TOC FINAL PYQ

Q1. List the applications of Context Free Grammar.
Ans=> Programming Language Syntax:
e Defining syntax rules for programming languages (e.g., C, Java, Python).
e Used in the construction of parsers in compilers and interpreters.
1.Natural Language Processing (NLP):
e Modeling grammatical structure in natural languages.
e Parsing sentences to understand their syntactic structure.
2. Automata Theory:
e Recognizing context-free languages using Pushdown Automata.
e Studying language properties and classifications.
3. Document Structure:
e Defining the structure of markup languages such as HTML, XML, and JSON.
e Creating document type definitions (DTDs) and schema validation.
4. Query Language Parsing:
e Parsing queries in database query languages like SQL.
5. Compiler Design:
e Constructing Abstract Syntax Trees (ASTs) to represent hierarchical structure of source code.
e Performing syntax error detection and recovery.
6. Game Development:
e Designing grammars for scripting languages or rules within games.
7. Machine Translation:
e Parsing source language grammar to map it to target language grammar.
Q2. b) Explain Left -most derivation and right- most derivation tree along with suitable
diagram.
Ans=>1. Left-Most Derivation

e Definition: In a left-most derivation, at every step, the leftmost non-terminal in the current
string is replaced using a production rule.

e Example:

S—>AB
A->a
B->b
Deriving the string ab using left-most derivation:
1. Start withS.
2. Replace S > AB.
3. Replace the leftmost non-terminal A - a: aB.
4. Replace the leftmost non-terminal B = b: ab.
e Left-Most Derivation Tree:
S
/\
A B

/\
a b

2. Right-Most Derivation

e Definition: In a right-most derivation, at every step, the rightmost non-terminal in the
current string is replaced using a production rule.

e Example:
S—>AB
A->a
B->b
Deriving the string ab using right-most derivation:
1. Start withS.
2. Replace S - AB.
3. Replace the rightmost non-terminal B - b: Ab.

4. Replace the rightmost non-terminal A = a: ab.

Right-Most Derivation Tree:
S
/\
A B
/\
a b
Q3.Alticulate grammar for set of all strings starting and ending with different symbol
over alphabet set {a, b}.
ans=>Grammar
Case 1: Strings start with a and end with b:

S->aXb
X—=>aX|bX]|e
L={abbaabaab}

Case 2: Strings start with b and end with a:
S—>bXa
X—>aX|bXle
L={baabaababba}
New paper
Q1. Describe the Recursively Enumerable Language with example.

Ans=>A Recursively Enumerable (RE) Language is a class of languages that can be recognized by a
Turing Machine. These languages are also known as Type-0 languages in the Chomsky hierarchy. A
language is considered recursively enumerable if there exists a Turing machine that can list all the
strings in the language, i.e., the machine will halt and accept strings that belong to the language, but
for strings that do not belong to the language, the machine might run forever (i.e., it might not halt).

Example of Recursively Enumerable Language:

Consider the language L= { w | w contains an equal humber of 0's and 1's }. This is the set of all
strings where the number of '0's equals the number of '1's.

To design a Turing machine for this language, the machine would:
1. Scan the string for '0's and '1's.
2. Forevery'0'it finds, it marks it, and for every '1' it finds, it marks it as well.

3. |If it can successfully match every '0' with a '1', the machine will halt and accept the string
(indicating it belongs to the language).

4. If the string is invalid (e.g., too many '0's or '1's), the machine may run indefinitely, not
halting.

Q2. Prove that for any transition function and for any two input strings x and y, 6(q,xy)=6(8(q,x),y).
Ans=>Proof:

Let g be an initial state, and x and y be two input strings.

Step 1: Process x First

e The machine starts in state q and reads the input string x. After processing x, the machine
reaches a new state, say q1=56(q,x).

e Now, the machine needs to process the input string y starting from state q1.
Step 2: Process y from the new state

e After processing x, the machine transitions to state q1=6(q,x) and it will now start reading
the string y.

e The transition function tells us the next state after reading each symbol of y, so the overall
state after processing y from state g1 is:

8(5(a,x),y)
This means the machine continues processing y from state q1,

Step 3: Process xy in one go

e Now, if we process the entire string xy starting from the initial state q, the machine will first
process x and then continue processing y, just like in Step 2.

e The machine starts in state q, processes x, and then processes y, leading to the same final
state:

&8(a,xy)
This represents the final state reached after processing the entire string xy in one go.

Step 4: Compare the two approaches
e From the above steps, we see that processing x first and then y
8(6(q,x),y)) is equivalent to processing the entire string xy at once
&(a,xy)
Q3. Let L be the set of all palindromes over {a,b}. Construct a grammar G generating L.

Ans=>
S->aSa | bSb | £

Explanation:
e S: The start symbol.

e aSa, bSh: Recursive rules that allow for palindromes of increasing length. For example, if
'aba’ is a palindrome, then 'aabaa' and 'bbabb' are also palindromes.

e &:The empty string is also considered a palindrome.
Q4. Prove that following regular expressions are equivalent.

aa(b*+ a) +a(ab* + aa) =aa(b* + a)

ans=> To prove the equivalence of the two regular expressions, we can use the following algebraic

laws:
1. Distributive Law: A(B+C) = AB + AC
2. Associative Law: (AB)C = A(BC)

3. IdentityLaw: A+e=A

Let's break down the left-hand side (LHS) of the equation:

LHS = aa(b* + a) + a(ab* + aa)

Applying the distributive law to both terms:
LHS = aab* + aaa + aab* + aaa

Combining like terms:

LHS = 2(aab* + aaa)

Now, let's factor out 'aa' from both terms:

LHS = 2aa(b* + a)

Since multiplying by 2 doesn't change the language recognized by a regular expression, we can

remove the 2:

LHS = aa(b* + a)

This is the same as the right-hand side (RHS) of the equation.

Therefore, we have shown that:

LHS = RHS

Q5. What is the difference between PDA acceptance by empty stack and final state?

Feature Acceptance by Empty Stack

Definition A PDA accepts a string if, after processing

the entire string, the stack is empty.

Acceptance The stack is empty at the end of the

Criterion computation.

Transition-Based Acceptance depends on the stack’s

Acceptance content.

State Dependence No direct dependence on the final state;

only the stack matters.

Final State The final state is not necessarily important

for acceptance.

Example Usage Commonly used in the definition of

context-free languages (CFLs).

Memory Stack must be empty at the end, which may

Consideration require more steps to ensure.

Complexity in Can be more complex because stack

Implementation behavior is essential.

Intuition The empty stack signifies that the
computation is finished and no more input

or stack information is left.

Acceptance by Final State

A PDA accepts a string if, after
processing the entire string, the PDA

ends in a final state.

The PDA reaches a final state at the

end of the computation.

Acceptance depends on the state

reached after input is processed.

Directly depends on reaching a

designated final state.

The final state must be one of the

designated final states.

Used when a specific final state is

required to signify acceptance.

The state of the PDA matters more,

focusing on the final state transition.

Easier to manage as it focuses only on

state transitions.

Reaching a final state signifies that
the input has been processed

successfully.

Newpaper

Q1. Comment on TOC in area of computer science.

Ans=> The Theory of Computation (TOC) is a fundamental area in computer science that deals with
understanding the nature of computation and what can be computed, as well as how efficiently it
can be done.

Key concepts in TOC include:

Automata Theory: This part of TOC focuses on abstract machines (automata) and their capabilities to
recognize languages. Automata are used to model computation in its simplest forms.

Formal Languages: TOC studies formal languages, which are sets of strings composed of symbols.
Understanding formal languages is crucial for the development of programming languages,
compilers, and parsers.

Computability Theory: This explores the boundaries of what can and cannot be computed. It
investigates problems like the halting problem.

Complexity Theory: Complexity theory focuses on classifying computational problems based on how
difficult they are to solve. It distinguishes between problems that can be solved efficiently and those
that cannot.

Decidability: A key question in TOC is whether a given problem can be solved algorithmically .A
problem is said to be decidable if there exists an algorithm that can provide a solution in finite time
for all possible inputs. If no such algorithm exists, the problem is undecidable.

Importance of TOC in Computer Science:
Programming Languages: TOC is fundamental in the design of programming languages. It helps in
understanding language syntax, parsing techniques, and the implementation of language features.

Artificial Intelligence and Machine Learning: TOC contributes to Al and ML by providing models for
problem-solving and decision-making. Understanding the computational complexity of Al algorithms
is crucial for building practical and scalable solutions.

Q2. List the Closure properties of language classes.

Language Class Closure Properties

Union, Intersection, Concatenation, Kleene Star, Complement,

Regular Languages (REG) Reversal, Homomorphism, Inverse Homomorphism,
Substitution

Deterministic Context-Free Union, Intersection with Regular Languages, Concatenation

Languages (DCFL) with Regular Languages, Reversal

Context-Free Languages Union, Concatenation, Kleene Star, Homomorphism, Inverse

(CFL) Homomorphism

Context-Sensitive

Union, Intersection, Concatenation, Kleene Star
Languages (CSL)

Recursive Languages (RE) Union, Intersection, Concatenation, Kleene Star, Complement

Recursively Enumerable

Union, Intersection, Concatenation, Kleene Star
Languages (RE)

Q3. If L is a language accepted by a nondeterministic finite automaton (NFA), does a deterministic
finite automaton (DFA) exist that accepts L?

Ans=> Yes, a deterministic finite automaton (DFA) always exists for any language accepted by a
nondeterministic finite automaton (NFA). This is a consequence of the Nondeterministic-to-
Deterministic conversion theorem. Given any NFA, we can always convert it into a DFA using a
process called the powerset construction or subset construction method.

Newpaper
Q4. Elaborate Sentential form.

Ans=> A sentential form is a string of symbols in a formal language that can be derived from the
starting symbol (also known as the start symbol or axiom) of a grammar. In the context of formal
grammar, it is an intermediate stage in the process of deriving a string in a language, which consists
of a sequence of symbols, some of which may still need to be replaced by other symbols according to
production rules.

Example:
Consider the grammar:
S—>AB
A->a
B->b
e Start with the start symbol S.
e Using the production S - A B, the sentential form becomes A B.
e ApplyA > atogetaB.
e Apply B btogetab, which is a terminal string.
Here:
e Sisthe start symbol.
e AB,aB, and ab are sentential forms, with a b being the final terminal string.
Q5. Discuss Multi-tape Turing Machine.

Ans=>Multi-tape Turing Machines have multiple tapes where each tape is accessed with a separate
head. Each head can move independently of the other heads. Initially the input is on tape 1 and
others are blank. At first, the first tape is occupied by the input and the other tapes are kept blank.
Next, the machine reads consecutive symbols under its heads and the TM prints a symbol on each
tape and moves its heads.

En

\

*
En \
Head \J

A Multi-tape Turing machine can be formally described as a 6-tuple (Q, X, B, &, qo, F) where -

e Qs a finite set of states

e Xis the tape alphabet

e Bis the blank symbol

e §isarelation on states and symbols where
8: Q x X > Qx (X x{LR}"
where there is k number of tapes

e (ois theinitial state

e Fis the set of final states

Note - Every Multi-tape Turing machine has an equivalent single-tape Turing machine.

