
AWT Final QuesƟon Papers

Q1. Explain grid in bootstrap with example.

Ans=>In Bootstrap, the grid system is a powerful and flexible layout system based on a 12-column
structure. It enables developers to create responsive layouts that adapt to various screen sizes. The
grid system uses a combinaƟon of rows, columns, and predefined classes to align and space content.

Key Features of Bootstrap Grid:

1. 12-Column Layout: The grid is divided into 12 equal columns, and you can span columns
using numbers (e.g., col-6 spans 6 out of 12 columns).

2. Responsive Design: Grid classes are responsive, meaning you can specify different layouts for
different screen sizes.

3. Flexbox-based: The grid uses Flexbox for alignment and spacing.

Example :

 <div class="container">

 <div class="row">

 <div class="col-4 bg-primary text-white text-center">Column 1</div>

 <div class="col-4 bg-secondary text-white text-center">Column 2</div>

 <div class="col-4 bg-success text-white text-center">Column 3</div>

 </div>

</div>

Q2. Describe the controller usage and scope in Codeigniter framework.

Ans=>In the CodeIgniter framework, the controller plays a crucial role as it handles the applicaƟon
logic and serves as a bridge between models and views. Here's a brief descripƟon of its usage and
scope:

Controller Usage

1. Request Handling: Receives HTTP requests from users and processes them.

2. InteracƟon with Models: Calls models to fetch or manipulate data from the database.

3. View Management: Passes data to views for rendering the user interface.

4. RouƟng: Acts as the entry point for specific applicaƟon funcƟonality through routes.

Scope

1. ApplicaƟon Logic: Contains the core business logic specific to each funcƟonality.

2. Limited to Specific Tasks: Each controller typically handles a specific module or secƟon of the
applicaƟon.

3. Access Control: OŌen used to implement authenƟcaƟon and authorizaƟon for certain routes
or acƟons.

Q3. Illustrate the concept of model binding.

Ans=>Model binding is a concept used in web frameworks that allows the framework to
automaƟcally map data from HTTP requests (e.g., query strings, form data, or JSON bodies) to
objects in the applicaƟon.

Example: Using Implicit Route Model Binding

Route::get('/user/{user}', [UserController::class, 'show']);

Here, Laravel automaƟcally resolves the {user} parameter to a User model instance using the id field
by default.

Controller Method

class UserController extends Controller

{

 public funcƟon show(User $user)

 {

 // $user is automaƟcally injected as a model instance

 return view('user.profile', ['user' => $user]);

 }

}

How It Works

1. The {user} in the route corresponds to the User model.

2. Laravel fetches the model instance with the matching id from the database.

3. The resolved model instance is passed to the show method.

Q4. How does GIT handle conflicts during the merging of branches?

Ans=>

When Git encounters conflicts during branch merging, it halts the merge process and noƟfies the
user about the conflicƟng files. Git marks the conflicts within the affected files by adding conflict
markers like <<<<<<<, =======, and >>>>>>>. These markers separate the conflicƟng changes from
the current branch and the branch being merged.

Steps to Resolve Conflicts:

1. IdenƟfy Conflicts: Check the conflicƟng files listed by Git.

2. Edit Conflicts: Manually edit the conflicƟng files to resolve differences.

3. Mark Resolved: AŌer resolving conflicts, stage the files using git add.

4. Complete Merge: Finalize the merge with git commit.

Q5. Design a secanrio where "Alerts" are used to improve the overall experience

Ans=>Scenario: E-commerce Website - Order ConfirmaƟon Alerts

In an e-commerce website, aŌer a user successfully places an order, an "Order ConfirmaƟon" alert
can be used to improve the overall user experience. The alert will noƟfy the user that their order has
been successfully placed and is being processed.

How it improves the experience:

 Real-Ɵme feedback: The user gets immediate confirmaƟon about the order status, reducing
uncertainty.

 Encouragement for next steps: The alert can also include a link to track the order or
conƟnue shopping, providing clear direcƟon to the user.

 CustomizaƟon opƟons: Alerts can be customized for different scenarios like delivery delays
or promoƟonal offers, ensuring relevant informaƟon is displayed to the user at the right
Ɵme.

Example:

Alert: "Your order has been successfully placed! You can track your order status or conƟnue
shopping."

Q6.Why is bootstrap used for web Development? Illustrate its major components in detail

Ans=>Bootstrap is a popular front-end framework used in web development to create responsive,
mobile-first websites quickly and efficiently. It provides a collecƟon of pre-designed, reusable
components and CSS styles that help developers build aestheƟcally pleasing, funcƟonal web pages
without having to write extensive custom CSS or JavaScript.

Major Components of Bootstrap:

1.Grid System:

Bootstrap uses a 12-column grid system to create flexible and responsive layouts. It allows content to
adapt to different screen sizes by defining columns within rows. The grid system is based on a series
of containers, rows, and columns that automaƟcally adjust the layout on various devices (desktop,
tablet, mobile).

Example:

<div class="container">

 <div class="row">

 <div class="col-md-4">Column 1</div>

 <div class="col-md-4">Column 2</div>

 <div class="col-md-4">Column 3</div>

 </div>

</div>

2.Components:

Bootstrap provides a wide range of pre-styled components that can be used in web pages. These
include buƩons, navbars, forms, modals, cards, toolƟps, and more. Each component is built with
HTML and CSS, and in some cases, JavaScript to enhance interacƟvity.

Example: A buƩon component:

<buƩon class="btn btn-primary">Click Me</buƩon>

3.Typography:

Bootstrap offers a set of typography styles for different text elements such as headings, paragraphs,
lists, and links. These styles ensure that the text is consistent across the website and aligns with the
responsive layout.

Example:

<h1 class="display-4">Heading Example</h1>

<p class="lead">This is a lead paragraph.</p>

4.UƟliƟes:

Bootstrap comes with a set of uƟlity classes that help in common tasks like spacing, alignment,
visibility control, text formaƫng, and more. These classes can be easily applied to HTML elements
without needing to write custom CSS.

Example: For adding margin and padding:

<div class="m-3 p-4">Content with margin and padding</div>

Q7. Outline the process of seƫng up a CodeIgniter project, detailing the steps for installaƟon.
configuring the environment, and establishing route definiƟons.

Ans=> Here’s an outline of seƫng up a CodeIgniter project, focusing on installaƟon, environment
configuraƟon, and route definiƟons:

1. InstallaƟon

 Download CodeIgniter: Go to the official CodeIgniter website and download the latest
version of the framework.

 Extract the Files: Unzip the downloaded file to the desired directory on your local machine
or server.

 Setup Web Server: Ensure you have a local server like XAMPP, WAMP, or LAMP running.
Place the CodeIgniter folder inside the htdocs (for XAMPP) or equivalent directory.

 Create Database (opƟonal): If your project requires a database, create it in MySQL using
phpMyAdmin or command-line tools.

2. Configuring the Environment

 Base URL ConfiguraƟon: Open the applicaƟon/config/config.php file and set the
$config['base_url'] to the URL of your project (e.g., hƩp://localhost/your_project/).

 Database ConfiguraƟon: In applicaƟon/config/database.php, configure the database
connecƟon seƫngs (hostname, username, password, and database name).

 Enable Error ReporƟng: For debugging during development, set $config['log_threshold'] in
applicaƟon/config/config.php to a higher value (e.g., 1 for all errors).

3. Establishing Route DefiniƟons

 Define Routes: Open the applicaƟon/config/routes.php file. The default route is usually set
to the controller's method, but you can add custom routes by defining them in this file.

 Example Route: To create a route that directs to a specific controller and method, add a line
like:

$route['welcome'] = 'welcome/index'; // Route to 'welcome' controller

 Route CustomizaƟon: For dynamic rouƟng, you can define parameters and more advanced
routes, such as:

$route['profile/(:any)'] = 'user/profile/$1'; // Capture a dynamic parameter
Q8. Compare and contrast two different MVC frameworks.

Feature CodeIgniter Laravel

Release Date 2006 2011

Development
Philosophy

Simple, lightweight, fast Elegant, developer-friendly, feature-rich

Learning Curve Easy, beginner-friendly
Steeper learning curve due to advanced
features

Performance
Faster and lightweight, suitable
for small projects

Slightly slower due to its extensive features

RouƟng Basic rouƟng system
Advanced rouƟng system with named routes
and groups

Database
Supports only MySQL, with
basic AcƟve Record paƩern

Eloquent ORM, supports mulƟple database
types (MySQL, PostgreSQL, SQLite, etc.)

AuthenƟcaƟon
Built-in simple authenƟcaƟon
system

Built-in advanced authenƟcaƟon system with
guards, roles, and permissions

MigraƟons
Supports migraƟons with simple
commands

Comprehensive migraƟon and seeding system

Template Engine
No built-in templaƟng engine
(use PHP directly)

Blade templaƟng engine, which is elegant and
easy to use

Community &
Support

Smaller community, limited
support

Large community, extensive documentaƟon,
and acƟve support

Composer Support
Does not use Composer for
dependency management

Uses Composer for managing dependencies

Feature CodeIgniter Laravel

Caching
Basic caching support (file,
database, and APC)

Advanced caching support with mulƟple
drivers (Redis, Memcached, etc.)

Task Scheduling
No built-in task scheduling
support

Built-in task scheduling using Laravel
Scheduler

TesƟng
Has tesƟng support with
PHPUnit

Built-in tesƟng support with PHPUnit, beƩer
integraƟon with Mockery

File Uploads Simple file upload library
Comprehensive file upload library with
validaƟon and handling

Built-in Libraries Limited built-in libraries
Extensive set of built-in libraries (queue,
broadcasƟng, noƟficaƟons, etc.)

ArƟsan CLI No built-in CLI tool Powerful CLI tool (ArƟsan) for common tasks

Dependency
InjecƟon

Limited dependency injecƟon
support

Full support for dependency injecƟon (Service
Container)

Security
Basic security features (XSS,
CSRF, etc.)

Advanced security features (CSRF, XSS,
encrypƟon, hashing)

Versioning Lacks versioning for migraƟons
Versioning system for migraƟons, rollback
support

RESTful API
Support

Manual setup required
Built-in support for building RESTful APIs
(using Route::resource and Laravel Passport)

Blade TemplaƟng Not available
Available (Blade templaƟng engine is very
popular and efficient)

Q9. Design a web applicaƟon to demonstrate the CodeIgniter/Iaravel model, view, routes

and controller with CURD operaƟons.

Ana=>1. Model (User.php)

// app/Models/User.php

namespace App\Models;

use Illuminate\Database\Eloquent\Model;

class User extends Model

{

 protected $fillable = ['name', 'email', 'password'];

}

2. Controller (UserController.php)

// app/HƩp/Controllers/UserController.php

namespace App\HƩp\Controllers;

use App\Models\User;

use Illuminate\HƩp\Request;

use Illuminate\Support\Facades\Hash;

class UserController extends Controller

{

 // Display all users

 public funcƟon index() {

 return view('users.index', ['users' => User::all()]);

 }

 // Show create form

 public funcƟon create() {

 return view('users.create');

 }

 // Store new user

 public funcƟon store(Request $request) {

 User::create([

 'name' => $request->name,

 'email' => $request->email,

 'password' => Hash::make($request->password)

]);

 return redirect()->route('users.index');

 }

 // Show edit form

 public funcƟon edit($id) {

 return view('users.edit', ['user' => User::find($id)]);

 }

// Update user

 public funcƟon update(Request $request, $id) {

 $user = User::find($id);

 $user->update($request->all());

 return redirect()->route('users.index');

 }

 // Delete user

 public funcƟon destroy($id) {

 User::destroy($id);

 return redirect()->route('users.index');

 }

}

3. Routes (web.php)

// routes/web.php

use App\HƩp\Controllers\UserController;

Route::resource('users', UserController::class);

4. Views:

 Index (users/index.blade.php)

<!-- Display users -->

<h1>Users</h1>

Create User

@foreach($users as $user)

 <p>{{ $user->name }} - id) }}">Edit |

 <form acƟon="{{ route('users.destroy', $user->id) }}" method="POST">

 @csrf

 @method('DELETE')

 <buƩon>Delete</buƩon>

 </form></p>

@endforeach

Create (users/create.blade.php)

<!-- Form to create user -->

<h1>Create User</h1>

<form acƟon="{{ route('users.store') }}" method="POST">

 @csrf

 <input type="text" name="name" placeholder="Name" required>

 <input type="email" name="email" placeholder="Email" required>

 <input type="password" name="password" placeholder="Password" required>

 <buƩon type="submit">Create</buƩon>

</form>

 Edit (users/edit.blade.php)

<!-- Form to edit user -->

<h1>Edit User</h1>

<form acƟon="{{ route('users.update', $user->id) }}" method="POST">

 @csrf

 @method('PUT')

 <input type="text" name="name" value="{{ $user->name }}" required>

 <input type="email" name="email" value="{{ $user->email }}" required>

 <input type="password" name="password" placeholder="Leave blank to keep the same">

 <buƩon type="submit">Update</buƩon>

</form>

5. Database MigraƟon:

// MigraƟon for creaƟng users table

public funcƟon up() {

 Schema::create('users', funcƟon (Blueprint $table) {

 $table->id();

 $table->string('name');

 $table->string('email')->unique();

 $table->string('password');

 $table->Ɵmestamps();

 });

}

Run the migraƟon:

php arƟsan migrate

Summary:

1. Model defines the User table and its columns.

2. Controller handles the CRUD logic (create, read, update, delete).

3. Routes map URLs to controller acƟons.

4. Views display forms and data (index, create, edit).

Q10. How to create the local and remote repository on any GIT server using SSH OR hƩps. Write
down the different steps and commands used to install and setup new branch. preform pull, push
and merge operaƟons on GIT the repository.
ans=>to create a local and remote repository on any Git server using SSH or HTTPS, follow these
steps:

1.On Windows: Download and install from Git's official website.

2. Setup Git (if not done already)

git config --global user.name "Your Name"

git config --global user.email "your.email@example.com"

3. Create a Local Git Repository

To create a local Git repository:

mkdir my-repo

cd my-repo

git init

4. Create a Remote Repository (on Git Server like GitHub, GitLab, Bitbucket)

1. Go to your Git hosƟng provider (GitHub, GitLab, etc.).

2. Create a new repository (without a README, license, or .giƟgnore file for this example).

3. Copy the remote URL (either SSH or HTTPS).

5. Link Local Repository to Remote Repository

Using HTTPS:

git remote add origin hƩps://github.com/CoderRaushan/RausNotes39.git

6. Create a New Branch

Create and switch to a new branch in your local repository:

git checkout -b new-branch

7. Add Files and Commit Changes

1. Add a file to the local repository:

 file.txt

2. Stage the file and commit changes:

git add file.txt

git commit -m "IniƟal commit"

8. Push Local Changes to Remote Repository

Push the changes in your local new-branch to the remote repository:

git push -u origin new-branch

9. Pull Changes from Remote Repository

To update your local branch with changes from the remote repository (e.g., main branch):

git pull origin main

10. Merge Changes

To merge new-branch into main:

1.Switch to main branch:

git checkout main

2.Merge new-branch into main:

git merge new-branch

3.Resolve any merge conflicts, if they occur.

11. Push Merged Changes

Push the changes to the remote repository:

git push origin main

new paper

Q1. How can you create an alert in bootstrap?

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, iniƟal-scale=1.0">

 <Ɵtle>Bootstrap Alert</Ɵtle>

 <!-- Bootstrap CSS -->

 <link href="hƩps://cdn.jsdelivr.net/npm/bootstrap@5.3.0/dist/css/bootstrap.min.css"
rel="stylesheet">

</head>

<body>

 <div class="container mt-5">

 <div class="alert alert-success" role="alert">

 This is a success alert—check it out!

 </div>

 </div>

 <!-- Bootstrap JS (OpƟonal for interacƟve components) -->

 <script
src="hƩps://cdn.jsdelivr.net/npm/bootstrap@5.3.0/dist/js/bootstrap.bundle.min.js"></script>

</body>

</html>

Q2. List some popular MVC framework.

Ans=>Here are some popular MVC (Model-View-Controller) frameworks:

1 Ruby on Rails (Ruby)

2 Laravel (PHP)

3 CodeIgniter (PHP)

4 Spring MVC (Java)

5 Django (Python)

6 ASP.NET MVC (C#/.NET)

Q3. How to apply patching using git?

Ans=>In Git, patching refers to the process of creaƟng, applying, or managing a patch, which is a file
that contains the differences between two versions of a file or set of files. A patch can be used to
share changes, fix bugs, or apply updates without needing to share an enƟre repository.

1. CreaƟng a Patch File

A patch file contains the changes between commits or branches.

Steps:

1. Generate a patch file for a specific commit:

git format-patch -1 <commit-hash>

Replace <commit-hash> with the hash of the commit you want to create a patch for.

This generates a file like 0001-commit-message.patch.

Generate a patch for changes between branches:

git diff <branch1> <branch2> > changes.patch

2. Applying a Patch File

Once you have the patch file, you can apply it to another repository or branch.

Steps:

1. Apply a patch file:

git apply <patch-file>

Replace <patch-file> with the path to your patch file (e.g., changes.patch).

2. Apply and commit a patch with author informaƟon:

git am <patch-file>

git am applies the patch and retains the original author details if present.

3. Check for potenƟal issues before applying:

git apply --check <patch-file>

3. Verifying Patch ApplicaƟon

 AŌer applying the patch, use git status to verify the changes.

 Use git log or git diff to confirm that the patch was applied correctly.

Q4. Compare and contrast local git and remote git?

Q5. Discuss bootstrap table and various classes that can change the appearance of table and also

write the code to create a tables

ans=>Bootstrap Table and Classes

Bootstrap provides an easy way to style HTML tables with built-in classes that enhance their
appearance and funcƟonality. Here's a quick overview:

Key Table Classes:

1. table: The base class to apply Bootstrap styles to a table.

2. table-striped: Adds alternaƟng row colors for beƩer readability.

3. table-bordered: Adds borders to all table cells.

4. table-hover: Highlights rows when hovered over.

5. table-dark: Adds a dark theme to the table.

6. table-sm: Creates a more compact table by reducing padding.

7. table-responsive: Makes the table scrollable horizontally on small screens.

Code Example

Here’s a simple example using some of these classes:

<body>

 <div class="container mt-4">

 <h3 class="mb-3">Bootstrap Table Example</h3>

 <table class="table table-striped table-bordered table-hover table-sm">

 <thead class="table-dark">

 <tr>

 <th>#</th>

 <th>Name</th>

 <th>Age</th>

 <th>City</th>

 </tr>

 </thead>

 <tbody>

 <tr>

 <td>1</td>

 <td>John Doe</td>

 <td>25</td>

 <td>New York</td>

 </tr>

 <tr>

 <td>2</td>

 <td>Jane Smith</td>

 <td>30</td>

 <td>Los Angeles</td>

 </tr>

 <tr>

 <td>3</td>

 <td>Michael Brown</td>

 <td>35</td>

 <td>Chicago</td>

 </tr>

 </tbody>

 </table>

 </div>

Q6. Why is there a need for ExcepƟon Handling? Write a code to demonstrate it in PHP.

Ans=> Why is there a need for ExcepƟon Handling?

ExcepƟon handling is crucial in programming because it allows us to handle errors gracefully, instead
of leƫng the program crash. It provides a way to:

1. Prevent Program Crashes: It ensures that errors are caught and handled properly, so the
program doesn’t stop unexpectedly.

2. Improve Readability and Maintenance: It separates normal code from error-handling code,
making the program easier to read and maintain.

3. Handle Unexpected Errors: It helps in managing errors that are beyond our control, such as
file not found or database connecƟon failures.

4. Provide Meaningful Error message: It can show meaningful error messages to users,
improving the user experience.

Example Code for ExcepƟon Handling in PHP

Here is a simple PHP code demonstraƟng excepƟon handling:

<?php

$a=10;

$b=0;

try {

 if ($b == 0) {

 // Throwing an excepƟon if the divisor is zero

 throw new ExcepƟon("Division by zero is not allowed.");

 }

 echo($a / $b);

} catch (ExcepƟon $e) {

 // Catch the excepƟon and display the error message

 echo 'Error: ' . $e->getMessage();

}

?>

Q7. Create the Laravel project (write the steps for installaƟon, environment setup, configuraƟon)

with route definiƟon that can be redirected to the web applicaƟon home page.

Ans=>1. Install Laravel

First, ensure you have Composer installed on your machine. Then, follow these steps:

Open a terminal and run the following command to install Laravel via Composer:

composer create-project --prefer-dist laravel/laravel my-laravel-project

Replace my-laravel-project with your desired project name.

2. Set Up the Environment

Navigate to the project folder:

cd my-laravel-project

Laravel uses a .env file for environment variables. You can configure database and app seƫngs here.

Make sure the .env file is present in your project directory. If it's missing, create one by copying from
.env.example:

cp .env.example .env

Configure the app key (run the following command to generate a new app key):

php arƟsan key:generate

3. Configure the Web Server

You can use Laravel's built-in server for development:

php arƟsan serve

This will start a development server at hƩp://127.0.0.1:8000.

4. Define Routes

Laravel uses the routes/web.php file for defining web routes.

Open routes/web.php and define a route to redirect to the home page:

Route::get('/', funcƟon () {

 return view('welcome');

});

This route points to the default welcome.blade.php view, which is located in resources/views.

5. Check the Home Page

AŌer running the server (php arƟsan serve), visit hƩp://127.0.0.1:8000 in your browser. It should
show the Laravel home page, which is the welcome.blade.php view

Q8. what is version control system? Write its main purpose. Also provide the steps for

inszallaƟ0fi of any VCS?

Ans=>A Version Control System (VCS) is a tool that helps manage and track changes to files,
documents, or code over Ɵme. It allows mulƟple users to collaborate on a project, ensures that
changes can be tracked and reverted if necessary, and provides an organized history of how a project
evolves.

Main Purpose of VCS:

1. Track Changes: It keeps track of changes made to the files, helping users see what
modificaƟons have been made, by whom, and when.

2. CollaboraƟon: MulƟple users can work on the same project simultaneously without
interfering with each other’s work. Conflicts can be resolved.

3. Backup and Restore: VCS maintains a history of changes, so previous versions can be
restored if something goes wrong.

4. Branching and Merging: It allows different versions (branches) of a project to be worked on
separately and later merged into the main version.

Steps for Installing Git (a popular VCS):

1. Download Git:

o Visit the Git website.

o Download the appropriate version for your operaƟng system (Windows, macOS, or
Linux).

2. Install Git:

Windows: Run the downloaded .exe file and follow the installaƟon prompts.

Ensure to check opƟons like "Add Git to your PATH" during installaƟon.

3. Configure Git:

AŌer installaƟon, open a terminal or command prompt and set your name and email:

git config --global user.name "Your Name"

git config --global user.email "your.email@example.com"

4. Verify InstallaƟon:

Check if Git was successfully installed by typing the following command:

git --version

This will show the installed Git version, confirming the installaƟon is successful.

5.Start Using Git:

 Create a new Git repository using:

git init

 Or clone an exisƟng repository:

git clone hƩps://github.com/username/repository.git

Q9. How Will you differenƟate between AcƟonResuit and ViewResult? Support your answer

with a basic syntax code.

Ans=> 1. AcƟonResult: This refers to the result of a controller acƟon. In Laravel, this would typically
be the return value of a controller method that processes a request, which could be a redirect, JSON
response, or any other type of response, depending on the acƟon.

2. ViewResult: This refers to a response that renders a view. In Laravel, you can return a view from a
controller method to render a specific page in the applicaƟon.

Basic Syntax in Laravel:

AcƟonResult Example:

public funcƟon store(Request $request)

{

 // Handle storing data or performing an acƟon

 $data = $request->all();

 return redirect()->route('home')->with('status', 'Data successfully saved!');

}

ViewResult Example:

// ViewResult Example (controller method returning a view)

public funcƟon index()

{

 $items = Item::all(); // Retrieve all items from the database

 return view('items.index', compact('items'));

}

Q10. compare fluid and default grid system.

Q11. Write the meaning of these commands: git stain* gil log, git branch, git git

ccnfig., git restores git init, git pull, git push, git add, git diffi git checkout.

Ans=>Here are the meanings of the commands you've menƟoned, corrected and explained:

1. git status:

o Shows the current status of your working directory and staging area. It lists changes
that have been staged, changes that are not staged, and untracked files.

2. git log:

o Displays the commit history of the repository, showing a list of commits with details
like commit hash, author, date, and commit message.

3. git branch:

o Lists all the branches in your repository and highlights the currently acƟve branch. It
can also be used to create, delete, or rename branches.

4. git config:

o Configures Git seƫngs like user informaƟon (name and email), editor, and other
seƫngs. Example: git config --global user.name "Your Name".

5. git restore:

o Restores files in the working directory to the state of the last commit, undoing
changes made to tracked files.

6. git init:

o IniƟalizes a new Git repository in the current directory, creaƟng a .git subdirectory to
store the repository's configuraƟon and history.

7. git pull:

o Fetches changes from a remote repository and automaƟcally merges them into the
current branch. It’s a combinaƟon of git fetch and git merge.

8. git push:

o Sends your local commits to a remote repository, updaƟng the remote branch with
your changes.

9. git add:

o Adds changes (new files, modified files, deleted files) in the working directory to the
staging area, preparing them for commit.

10. git diff:

o Shows the differences between the working directory and the last commit (or
between commits, branches, etc.), highlighƟng what changes have been made.

11. git checkout:

o Switches between branches or restores files in the working directory to a previous
state (e.g., from a different branch or commit). It can also be used to create a new
branch from a specific point.

Q11. compare bootstrap 4 with 5.

