
Java Final QuesƟon Paper SoluƟon

Q1. What is the role of bitwise operators? and write a program in java to swap two numbers without
using third variable using bitwise operator. And Using MulƟplicaƟon and Division operaƟon.

Role of Bitwise Operators

Bitwise operators are used to perform operaƟons directly on the binary representaƟons of numbers.
They are useful for tasks that involve low-level data manipulaƟon, opƟmizaƟon, or when working
with flags and masks.

Common Bitwise Operators

 AND (&): Compares each bit and returns 1 if both bits are 1, otherwise 0.

 OR (|): Compares each bit and returns 1 if either bit is 1.

 XOR (^): Compares each bit and returns 1 if the bits are different, otherwise 0.

 NOT (~): Inverts the bits.

 LeŌ ShiŌ (<<): ShiŌs bits to the leŌ, adding 0 on the right.

 Right ShiŌ (>>): ShiŌs bits to the right, discarding the bits shiŌed out.

public class BitwiseSwap {

 public staƟc void main(String[] args) {

 int a = 5; // First number

 int b = 7; // Second number

 System.out.println("Before Swap:");

 System.out.println("a = " + a + ", b = " + b);

 a = a ^ b; // Step 1: a becomes a ^ b

 b = a ^ b; // Step 2: b becomes (a ^ b) ^ b = a

 a = a ^ b; // Step 3: a becomes (a ^ b) ^ a = b

 // Display swapped values

 System.out.println("AŌer Swap:");

 System.out.println("a = " + a + ", b = " + b);

 }

}

public class SwapNumbers {

 public staƟc void main(String[] args) {

 // IniƟalize two variables

 int a = 10;

 int b = 5;

 System.out.println("Before swapping:");

 System.out.println("a = " + a + ", b = " + b);

 // Swapping using mulƟplicaƟon and division

 a = a * b; // Step 1: a = a * b

 b = a / b; // Step 2: b = a / b (b becomes the original a)

 a = a / b; // Step 3: a = a / b (a becomes the original b)

 System.out.println("AŌer swapping:");

 System.out.println("a = " + a + ", b = " + b);

 }

}

Q2. Design a code to handle ArraylndexOutOfBounds, ArithmeƟcExcepƟon, NullPointerExcepƟon
excepƟons. There should also be an excepƟon handler available for any user defined excepƟon. OR

Design a code to handle mulƟple excepƟons. The code must use concept of built-

in and custom excepƟons. Assume suitable data and run-Ɵme cases.

Ans=>// Custom ExcepƟon class

class MyCustomExcepƟon extends ExcepƟon {

 public MyCustomExcepƟon(String message) {

 super(message);

 }

}

public class ExcepƟonHandlingExample {

 public staƟc void main(String[] args) {

 // Handling ArrayIndexOutOfBoundsExcepƟon

 try {

 int[] arr = new int[5];

 System.out.println(arr[10]); // Accessing invalid index

 } catch (ArrayIndexOutOfBoundsExcepƟon e) {

 System.out.println("ArrayIndexOutOfBoundsExcepƟon caught: " + e.getMessage());

 }

 // Handling ArithmeƟcExcepƟon

 try {

 int a = 10;

 int b = 0;

 System.out.println(a / b); // Division by zero

 } catch (ArithmeƟcExcepƟon e) {

 System.out.println("ArithmeƟcExcepƟon caught: " + e.getMessage());

 }

 // Handling NullPointerExcepƟon

 try {

 String str = null;

 System.out.println(str.length()); // Null reference access

 } catch (NullPointerExcepƟon e) {

 System.out.println("NullPointerExcepƟon caught: " + e.getMessage());

 }

// Handling User-defined ExcepƟon

 try {

 throw new MyCustomExcepƟon("This is a user-defined excepƟon!");

 } catch (MyCustomExcepƟon e) {

 System.out.println("MyCustomExcepƟon caught: " + e.getMessage());

 }

 catch (ExcepƟon e) {

 System.out.println("ExcepƟon caught: "+ e.getMessage());

 }

 }

}

Q3. Write a menu driven code using methods to handle following: 1. Start counƟng from the input
number incremenƟng the value by 1 för each iteraƟon. The counƟng stops once the current value is
divisible by 10. 2. Find the count of factors for a given number. For example, the factors of 10 are
1,2,5,10 and count in this case is 4.

Ans=>

import java.uƟl.Scanner;

public class MenuDrivenProgram {

 // Method to start counƟng and stop when the number is divisible by 10

 public staƟc void countUnƟlDivisibleByTen(int num) {

 while (num % 10 != 0) {

 System.out.println(num);

 num++;

 }

 System.out.println("Final value divisible by 10: " + num);

 }

 // Method to count the number of factors of a given number

 public staƟc int countFactors(int num) {

 int count = 0;

 for (int i = 1; i <= num; i++) {

 if (num % i == 0) {

 count++;

 }

 }

 return count;

 }

 // Main method to display the menu and handle user input

 public staƟc void main(String[] args) {

 Scanner sc = new Scanner(System.in);

 int choice;

 do {

 // Displaying the menu

 System.out.println("Menu:");

 System.out.println("1. Start counƟng from a number unƟl it is divisible by 10");

 System.out.println("2. Find the count of factors of a number");

 System.out.println("3. Exit");

 System.out.print("Enter your choice: ");

 choice = sc.nextInt();

 switch (choice) {

 case 1:

 // Handling opƟon 1

 System.out.print("Enter the starƟng number: ");

 int startNum = sc.nextInt();

 countUnƟlDivisibleByTen(startNum);

 break;

 case 2:

 // Handling opƟon 2

 System.out.print("Enter the number to find factors: ");

 int number = sc.nextInt();

 int factorCount = countFactors(number);

 System.out.println("The number of factors of " + number + " is: " + factorCount);

 break;

 case 3:

 // Exit opƟon

 System.out.println("ExiƟng the program...");

 break;

 default:

 // Invalid opƟon

 System.out.println("Invalid choice, please try again.");

 }

 } while (choice != 3);

 sc.close(); // Close the scanner object

 }

}

Q4. Design a package to contain the class Student that contains data members such as name, roll
number and another package contains the interface Sports which contains some sports informaƟon.
Import these two packages in a package called Report which process both Student and Sport and
give the report.

Ans=> Create Packages for Student and Sports, and a Report Class

Let's create a package structure as per the problem statement:

1. Package studenƟnfo: This package will contain the Student class with data members like
name, roll number, and marks.

2. Package sportsinfo: This package will contain the Sports interface which holds informaƟon
related to sports.

3. Package report: This package will import both studenƟnfo and sportsinfo packages and
generate a report combining student details and sports informaƟon.

Step-by-step ImplementaƟon:

1. Student class (in package studenƟnfo)

// File: Student.java in package studenƟnfo

package studenƟnfo;

public class Student {

 private String name;

 private int rollNumber;

 public Student(String name, int rollNumber) {

 this.name = name;

 this.rollNumber = rollNumber;

 }

 public String getName() {

 return name;

 }

 public int getRollNumber() {

 return rollNumber;

 }

}

2. Sports interface (in package sportsinfo)

// File: Sports.java in package sportsinfo

package sportsinfo;

public interface Sports {

 String getSportDetails();

}

3. Cricket class implemenƟng Sports (in package sportsinfo)

// File: Cricket.java in package sportsinfo

package sportsinfo;

public class Cricket implements Sports {

 private String sportName = "Cricket";

 private String country = "India";

 @Override

 public String getSportDetails() {

 return "Sport: " + sportName + ", Country: " + country;

 }

}

4. Report class (in package report)

// File: Report.java in package report

package report;

import studenƟnfo.Student;

import sportsinfo.Sports;

import sportsinfo.Cricket;

public class Report {

 public void generateReport(Student student, Sports sports) {

 System.out.println("Student Report:");

 System.out.println("Name: " + student.getName());

 System.out.println("Roll Number: " + student.getRollNumber());

 System.out.println(sports.getSportDetails());

 }

}

5. Main Class to Run the Report

// File: Main.java

import studenƟnfo.Student;

import sportsinfo.Sports;

import sportsinfo.Cricket;

import report.Report;

public class Main {

 public staƟc void main(String[] args) {

 // Create instances of Student and Sports

 Student student = new Student("John Doe", 101);

 Sports sports = new Cricket();

 // Generate the report

 Report report = new Report();

 report.generateReport(student, sports);

 }

}

ExplanaƟon:

 Student class: Contains the student's name and roll number, along with geƩers.

 Sports interface: Contains a method getSportDetails() which will be implemented by classes
that represent specific sports (e.g., Cricket).

 Cricket class: Implements the Sports interface and provides details about the sport.

 Report class: Generates a report combining the student informaƟon and sport details.

Output:

Student Report:

Name: John Doe

Roll Number: 101

Sport: Cricket, Country: India

New Paper

Q1. How do bitwise operators differ from relaƟonal operators in Java?

public class Main {

 public staƟc void main(String[] args) {

 int a = 5, b = 3;

 // Bitwise operaƟon:

 int resultBitwise = a & b; // Binary AND (0101 & 0011 = 0001), result = 1

 System.out.println("Bitwise AND result: " + resultBitwise);

 // RelaƟonal operaƟon:

 boolean resultRelaƟonal = a > b; // Checks if a is greater than b, result = true

 System.out.println("Is a greater than b? " + resultRelaƟonal);

 }

}

Output:

Bitwise AND result: 1

Is a greater than b? true

Q2. Explain the purpose of access specifiers in Java, ciƟng proper programs. OR

Design a program to elaborate the visibility of class and their members for different

access specifier.

Ans=>Purpose of Access Specifiers in Java

Access specifiers in Java are used to control the visibility and accessibility of classes, methods,
variables, and constructors. They define how the members of a class can be accessed from other
parts of the program. The primary purpose of access specifiers is to implement encapsulaƟon, which
is one of the core principles of Object-Oriented Programming (OOP). By using access specifiers, you
can restrict access to certain parts of your code, ensuring beƩer security and code maintenance.

Types of Access Specifiers in Java

1. Public (public):

o Members (variables, methods, classes) declared as public are accessible from any
other class, inside or outside the package.

2. Private (private):

o Members declared as private are accessible only within the same class. They cannot
be accessed from outside the class, even if they are in the same package or subclass.

3. Protected (protected):

o Members declared as protected are accessible within the same package and by
subclasses (including subclasses in different packages).

4. Default (no specifier):

o If no access specifier is menƟoned, it is known as "package-private" or default
access. Members are accessible only within the same package, but not from classes
in other packages.

Examples of Access Specifiers

1. Public Access Specifier

class PublicExample {

 public int publicVariable = 10; // Accessible from anywhere

 public void publicMethod() {

 System.out.println("This is a public method.");

 }

}

public class TestPublic {

 public staƟc void main(String[] args) {

 PublicExample obj = new PublicExample();

 System.out.println(obj.publicVariable); // Accessing public variable

 obj.publicMethod(); // Calling public method

 }

}

ExplanaƟon:

 The publicVariable and publicMethod() can be accessed from any other class, including the
TestPublic class in the same or different package.

2. Private Access Specifier

class PrivateExample {

 private int privateVariable = 20; // Accessible only within this class

 private void privateMethod() {

 System.out.println("This is a private method.");

 }

 public void accessPrivateMethod() {

 System.out.println(privateVariable); // Accessing private variable within the same class

 privateMethod(); // Calling private method within the same class

 }

}

public class TestPrivate {

 public staƟc void main(String[] args) {

 PrivateExample obj = new PrivateExample();

 // The following lines will cause compile-Ɵme error:

 // System.out.println(obj.privateVariable);

 // obj.privateMethod();

 obj.accessPrivateMethod(); // Access private members through a public method

 }

}

ExplanaƟon:

 privateVariable and privateMethod() are accessible only within the PrivateExample class.
They cannot be accessed directly from outside the class.

 However, a public method (accessPrivateMethod()) allows controlled access to the private
members.

3. Protected Access Specifier

class ProtectedExample {

 protected int protectedVariable = 30; // Accessible within same package and subclasses

 protected void protectedMethod() {

 System.out.println("This is a protected method.");

 }

}

public class SubClassExample extends ProtectedExample {

 public void accessProtectedMembers() {

 System.out.println(protectedVariable); // Accessing protected variable in subclass

 protectedMethod(); // Calling protected method in subclass

 }

}

public class TestProtected {

 public staƟc void main(String[] args) {

 SubClassExample obj = new SubClassExample();

 obj.accessProtectedMembers(); // Accessing protected members through subclass

 }

}

ExplanaƟon:

 The protectedVariable and protectedMethod() can be accessed within the same package and
in subclasses (even if the subclass is in a different package).

4. Default (Package-Private) Access Specifier

class DefaultExample {

 int defaultVariable = 40; // Accessible only within the same package

 void defaultMethod() {

 System.out.println("This is a default method.");

 }

}

public class TestDefault {

 public staƟc void main(String[] args) {

 DefaultExample obj = new DefaultExample();

 System.out.println(obj.defaultVariable); // Accessible because it's in the same package

 obj.defaultMethod(); // Accessible because it's in the same package

 }

}

Q3. Combine the principles of abstracƟon and inheritance to illustrate how Java supports the
creaƟon of complex soŌware systems with proper program.

Ans=>Combining AbstracƟon and Inheritance in Java

In Java, abstracƟon and inheritance are two key principles of Object-Oriented Programming (OOP)
that help create complex soŌware systems. By combining these principles, you can design flexible,
scalable, and maintainable systems.

 AbstracƟon allows you to hide complex implementaƟon details and expose only the
essenƟal features of an object. This is done using abstract classes or interfaces.

 Inheritance allows one class to inherit the properƟes and behaviors of another, enabling
code reuse and building on top of exisƟng funcƟonality.

// Abstract class defining the blueprint for all vehicles

abstract class Vehicle {

 // Common properƟes

 String make;

 String model;

 // Constructor to iniƟalize the vehicle

 public Vehicle(String make, String model) {

 this.make = make;

 this.model = model;

 }

 // Abstract method (does not have a body)

 public abstract void startEngine(); // Different vehicles will implement this differently

 // Concrete method (has a body)

 public void displayInfo() {

 System.out.println("Vehicle Make: " + make);

 System.out.println("Vehicle Model: " + model);

 }

}

// Car class inherits from Vehicle and provides specific implementaƟon

class Car extends Vehicle {

 public Car(String make, String model) {

 super(make, model); // Call the constructor of the superclass (Vehicle)

 }

 // Implement the abstract method to start the engine for a car

 public void startEngine() {

 System.out.println("The car's engine starts with a roar.");

 }

}

// Bike class inherits from Vehicle and provides specific implementaƟon

class Bike extends Vehicle {

 public Bike(String make, String model) {

 super(make, model); // Call the constructor of the superclass (Vehicle)

 }

 // Implement the abstract method to start the engine for a bike

 public void startEngine() {

 System.out.println("The bike's engine starts with a smooth sound.");

 }

}

// Main class to test the implementaƟon

public class VehicleTest {

 public staƟc void main(String[] args) {

 // Create objects of Car and Bike

 Vehicle car = new Car("Toyota", "Camry");

 Vehicle bike = new Bike("Yamaha", "YZF-R1");

 // Display vehicle informaƟon

 car.displayInfo();

 car.startEngine(); // Calling the specific startEngine method of the Car class

 System.out.println();

 bike.displayInfo();

 bike.startEngine(); // Calling the specific startEngine method of the Bike class

 }

}

 note for another purpose: Celsius=5/9 x (Fahrenheit - 32)

Q4. How does Java's String class facilitate efficient string handling through its various

constructors, length aƩribute, special operaƟons, character extracƟon methods,

comparison mechanisms, search funcƟonaliƟes, and modificaƟon capabiliƟes? This quesƟon is
covering all string chapter.

Ans=>Java's String class provides various features to handle strings efficiently. It offers constructors,
aƩributes, methods for searching, comparing, modifying, and converƟng strings, as well as for
extracƟng characters and changing cases. Here's a comprehensive breakdown with code snippets
demonstraƟng these features:

1. Constructors

The String class provides several constructors to create string objects:

 Default constructor: Creates an empty string.

 Character array constructor: Creates a string from a character array.

 String constructor with specific characters: IniƟalizes a string with a substring of another
string.

// Default constructor

String str1 = new String();

// String from a character array

char[] chars = {'J', 'a', 'v', 'a'};

String str2 = new String(chars);

// String from a substring of another string

String str3 = new String("Hello, World!".substring(0, 5)); // "Hello"

2. Length AƩribute

The length() method returns the number of characters in the string.

String str = "Java";

int length = str.length();

System.out.println("Length of the string: " + length); // Output: 4

3. Special OperaƟons

 String concatenaƟon: Use + operator or concat() method to join strings.

 String equality: Use equals() to compare contents, and == for reference comparison.

// ConcatenaƟon

String str1 = "Hello";

String str2 = "World";

String result = str1 + " " + str2;

Or // String result = str1.concat(str2);

System.out.println(result); // Output: Hello World

// Equality check

String s1 = "Java";

String s2 = "java";

System.out.println(s1.equals(s2)); // Output: false (case-sensiƟve)

System.out.println(s1.equalsIgnoreCase(s2)); // Output: true (case-insensiƟve)

4. Character ExtracƟon Methods

 charAt(int index): Returns the character at the specified index.

 getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin): Copies characters from the string
into a character array.

String str = "Java";

char c = str.charAt(2);

System.out.println(c); // Output: v

// ExtracƟng characters into an array

char[] arr = new char[3];

str.getChars(0, 3, arr, 0);

System.out.println(arr); // Output: Jav

5. Comparison Mechanisms

 compareTo(): Compares two strings lexicographically.

 compareToIgnoreCase(): Compares strings lexicographically ignoring case.

String s1 = "Java";

String s2 = "JavaScript";

int result = s1.compareTo(s2); // Result is negaƟve as "Java" is lexicographically less than "JavaScript"

System.out.println(result); // Output: -3

String s3 = "java";

System.out.println(s1.compareToIgnoreCase(s3)); // Output: 0 (case-insensiƟve comparison)

6. Search FuncƟonaliƟes

 indexOf(): Finds the index of a character or substring.

 lastIndexOf(): Finds the last occurrence of a character or substring.

 contains(): Checks if a string contains a specific sequence of characters.

String str = "Hello, World!";

System.out.println(str.indexOf("World")); // Output: 7 (index of "World")

System.out.println(str.lastIndexOf('o')); // Output: 8 (last 'o' in "Hello, World!")

System.out.println(str.contains("World")); // Output: true

7. ModificaƟon CapabiliƟes

 replace(): Replaces characters or substrings.

 substring(): Extracts a substring.

 trim(): Removes leading and trailing whitespace.

 toLowerCase() / toUpperCase(): Changes the case of characters.

 concat(): Concatenates two strings.

String str = " Java Programming ";

System.out.println(str.trim()); // Output: Java Programming

// Replace characters

String replaced = str.replace("Java", "Python");

System.out.println(replaced); // Output: Python Programming

// Substring extracƟon

String sub = str.substring(2, 6);

System.out.println(sub); // Output: va

// Change case

String lower = str.toLowerCase();

System.out.println(lower); // Output: " java programming "

String upper = str.toUpperCase();

System.out.println(upper); // Output: " JAVA PROGRAMMING "

8. Data Conversion

 valueOf(): Converts various types (e.g., int, boolean, etc.) to strings.

 toString(): Converts an object to its string representaƟon.

int num = 123;

String numStr = String.valueOf(num);

System.out.println(numStr); // Output: "123"

Object obj = new Object();

System.out.println(obj.toString()); // Output: String representaƟon of the object

9. Changing the Case of Characters

 toLowerCase(): Converts all characters to lowercase.

 toUpperCase(): Converts all characters to uppercase.

String text = "Java Programming";

String lowerText = text.toLowerCase();

System.out.println(lowerText); // Output: java programming

String upperText = text.toUpperCase();

System.out.println(upperText); // Output: JAVA PROGRAMMING

New paper

Q1.How arguments passed from the console can be received in the Java progranl and it can be

used as an input? Give example.

Ans=>In Java, arguments passed from the console (command line) can be received in the program
using the main method's parameter String[] args. This array contains the command-line arguments
passed to the program when it's executed.

public class CommandLineArgsExample {

 public staƟc void main(String[] args) {

 // Check if arguments are passed

 if (args.length == 0) {

 System.out.println("No arguments passed.");

 } else {

 System.out.println("Arguments passed:");

 // Loop through the arguments and print them

 for (int i = 0; i < args.length; i++) {

 System.out.println("Argument " + (i + 1) + ": " + args[i]);

 }

 }

 }

}

steps to Run:

1. Save the code in a file named CommandLineArgsExample.java.

2. Compile the Java program:

 javac CommandLineArgsExample.java

3. Run the compiled program and pass arguments:

 java CommandLineArgsExample Hello World 123

Output:

Arguments passed:

Argument 1: Hello

Argument 2: World

Argument 3: 123

Q2. a) Compare objects with variables in terms of passing them as parameters. (4)

b) Explain constructors in derived class with the help of a program. (8)

ans=>

a) Comparison of Objects with Variables in Terms of Passing Them as Parameters (4 marks)

In Java, when you pass objects and variables as parameters to methods, there are key differences in
how they are passed:

1. Passing Variables (PrimiƟve types):

o When you pass a variable of a primiƟve data type (e.g., int, float, char), Java passes
the value of the variable to the method.

o Changes made to the variable within the method do not affect the original variable
outside the method.

o This is known as pass-by-value.

Example:

public class Test {

 public staƟc void modifyValue(int x) {

 x = x + 10;

 }

 public staƟc void main(String[] args) {

 int num = 5;

 modifyValue(num);

 System.out.println(num); // Outputs: 5 (original value remains unchanged)

 }

}

2. Passing Objects:

o When you pass an object as a parameter, Java passes the reference to the object,
not the actual object itself.

o If the object is modified inside the method, the changes affect the original object
outside the method.

o However, reassigning the object inside the method (changing the reference) will not
affect the original reference outside the method.

o This is also known as pass-by-reference (but technically, it’s sƟll pass-by-value, as the
value passed is the reference, not the actual object).

Example:

public class Test {

 staƟc class Person {

 String name;

 }

 public staƟc void modifyObject(Person p) {

 p.name = "John";

 }

 public staƟc void main(String[] args) {

 Person person = new Person();

 person.name = "Alice";

 modifyObject(person);

 System.out.println(person.name); // Outputs: John (original object is modified)

 }

}

b) ExplanaƟon of Constructors in Derived Class with the Help of a Program (8 marks)

In Java, constructors in a derived (child) class are used to iniƟalize the object of the child class. A
constructor in a derived class can call the constructor of its base (parent) class using the super()
keyword, which allows iniƟalizaƟon of inherited fields before the child class adds its specific fields.

Key Points:

 If a constructor is not explicitly defined in a derived class, the default constructor of the
parent class (if available) is called.

 A constructor in the child class can explicitly call a constructor of the parent class using
super() to iniƟalize the parent class's fields.

Example Program:

class Animal {

 String name;

 // Constructor of the parent class

 public Animal(String name) {

 this.name = name;

 System.out.println("Animal constructor called");

 }

 public void makeSound() {

 System.out.println("Animal makes a sound");

 }

}

class Dog extends Animal {

 int age;

 // Constructor of the child class, calling the parent class constructor using super()

 public Dog(String name, int age) {

 super(name); // Call the parent class constructor

 this.age = age;

 System.out.println("Dog constructor called");

 }

 public void makeSound() {

 System.out.println("Bark! Bark!");

 }

 public void displayInfo() {

 System.out.println("Name: " + name + ", Age: " + age);

 }

}

public class Main {

 public staƟc void main(String[] args) {

 // Create an object of the Dog class

 Dog dog = new Dog("Buddy", 3);

 // Display informaƟon about the dog

 dog.displayInfo();

 // Call the method of the derived class

 dog.makeSound();

 }

}

Output:

Animal constructor called

Dog constructor called

Name: Buddy, Age: 3

Bark! Bark!

New paper

Q1. Write a program to display current data and Ɵme.

import java.Ɵme.*;

public class CurrentDateTime {

 public staƟc void main(String[] args) {

 // Display the current date and Ɵme

 System.out.println("Current Date and Time: " + LocalDateTime.now());

 }

}

Q2. Explain the role of the Just-In Time (JIT) compiler.

Ans=>Role of the Just-In-Time (JIT) Compiler:

The Just-In-Time (JIT) compiler is a key component of the JVM that improves the performance of
Java applicaƟons during runƟme.

 What JIT Does:

o The JIT compiler translates bytecode into naƟve machine code for the host machine,
which is directly executed by the CPU.

o This translaƟon happens at runƟme when a method or class is invoked, instead of
compiling the enƟre program upfront.

 How JIT Works:

1. The JVM iniƟally interprets the bytecode (line-by-line) to run the program.

2. During execuƟon, the JVM idenƟfies hot spots (frequently executed methods or loops).

3. The JIT compiler then compiles these hot spots into naƟve machine code, which is stored for
future use, speeding up execuƟon.

4. The next Ɵme the same bytecode is encountered, the JVM uses the compiled machine code
rather than interpreƟng the bytecode.

Q3. Explain the concept of variable scope in Java and how it affects program behavior. Provide
examples of local, instance, and class variables.

Ans=>Variable Scope in Java

In Java, variable scope refers to the region of the program where a variable is accessible or valid. The
scope of a variable determines where it can be referenced or modified within the program. The
scope of a variable depends on where it is declared, and Java defines several types of scopes:

1. Local Variables

2. Instance Variables

3. Class (StaƟc) Variables

1. Local Variables

Local variables are declared inside methods, constructors, or blocks and can only be accessed within
the method, constructor, or block where they are defined. They are created when the method is
called and destroyed when the method execuƟon is completed.

 Scope: The scope of a local variable is limited to the method, constructor, or block in which it
is defined.

2. Instance Variables

Instance variables are declared inside a class but outside any method, constructor, or block. They
belong to an instance of the class (i.e., each object of the class has its own copy of the instance
variables).

 Scope: The scope of an instance variable is the enƟre class (except within staƟc methods if
they are not referenced via an object).

3. Class (StaƟc) Variables

Class variables (also known as staƟc variables) are declared with the staƟc keyword inside a class but
outside any method or constructor. These variables are shared by all instances of the class.

 Scope: The scope of a class variable is the enƟre class. It can be accessed by both staƟc and
non-staƟc methods.

public class VariableScopeExample {

 private int instanceVar = 5; // Instance variable

 private staƟc int staƟcVar = 10; // Class (staƟc) variable

 public void method() {

 int localVar = 20; // Local variable

 System.out.println("Instance variable: " + instanceVar);

 System.out.println("Class variable: " + staƟcVar);

 System.out.println("Local variable: " + localVar);

 }

 public staƟc void main(String[] args) {

 VariableScopeExample example = new VariableScopeExample();

 example.method();

 // System.out.println(localVar); // Error: localVar is not in scope

 }

}

 Output:

Instance variable: 5

Class variable: 10

Local variable: 20

Q4. Describe the garbage collecƟon mechanism in Java. Explain how it works, including the different
types of garbage collectors available in the JVM. Discuss the role of the finalize() method and why
relying on it for resource cleanup is discouraged. Provide examples to illustrate proper resource
management techniques in Java.

Ans=>Garbage CollecƟon in Java

Garbage collecƟon (GC) in Java is an automaƟc process of reclaiming memory that is no longer in use
by objects, prevenƟng memory leaks and ensuring efficient memory management. The Java Virtual
Machine (JVM) has a garbage collector that helps manage memory automaƟcally, freeing developers
from manual memory management.

How Garbage CollecƟon Works:Mark-and-Sweep and Reclaim

 Mark phase: The garbage collector traverses the object graph starƟng from root references
(like local variables, staƟc fields, and acƟve threads) and marks all reachable objects.

 Sweep phase: AŌer marking, the collector sweeps through the heap and collects all objects
that were not marked, i.e., objects that are no longer reachable.

 Reclaim: AŌer collecƟng unreachable objects, the garbage collector reclaims the memory,
making it available for new objects.

Types of Garbage Collectors in the JVM

1. Serial Garbage Collector:

 It is the simplest collector and is designed for single-threaded applicaƟons.

 It performs all garbage collecƟon tasks using a single thread.

 Suitable for small applicaƟons with low memory consumpƟon.

2. Parallel Garbage Collector (Throughput Collector):

 It uses mulƟple threads for garbage collecƟon, which improves the performance in mulƟ-
threaded environments.

 Ideal for applicaƟons that require a balance between throughput and pause Ɵmes.

3. CMS (Concurrent Mark-Sweep) Garbage Collector:

 Designed to minimize pause Ɵmes by performing most of its work concurrently with the
applicaƟon threads.

 Good for applicaƟons that require low pause Ɵmes.

finalize() Method

 The finalize() method was introduced in Java to allow developers to define cleanup acƟons
(like releasing resources or closing file handles) before an object is garbage collected.

 The JVM calls finalize() before destroying an object, but the Ɵming of this call is
unpredictable.

 Disadvantages of finalize():
o Unpredictable Execution: The method might not be called immediately after

the object becomes unreachable, leading to delayed resource cleanup.
o Performance Impact: Objects with finalize() are subject to additional

processing, which can slow down the GC process.
o Lack of Guarantees: The garbage collector may not call finalize() if the

program exits before GC occurs, leaving resources unreleased.

For these reasons, using finalize() for resource management is generally discouraged.

Proper Resource Management Techniques in Java

1. Using try-with-resources

AutomaƟcally closes resources that implement the AutoCloseable interface aŌer the try block
finishes, reducing boilerplate code.

class Resource implements AutoCloseable {

 public void use() { System.out.println("Using resource!"); }

 public void close() { System.out.println("Resource closed!"); }

}

public class TryWithResourcesExample {

 public staƟc void main(String[] args) {

 try (Resource resource = new Resource()) {

 resource.use();

 }

 }

}

Output:

Using resource!

Resource closed!

2. Explicit Resource Management

Manually closes resources in a finally block, ensuring proper cleanup regardless of excepƟons.

class Resource {

 public void use() { System.out.println("Using resource!"); }

 public void close() { System.out.println("Resource closed!"); }

}

public class ExplicitResourceExample {

 public staƟc void main(String[] args) {

 Resource resource = null;

 try {

 resource = new Resource();

 resource.use();

 } finally {

 if (resource != null) {

 resource.close();

 }

 }

 }

}

Output:

Using resource!

Resource closed!

Q5.Write a Java program to demonstrate inheritance and polymorphism. Create a superclass Shape
with a method draw(). Create three subclasses Circle, Rectangle, and Triangle that override the
draw() method. In your main method, create an array of Shape objects and call the draw() method
on each object. Show how dynamic method dispatch works in this scenario.

Ans=> // Superclass

class Shape {

 public void draw() {

 System.out.println("Drawing a shape");

 }

}

// Subclass 1

class Circle extends Shape {

 @Override

 public void draw() {

 System.out.println("Drawing a Circle");

 }

}

// Subclass 2

class Rectangle extends Shape {

 @Override

 public void draw() {

 System.out.println("Drawing a Rectangle");

 }

}

// Subclass 3

class Triangle extends Shape {

 @Override

 public void draw() {

 System.out.println("Drawing a Triangle");

 }

}

// Main Class

public class InheritancePolymorphismExample {

 public staƟc void main(String[] args) {

 // Create an array of Shape references

 Shape[] shapes = { new Circle(), new Rectangle(), new Triangle() };

 // Call the draw() method on each Shape object

 for (Shape shape : shapes) {

 shape.draw(); // Dynamic method dispatch

 }

 }

}

New paper

Q1. Explain the following methods of String class: (i) indexOf() (ii) substring();

Ans=> 1. indexOf() Method

The indexOf() method returns the index (posiƟon) of the first occurrence of a specified character or
substring within a string. If the character or substring is not found, it returns -1.

 public class IndexOfExample {

 public staƟc void main(String[] args) {

 String text = "Hello, World!";

 System.out.println(text.indexOf('W')); // Output: 7

 System.out.println(text.indexOf("World")); // Output: 7

 System.out.println(text.indexOf('o', 5)); // Output: 8

 System.out.println(text.indexOf("Java")); // Output: -1

 }

}

2. substring() Method

The substring() method extracts a porƟon of the string, starƟng from a specified index. It can also
end at a specified index (exclusive).

public class SubstringExample {

 public staƟc void main(String[] args) {

 String text = "Hello, World!";

 System.out.println(text.substring(7)); // Output: World!

 System.out.println(text.substring(0, 5)); // Output: Hello

 System.out.println(text.substring(7, 12)); // Output: World

 }

}

Q2. Write the difference between input and output stream class with example OR Develop a code for
reading from and wriƟng to a file.

Ans=> Difference Between InputStream and OutputStream Classes in Java

In Java, the InputStream and OutputStream classes are part of the java.io package, and they are
used for reading from and wriƟng to byte streams respecƟvely. The primary difference between the
two lies in their purpose: one handles input (reading), and the other handles output (wriƟng).

1. InputStream Class

The InputStream class is used to read data from a source (like a file, network socket, or memory). It
reads data as bytes.

 Primary purpose: To read byte data.

 Common methods:

o int read(): Reads a byte of data.

o int read(byte[] b): Reads bytes into a byte array.

o void close(): Closes the stream.

Example of InputStream:

import java.io.*;

public class InputStreamExample {

 public staƟc void main(String[] args) {

 try (InputStream inputStream = new FileInputStream("example.txt")) {

 int data;

 while ((data = inputStream.read()) != -1) {

 System.out.print((char) data); // Print each byte as a character

 }

 } catch (IOExcepƟon e) {

 e.printStackTrace();

 }

 }

}

 ExplanaƟon: This program reads bytes from a file using InputStream and prints each byte as
a character.

2. OutputStream Class

The OutputStream class is used to write data to a desƟnaƟon (like a file, network socket, or
memory). It writes data as bytes.

 Primary purpose: To write byte data.

 Common methods:

o void write(int b): Writes a byte of data.

o void write(byte[] b): Writes a byte array to the stream.

o void close(): Closes the stream.

Example of OutputStream:

import java.io.*;

public class OutputStreamExample {

 public staƟc void main(String[] args) {

 try (OutputStream outputStream = new FileOutputStream("output.txt")) {

 String data = "Hello, OutputStream!";

 outputStream.write(data.getBytes()); // Write data to file as bytes

 System.out.println("Data wriƩen to file!");

 } catch (IOExcepƟon e) {

 e.printStackTrace();

 }

 }

}

 ExplanaƟon: This program writes a string to a file using OutputStream by converƟng the
string into bytes.

Q3. Write a program r.o convert a String to a List of Characters in Java progvamming.. Also implement
the try, catch and throw method to handle the excepƟon in the program. Input: String
"JavaProgramming" Output:[j,a,v,a,P,r....]

Ans=>
import java.uƟl.ArrayList;

import java.uƟl.List;

public class StringToListExample {

 public staƟc void main(String[] args) {

 try {

 String inputString = "JavaProgramming"; // Input string

 // Call the method to convert the string to a list of characters

 List<Character> charList = convertStringToList(inputString);

 // Print the output List of characters

 System.out.println("List of characters: " + charList);

 } catch (NullPointerExcepƟon e) {

 System.out.println("Error: String cannot be null.");

 } catch (ExcepƟon e) {

 System.out.println("An unexpected error occurred: " + e.getMessage());

 }

 }

 // Method to convert String to List of characters

 public staƟc List<Character> convertStringToList(String input) throws ExcepƟon {

 // Check if input is null, throw an excepƟon if it is

 if (input == null) {

 throw new NullPointerExcepƟon("Input string is null.");

 }

 // Create a List to store characters

 List<Character> charList = new ArrayList<>();

 // Convert each character of the string to the List

 for (int i = 0; i < input.length(); i++) {

 charList.add(input.charAt(i)); // Add each character to the list

 }

 return charList; // Return the List of characters

 }

}

Q4. What are different iypes of inheritance supported by java? Explain with examples. Why mulƟple
Inheritance is not, supported by Java? jusiif'y in detail.

Ans=> Types of Inheritance Supported by Java

Java supports several types of inheritance, allowing classes to inherit properƟes and behaviors from
other classes. The types of inheritance are:

1. Single Inheritance: In single inheritance, a class can inherit from only one superclass.

Example:

class Animal {

 void sound() {

 System.out.println("Animal makes a sound");

 }

}

class Dog extends Animal {

 void display() {

 System.out.println("Dog barks");

 }

}

public class Test {

 public staƟc void main(String[] args) {

 Dog d = new Dog();

 d.sound(); // Inherited method

 d.display(); // Method of Dog class

 }

}

ExplanaƟon: In this example, the Dog class extends the Animal class, inheriƟng the sound() method
from it.

2. MulƟlevel Inheritance: In mulƟlevel inheritance, a class is derived from another class, which
is itself derived from another class.

Example:

class Animal {

 void sound() {

 System.out.println("Animal makes a sound");

 }

}

class Dog extends Animal {

 void bark() {

 System.out.println("Dog barks");

 }

}

class Puppy extends Dog {

 void play() {

 System.out.println("Puppy plays");

 }

}

public class Test {

 public staƟc void main(String[] args) {

 Puppy p = new Puppy();

 p.sound(); // Inherited from Animal

 p.bark(); // Inherited from Dog

 p.play(); // Defined in Puppy

 }

}

ExplanaƟon: The Puppy class extends Dog, and Dog extends Animal. Thus, Puppy indirectly inherits
from Animal.

3. Hierarchical Inheritance: In hierarchical inheritance, mulƟple classes can inherit from a
single superclass.

Example:

class Animal {

 void sound() {

 System.out.println("Animal makes a sound");

 }

}

class Dog extends Animal {

 void bark() {

 System.out.println("Dog barks");

 }

}

class Cat extends Animal {

 void meow() {

 System.out.println("Cat meows");

 }

}

public class Test {

 public staƟc void main(String[] args) {

 Dog d = new Dog();

 d.sound(); // Inherited from Animal

 d.bark(); // Method of Dog class

 Cat c = new Cat();

 c.sound(); // Inherited from Animal

 c.meow(); // Method of Cat class

 }

}

ExplanaƟon: Both Dog and Cat classes inherit from Animal. Thus, they both inherit the sound()
method.

4. Hybrid Inheritance: Hybrid inheritance is a combinaƟon of two or more types of inheritance,
such as single, mulƟlevel, and hierarchical inheritance. Java does not directly support hybrid
inheritance because it can lead to ambiguity.

Example:

class Animal {

 void sound() {

 System.out.println("Animal makes a sound");

 }

}

class Dog extends Animal {

 void bark() {

 System.out.println("Dog barks");

 }

}

class Cat extends Animal {

 void meow() {

 System.out.println("Cat meows");

 }

}

class Pet extends Dog, Cat { // Invalid in Java

 void play() {

 System.out.println("Pet plays");

 }

}

ExplanaƟon: In the above example, the Pet class is trying to inherit from both Dog and Cat, which is
not allowed in Java.

Why MulƟple Inheritance is Not Supported by Java

MulƟple inheritance is not supported in Java for the following reasons:

1. Diamond Problem: In mulƟple inheritance, a class can inherit from more than one class,
which may lead to ambiguity. The most common issue is the diamond problem, where a
subclass inherits from two classes that have a method with the same signature. The subclass
doesn't know which superclass method to use, leading to confusion and potenƟal bugs.

Example:

class A {

 void show() {

 System.out.println("A's show");

 }

}

class B extends A {

 void show() {

 System.out.println("B's show");

 }

}

class C extends A {

 void show() {

 System.out.println("C's show");

 }

}

class D extends B, C { // Not allowed in Java

 void display() {

 System.out.println("D's display");

 }

}

ExplanaƟon: In the above code, if class D extends both B and C, it would inherit two show() methods,
one from B and one from C, causing ambiguity. Java does not allow this to avoid such problems.

Q5. Explain StaƟc nested Classes? What is the difference between an Inner class and a Sub-Class?

Ans=> StaƟc Nested Classes

A staƟc nested class is a class defined within another class, marked with the staƟc keyword. StaƟc
nested classes do not have access to the instance variables and methods of the outer class. They can
only access the staƟc members (variables and methods) of the outer class.

Key CharacterisƟcs of StaƟc Nested Classes:

1. No reference to the outer class's instance: Unlike inner (non-staƟc) classes, a staƟc nested
class does not require an instance of the outer class to be created.

2. Access to staƟc members: It can access staƟc fields and methods of the outer class.

3. Instance creaƟon: A staƟc nested class can be instanƟated without the need for an outer
class instance. It can be created using the outer class name, like OuterClass.NestedClass.

Example of StaƟc Nested Class:

class OuterClass {

 staƟc int outerStaƟcVar = 10;

 staƟc class StaƟcNestedClass {

 void display() {

 // Accessing staƟc variable of outer class

 System.out.println("StaƟc variable from outer class: " + outerStaƟcVar);

 }

 }

}

public class Main {

 public staƟc void main(String[] args) {

 // CreaƟng an instance of the staƟc nested class

 OuterClass.StaƟcNestedClass nestedObj = new OuterClass.StaƟcNestedClass();

 nestedObj.display();

 }

}

Difference between an Inner Class and a Sub-Class:

1. Inner Class:

o An Inner Class is a class defined inside another class, which can be either staƟc or
non-staƟc.

o Non-staƟc Inner Classes have a reference to an instance of the outer class and can
access both staƟc and non-staƟc members of the outer class.

o Access: An inner class has access to the instance variables and methods of the outer
class.

o InstanƟaƟng: To create an instance of a non-staƟc inner class, you must create an
instance of the outer class first.

Example of an Inner Class:

class OuterClass {

 int instanceVar = 20;

 class InnerClass {

void display() {

 System.out.println("Inner class can access instance member of outer class: " + instanceVar);

 }

 }

}

public class Main {

 public staƟc void main(String[] args) {

 OuterClass outer = new OuterClass();

 OuterClass.InnerClass inner = outer.new InnerClass();

 inner.display();

 }

}

2. Sub-Class:

o A Sub-Class is a class that is derived from a parent (superclass) using inheritance. It
extends the behavior and properƟes of the parent class.

o A sub-class can override the methods and inherit the instance variables of the parent
class, enabling polymorphism.

o Access: A sub-class has access to the public and protected members of the parent
class, but not its private members unless they are accessed via public/protected
methods.

o InstanƟaƟng: A subclass can be instanƟated independently, but it inherits the
members of the parent class.

Example of a Sub-Class:

class ParentClass {

 void display() {

 System.out.println("This is a method in the parent class.");

 }

}

class SubClass extends ParentClass {

 @Override

 void display() {

 System.out.println("This is the overridden method in the sub-class.");

 }

}

public class Main {

 public staƟc void main(String[] args) {

 SubClass sub = new SubClass();

 sub.display();

 }

}

