
TOC FINAL PYQ

Q1. List the applicaƟons of Context Free Grammar.

Ans=> Programming Language Syntax:

 Defining syntax rules for programming languages (e.g., C, Java, Python).

 Used in the construcƟon of parsers in compilers and interpreters.

1.Natural Language Processing (NLP):

 Modeling grammaƟcal structure in natural languages.

 Parsing sentences to understand their syntacƟc structure.

2. Automata Theory:

 Recognizing context-free languages using Pushdown Automata.

 Studying language properƟes and classificaƟons.

3. Document Structure:

 Defining the structure of markup languages such as HTML, XML, and JSON.

 CreaƟng document type definiƟons (DTDs) and schema validaƟon.

4. Query Language Parsing:

 Parsing queries in database query languages like SQL.

5. Compiler Design:

 ConstrucƟng Abstract Syntax Trees (ASTs) to represent hierarchical structure of source code.

 Performing syntax error detecƟon and recovery.

6. Game Development:

 Designing grammars for scripƟng languages or rules within games.

7. Machine TranslaƟon:

 Parsing source language grammar to map it to target language grammar.

Q2. b) Explain LeŌ -most derivaƟon and right- most derivaƟon tree along with suitable

diagram.

Ans=>1. LeŌ-Most DerivaƟon

 DefiniƟon: In a leŌ-most derivaƟon, at every step, the leŌmost non-terminal in the current
string is replaced using a producƟon rule.

 Example:

S → AB

A → a

B → b

Deriving the string ab using leŌ-most derivaƟon:

1. Start with S.

2. Replace S → AB.

3. Replace the leŌmost non-terminal A → a: aB.

4. Replace the leŌmost non-terminal B → b: ab.

 LeŌ-Most DerivaƟon Tree:

 S

 / \

 A B

 / \

 a b

2. Right-Most DerivaƟon

 DefiniƟon: In a right-most derivaƟon, at every step, the rightmost non-terminal in the
current string is replaced using a producƟon rule.

 Example:

S → AB

A → a

B → b

Deriving the string ab using right-most derivaƟon:

1. Start with S.

2. Replace S → AB.

3. Replace the rightmost non-terminal B → b: Ab.

4. Replace the rightmost non-terminal A → a: ab.

Right-Most DerivaƟon Tree:

 S

 / \

 A B

 / \

 a b

Q3.AlƟculate grammar for set of all strings starƟng and ending with different symbol

over alphabet set {a, b}.

ans=>Grammar

 Case 1: Strings start with a and end with b:

S→aXb
X→aX∣bX∣ϵ
L={abbaabaab}

Case 2: Strings start with b and end with a:

S→bXa

 X→aX∣bX∣ϵ

 L={baabaababba}

New paper

Q1. Describe the Recursively Enumerable Language with example.

Ans=>A Recursively Enumerable (RE) Language is a class of languages that can be recognized by a
Turing Machine. These languages are also known as Type-0 languages in the Chomsky hierarchy. A
language is considered recursively enumerable if there exists a Turing machine that can list all the
strings in the language, i.e., the machine will halt and accept strings that belong to the language, but
for strings that do not belong to the language, the machine might run forever (i.e., it might not halt).

Example of Recursively Enumerable Language:

Consider the language L = { w | w contains an equal number of 0's and 1's }. This is the set of all
strings where the number of '0's equals the number of '1's.

To design a Turing machine for this language, the machine would:

1. Scan the string for '0's and '1's.

2. For every '0' it finds, it marks it, and for every '1' it finds, it marks it as well.

3. If it can successfully match every '0' with a '1', the machine will halt and accept the string
(indicaƟng it belongs to the language).

4. If the string is invalid (e.g., too many '0's or '1's), the machine may run indefinitely, not
halƟng.

Q2. Prove that for any transiƟon funcƟon and for any two input strings x and y, δ(q,xy)=δ(δ(q,x),y).

Ans=>Proof:

Let q be an iniƟal state, and x and y be two input strings.

Step 1: Process x First

 The machine starts in state q and reads the input string x. AŌer processing x, the machine
reaches a new state, say q1=δ(q,x).

 Now, the machine needs to process the input string y starƟng from state q1.

Step 2: Process y from the new state

 AŌer processing x, the machine transiƟons to state q1=δ(q,x) and it will now start reading
the string y.

 The transiƟon funcƟon tells us the next state aŌer reading each symbol of y, so the overall
state aŌer processing y from state q1 is:
δ(δ(q,x),y)
This means the machine conƟnues processing y from state q1,

Step 3: Process xy in one go

 Now, if we process the enƟre string xy starƟng from the iniƟal state q, the machine will first
process x and then conƟnue processing y, just like in Step 2.

 The machine starts in state q, processes x, and then processes y, leading to the same final
state:
δ(q,xy)
This represents the final state reached aŌer processing the enƟre string xy in one go.

Step 4: Compare the two approaches

 From the above steps, we see that processing x first and then y

δ(δ(q,x),y)) is equivalent to processing the enƟre string xy at once

δ(q,xy)

Q3. Let L be the set of all palindromes over {a,b}. Construct a grammar G generaƟng L.

Ans=>
S -> aSa | bSb | ε

ExplanaƟon:

 S: The start symbol.

 aSa, bSb: Recursive rules that allow for palindromes of increasing length. For example, if
'aba' is a palindrome, then 'aabaa' and 'bbabb' are also palindromes.

 ε: The empty string is also considered a palindrome.

Q4. Prove that following regular expressions are equivalent.

aa(b*+ a) +a(ab* + aa) =aa(b* + a)

ans=> To prove the equivalence of the two regular expressions, we can use the following algebraic
laws:

1. DistribuƟve Law: A(B+C) = AB + AC

2. AssociaƟve Law: (AB)C = A(BC)

3. IdenƟty Law: A + ε = A

Let's break down the leŌ-hand side (LHS) of the equaƟon:

LHS = aa(b* + a) + a(ab* + aa)

Applying the distribuƟve law to both terms:

LHS = aab* + aaa + aab* + aaa

Combining like terms:

LHS = 2(aab* + aaa)

Now, let's factor out 'aa' from both terms:

LHS = 2aa(b* + a)

Since mulƟplying by 2 doesn't change the language recognized by a regular expression, we can
remove the 2:

LHS = aa(b* + a)

This is the same as the right-hand side (RHS) of the equaƟon.

Therefore, we have shown that:

LHS = RHS

Q5. What is the difference between PDA acceptance by empty stack and final state?

Newpaper

Q1. Comment on TOC in area of computer science.

Ans=> The Theory of ComputaƟon (TOC) is a fundamental area in computer science that deals with
understanding the nature of computaƟon and what can be computed, as well as how efficiently it
can be done.
Key concepts in TOC include:

Automata Theory: This part of TOC focuses on abstract machines (automata) and their capabiliƟes to
recognize languages. Automata are used to model computaƟon in its simplest forms.

Formal Languages: TOC studies formal languages, which are sets of strings composed of symbols.
Understanding formal languages is crucial for the development of programming languages,
compilers, and parsers.

Computability Theory: This explores the boundaries of what can and cannot be computed. It
invesƟgates problems like the halƟng problem.

Complexity Theory: Complexity theory focuses on classifying computaƟonal problems based on how
difficult they are to solve. It disƟnguishes between problems that can be solved efficiently and those
that cannot.

Decidability: A key quesƟon in TOC is whether a given problem can be solved algorithmically .A
problem is said to be decidable if there exists an algorithm that can provide a soluƟon in finite Ɵme
for all possible inputs. If no such algorithm exists, the problem is undecidable.

Importance of TOC in Computer Science:
Programming Languages: TOC is fundamental in the design of programming languages. It helps in
understanding language syntax, parsing techniques, and the implementaƟon of language features.

ArƟficial Intelligence and Machine Learning: TOC contributes to AI and ML by providing models for
problem-solving and decision-making. Understanding the computaƟonal complexity of AI algorithms
is crucial for building pracƟcal and scalable soluƟons.

Q2. List the Closure properƟes of language classes.

Q3. If L is a language accepted by a nondeterminisƟc finite automaton (NFA), does a determinisƟc
finite automaton (DFA) exist that accepts L?

Ans=> Yes, a determinisƟc finite automaton (DFA) always exists for any language accepted by a
nondeterminisƟc finite automaton (NFA). This is a consequence of the NondeterminisƟc-to-
DeterminisƟc conversion theorem. Given any NFA, we can always convert it into a DFA using a
process called the powerset construcƟon or subset construcƟon method.

Newpaper

Q4. Elaborate SentenƟal form.

Ans=> A sentenƟal form is a string of symbols in a formal language that can be derived from the
starƟng symbol (also known as the start symbol or axiom) of a grammar. In the context of formal
grammar, it is an intermediate stage in the process of deriving a string in a language, which consists
of a sequence of symbols, some of which may sƟll need to be replaced by other symbols according to
producƟon rules.

Example:

Consider the grammar:

S → A B

A → a

B → b

 Start with the start symbol S.

 Using the producƟon S → A B, the sentenƟal form becomes A B.

 Apply A → a to get a B.

 Apply B → b to get a b, which is a terminal string.

Here:

 S is the start symbol.

 A B, a B, and a b are sentenƟal forms, with a b being the final terminal string.

Q5. Discuss MulƟ-tape Turing Machine.

Ans=>MulƟ-tape Turing Machines have mulƟple tapes where each tape is accessed with a separate
head. Each head can move independently of the other heads. IniƟally the input is on tape 1 and
others are blank. At first, the first tape is occupied by the input and the other tapes are kept blank.
Next, the machine reads consecuƟve symbols under its heads and the TM prints a symbol on each
tape and moves its heads.

A MulƟ-tape Turing machine can be formally described as a 6-tuple (Q, X, B, δ, q0, F) where −

 Q is a finite set of states

 X is the tape alphabet

 B is the blank symbol

 δ is a relaƟon on states and symbols where

δ: Q × Xk → Q × (X × {L,R})k

where there is k number of tapes

 q0 is the iniƟal state

 F is the set of final states

Note − Every MulƟ-tape Turing machine has an equivalent single-tape Turing machine.

