated', age: 22, course: 'Math' };

 this.studentService.updateStudent(id, updated).subscribe();

 }

 deleteStudent(id: string) {

 this.studentService.deleteStudent(id).subscribe();}}

1. Understanding Event-Driven Programming in JavaScript

JavaScript is event-driven, meaning it operates based on events such as user interactions,
network requests, or timers. Instead of executing code sequentially, event-driven
programming utilizes callbacks and asynchronous functions to respond to events efficiently.

Example:

const fs = require('fs');

fs.readFile('example.txt', 'utf8', (err, data) => {

 if (err) {

 console.error(err);

 } else {

 console.log(data);

 }

});

Here, the fs.readFile method reads a file asynchronously, and the callback function handles
the response when the event completes.

