AWT Final Question Papers

Q1. Explain grid in bootstrap with example.

Ans=>In Bootstrap, the grid system is a powerful and flexible layout system based on a 12-column
structure. It enables developers to create responsive layouts that adapt to various screen sizes. The
grid system uses a combination of rows, columns, and predefined classes to align and space content.

Key Features of Bootstrap Grid:

1. 12-Column Layout: The grid is divided into 12 equal columns, and you can span columns
using numbers (e.g., col-6 spans 6 out of 12 columns).

2. Responsive Design: Grid classes are responsive, meaning you can specify different layouts for
different screen sizes.

3. Flexbox-based: The grid uses Flexbox for alignment and spacing.
Example :
<div class="container">
<div class="row">
<div class="col-4 bg-primary text-white text-center">Column 1</div>
<div class="col-4 bg-secondary text-white text-center">Column 2</div>
<div class="col-4 bg-success text-white text-center">Column 3</div>
</div>
</div>
Q2. Describe the controller usage and scope in Codeigniter framework.

Ans=>In the Codelgniter framework, the controller plays a crucial role as it handles the application
logic and serves as a bridge between models and views. Here's a brief description of its usage and
scope:

Controller Usage
1. Request Handling: Receives HTTP requests from users and processes them.
2. Interaction with Models: Calls models to fetch or manipulate data from the database.
3. View Management: Passes data to views for rendering the user interface.

4. Routing: Acts as the entry point for specific application functionality through routes.

1. Application Logic: Contains the core business logic specific to each functionality.

2. Limited to Specific Tasks: Each controller typically handles a specific module or section of the
application.

3. Access Control: Often used to implement authentication and authorization for certain routes
or actions.



Q3. lllustrate the concept of model binding.

Ans=>Model binding is a concept used in web frameworks that allows the framework to
automatically map data from HTTP requests (e.g., query strings, form data, or JSON bodies) to
objects in the application.

Example: Using Implicit Route Model Binding
Route::get('/user/{user}', [UserController::class, 'show']);

Here, Laravel automatically resolves the {user} parameter to a User model instance using the id field
by default.

Controller Method
class UserController extends Controller

{
public function show(User Suser)
{
// Suser is automatically injected as a model instance

return view('user.profile', ['user' => Suser]);

}

How It Works
1. The {user}in the route corresponds to the User model.
2. Laravel fetches the model instance with the matching id from the database.
3. The resolved model instance is passed to the show method.

Q4. How does GIT handle conflicts during the merging of branches?

Ans=>

When Git encounters conflicts during branch merging, it halts the merge process and notifies the
user about the conflicting files. Git marks the conflicts within the affected files by adding conflict
markers like <<<<<<<, =======, and >>>>>>>, These markers separate the conflicting changes from
the current branch and the branch being merged.

Steps to Resolve Conflicts:
1. Identify Conflicts: Check the conflicting files listed by Git.
2. Edit Conflicts: Manually edit the conflicting files to resolve differences.
3. Mark Resolved: After resolving conflicts, stage the files using git add.
4. Complete Merge: Finalize the merge with git commit.

Q5. Design a secanrio where "Alerts" are used to improve the overall experience



Ans=>Scenario: E-commerce Website - Order Confirmation Alerts

In an e-commerce website, after a user successfully places an order, an "Order Confirmation" alert
can be used to improve the overall user experience. The alert will notify the user that their order has
been successfully placed and is being processed.

How it improves the experience:

e Real-time feedback: The user gets immediate confirmation about the order status, reducing
uncertainty.

e Encouragement for next steps: The alert can also include a link to track the order or
continue shopping, providing clear direction to the user.

e Customization options: Alerts can be customized for different scenarios like delivery delays
or promotional offers, ensuring relevant information is displayed to the user at the right
time.

Example:

Alert: "Your order has been successfully placed! You can track your order status or continue
shopping."

Q6.Why is bootstrap used for web Development? lllustrate its major components in detail

Ans=>Bootstrap is a popular front-end framework used in web development to create responsive,
mobile-first websites quickly and efficiently. It provides a collection of pre-designed, reusable
components and CSS styles that help developers build aesthetically pleasing, functional web pages
without having to write extensive custom CSS or JavaScript.

Major Components of Bootstrap:
1.Grid System:

Bootstrap uses a 12-column grid system to create flexible and responsive layouts. It allows content to
adapt to different screen sizes by defining columns within rows. The grid system is based on a series
of containers, rows, and columns that automatically adjust the layout on various devices (desktop,
tablet, mobile).

Example:
<div class="container">
<div class="row">
<div class="col-md-4">Column 1</div>
<div class="col-md-4">Column 2</div>
<div class="col-md-4">Column 3</div>
</div>
</div>

2.Components:



Bootstrap provides a wide range of pre-styled components that can be used in web pages. These
include buttons, navbars, forms, modals, cards, tooltips, and more. Each component is built with
HTML and CSS, and in some cases, JavaScript to enhance interactivity.

Example: A button component:
<button class="btn btn-primary">Click Me</button>
3.Typography:

Bootstrap offers a set of typography styles for different text elements such as headings, paragraphs,
lists, and links. These styles ensure that the text is consistent across the website and aligns with the
responsive layout.

Example:

<h1 class="display-4">Heading Example</h1>
<p class="lead">This is a lead paragraph.</p>
4.Utilities:

Bootstrap comes with a set of utility classes that help in common tasks like spacing, alignment,
visibility control, text formatting, and more. These classes can be easily applied to HTML elements
without needing to write custom CSS.

Example: For adding margin and padding:
<div class="m-3 p-4">Content with margin and padding</div>

Q7. Outline the process of setting up a Codelgniter project, detailing the steps for installation.
configuring the environment, and establishing route definitions.

Ans=> Here’s an outline of setting up a Codelgniter project, focusing on installation, environment
configuration, and route definitions:

1. Installation

e Download Codelgniter: Go to the official Codelgniter website and download the latest
version of the framework.

e Extract the Files: Unzip the downloaded file to the desired directory on your local machine
or server.

e Setup Web Server: Ensure you have a local server like XAMPP, WAMP, or LAMP running.
Place the Codelgniter folder inside the htdocs (for XAMPP) or equivalent directory.

e Create Database (optional): If your project requires a database, create it in MySQL using
phpMyAdmin or command-line tools.

2. Configuring the Environment

e Base URL Configuration: Open the application/config/config.php file and set the
Sconfig['base_url'] to the URL of your project (e.g., http://localhost/your_project/).

e Database Configuration: In application/config/database.php, configure the database
connection settings (hostname, username, password, and database name).



o Enable Error Reporting: For debugging during development, set Sconfig['log_threshold'] in
application/config/config.php to a higher value (e.g., 1 for all errors).

3. Establishing Route Definitions

e Define Routes: Open the application/config/routes.php file. The default route is usually set
to the controller's method, but you can add custom routes by defining them in this file.

e Example Route: To create a route that directs to a specific controller and method, add a line

like:

Sroute['welcome'] = 'welcome/index'; // Route to 'welcome' controller

e Route Customization: For dynamic routing, you can define parameters and more advanced

routes, such as:

Sroute['profile/(:any)'] = 'user/profile/$1'; // Capture a dynamic parameter
Q8. Compare and contrast two different MVC frameworks.

Feature Codelgniter
Release Date 2006

Development
P Simple, lightweight, fast

Philosophy
Learning Curve Easy, beginner-friendly

Faster and lightweight, suitable
Performance g &

for small projects
Routing Basic routing system

Supports only MySQL, with
Database p.p . y MysQ

basic Active Record pattern

L. Built-in simple authentication

Authentication

system

Supports migrations with simple
Migrations PP & P

commands

No built-in templating engine

T late Engi
emplate Engine (use PHP directly)

Community & Smaller community, limited
Support support

Does not use Composer for
Composer Support
dependency management

Laravel

2011

Elegant, developer-friendly, feature-rich

Steeper learning curve due to advanced
features

Slightly slower due to its extensive features

Advanced routing system with named routes
and groups

Eloquent ORM, supports multiple database
types (MySQL, PostgreSQL, SQLite, etc.)

Built-in advanced authentication system with
guards, roles, and permissions

Comprehensive migration and seeding system

Blade templating engine, which is elegant and
easy to use

Large community, extensive documentation,
and active support

Uses Composer for managing dependencies



Feature

Caching

Task Scheduling

Testing

File Uploads

Built-in Libraries

Artisan CLI

Dependency
Injection

Security

Versioning

RESTful API
Support

Blade Templating

Codelgniter

Basic caching support (file,
database, and APC)

No built-in task scheduling
support

Has testing support with
PHPUnit

Simple file upload library

Limited built-in libraries

No built-in CLI tool

Limited dependency injection
support

Basic security features (XSS,
CSRF, etc.)

Lacks versioning for migrations

Manual setup required

Not available

Laravel

Advanced caching support with multiple
drivers (Redis, Memcached, etc.)

Built-in task scheduling using Laravel
Scheduler

Built-in testing support with PHPUnit, better
integration with Mockery

Comprehensive file upload library with
validation and handling

Extensive set of built-in libraries (queue,
broadcasting, notifications, etc.)

Powerful CLI tool (Artisan) for common tasks

Full support for dependency injection (Service
Container)

Advanced security features (CSRF, XSS,
encryption, hashing)

Versioning system for migrations, rollback
support

Built-in support for building RESTful APIs
(using Route::resource and Laravel Passport)

Available (Blade templating engine is very
popular and efficient)

Q9. Design a web application to demonstrate the Codelgniter/laravel model, view, routes

and controller with CURD operations.

Ana=>1. Model (User.php)

// app/Models/User.php

namespace App\Models;

use llluminate\Database\Eloquent\Model;

class User extends Model

{

protected Sfillable = ['name’, 'email’, 'password'];



2. Controller (UserController.php)
// app/Http/Controllers/UserController.php
namespace App\Http\Controllers;
use App\Models\User;
use llluminate\Http\Request;
use llluminate\Support\Facades\Hash;
class UserController extends Controller
{
// Display all users
public function index() {
return view('users.index’, ['users' => User::all()]);
}
// Show create form
public function create() {
return view('users.create');
}
// Store new user
public function store(Request Srequest) {
User::create([
'name' => Srequest->name,
'email' => Srequest->email,
'password' => Hash::make(Srequest->password)

;

return redirect()->route('users.index');
}
// Show edit form
public function edit(Sid) {

return view('users.edit', ['user' => User::find(Sid)]);



// Update user

public function update(Request Srequest, Sid) {
Suser = User::find($id);
Suser->update(Srequest->all());
return redirect()->route('users.index');

}

// Delete user

public function destroy(Sid) {
User::destroy(Sid);

return redirect()->route('users.index');

}
3. Routes (web.php)
// routes/web.php
use App\Http\Controllers\UserController;
Route::resource('users', UserController::class);
4. Views:
¢ Index (users/index.blade.php)
<!-- Display users -->
<h1>Users</h1>
<a href="{{ route('users.create') }}">Create User</a>
@foreach(Susers as Suser)
<p>{{ Suser->name }} - <a href="{{ route('users.edit', Suser->id) }}">Edit</a> |
<form action="{{ route('users.destroy', Suser->id) }}" method="POST">
@csrf
@method('DELETE')
<button>Delete</button>
</form></p>

@endforeach



Create (users/create.blade.php)
<l-- Form to create user -->
<h1>Create User</h1>
<form action="{{ route('users.store') }}" method="POST">
@csrf
<input type="text" name="name" placeholder="Name" required>
<input type="email" name="email" placeholder="Email" required>
<input type="password" name="password" placeholder="Password" required>
<button type="submit">Create</button>
</form>
o Edit (users/edit.blade.php)
<!-- Form to edit user -->
<h1>Edit User</h1>
<form action="{{ route('users.update', Suser->id) }}" method="POST">
@csrf
@method('PUT")
<input type="text" name="name" value="{{ Suser->name }}" required>
<input type="email" name="email" value="{{ Suser->email }}" required>
<input type="password" name="password" placeholder="Leave blank to keep the same">
<button type="submit">Update</button>
</form>
5. Database Migration:
// Migration for creating users table
public function up() {
Schema::create('users', function (Blueprint Stable) {
Stable->id();
Stable->string('name');
Stable->string('email')->unique();
Stable->string('password');

Stable->timestamps();

N



}

Run the migration:
php artisan migrate
Summary:
1. Model defines the User table and its columns.
2. Controller handles the CRUD logic (create, read, update, delete).
3. Routes map URLs to controller actions.
4. Views display forms and data (index, create, edit).

Q10. How to create the local and remote repository on any GIT server using SSH OR https. Write
down the different steps and commands used to install and setup new branch. preform pull, push
and merge operations on GIT the repository.

ans=>to create a local and remote repository on any Git server using SSH or HTTPS, follow these
steps:

1.0n Windows: Download and install from Git's official website.

2. Setup Git (if not done already)

git config --global user.name "Your Name"

git config --global user.email "your.email@example.com"

3. Create a Local Git Repository

To create a local Git repository:

mkdir my-repo

cd my-repo

gitinit

4. Create a Remote Repository (on Git Server like GitHub, GitLab, Bitbucket)
1. Gotoyour Git hosting provider (GitHub, GitLab, etc.).
2. Create a new repository (without a README, license, or .gitignore file for this example).
3. Copy the remote URL (either SSH or HTTPS).

5. Link Local Repository to Remote Repository

Using HTTPS:

git remote add origin https://github.com/CoderRaushan/RausNotes39.git

6. Create a New Branch
Create and switch to a new branch in your local repository:

git checkout -b new-branch



7. Add Files and Commit Changes
1. Add afile to the local repository:
file.txt
2. Stage the file and commit changes:
git add file.txt
git commit -m "Initial commit"
8. Push Local Changes to Remote Repository
Push the changes in your local new-branch to the remote repository:
git push -u origin new-branch
9. Pull Changes from Remote Repository
To update your local branch with changes from the remote repository (e.g., main branch):
git pull origin main
10. Merge Changes
To merge new-branch into main:
1.Switch to main branch:
git checkout main
2.Merge new-branch into main:
git merge new-branch
3.Resolve any merge conflicts, if they occur.
11. Push Merged Changes
Push the changes to the remote repository:
git push origin main
new paper
Q1. How can you create an alert in bootstrap?
<IDOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Bootstrap Alert</title>

<!-- Bootstrap CSS -->



<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0/dist/css/bootstrap.min.css"
rel="stylesheet">

</head>
<body>
<div class="container mt-5">
<div class="alert alert-success" role="alert">
This is a success alert—check it out!
</div>
</div>
<!l-- Bootstrap JS (Optional for interactive components) -->

<script
src="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0/dist/js/bootstrap.bundle.min.js"></script>

</body>

</html>

Q2. List some popular MVC framework.
Ans=>Here are some popular MVC (Model-View-Controller) frameworks:
1 Ruby on Rails (Ruby)

2 Laravel (PHP)

3 Codelgniter (PHP)

4 Spring MVC (Java)

5 Django (Python)

6 ASP.NET MVC (C#/.NET)

Q3. How to apply patching using git?

Ans=>In Git, patching refers to the process of creating, applying, or managing a patch, which is a file
that contains the differences between two versions of a file or set of files. A patch can be used to
share changes, fix bugs, or apply updates without needing to share an entire repository.

1. Creating a Patch File
A patch file contains the changes between commits or branches.
Steps:

1. Generate a patch file for a specific commit:



git format-patch -1 <commit-hash>

Replace <commit-hash> with the hash of the commit you want to create a patch for.

This generates a file like 0001-commit-message.patch.

Generate a patch for changes between branches:

git diff <branch1> <branch2> > changes.patch

2. Applying a Patch File

Once you have the patch file, you can apply it to another repository or branch.

Steps:

1. Apply a patch file:

git apply <patch-file>

Replace <patch-file> with the path to your patch file (e.g., changes.patch).

2. Apply and commit a patch with author information:

git am <patch-file>

git am applies the patch and retains the original author details if present.

3. Check for potential issues before applying:

git apply --check <patch-file>

3. Verifying Patch Application

e After applying the patch, use git status to verify the changes.

e Use git log or git diff to confirm that the patch was applied correctly.

Q4. Compare and contrast local git and remote git?

Here's a comparison of local Git and remote Git in tabular form:

Aspect

Definition

Purpose

Connectivity

Data Storage

Collaboration

Backup

Examples

Commands

Security

Local Git

Refers to the Git repository stored on
your local machine.

Used for offline version control, making

commits and managing branches locally.

Does not require an intemnet connection.

Accessible only on the user's local
machine.

Stores repository data in the .git folder
locally.

Limited to individual usage unless shared
manually (e.g., by sharing files).

No backup unless manually created on
another machine or storage device.

A repository you initialize using git
init .
Relevant commands: git add , git

commit , git branch .

Secured on your local machine (unless
compromised).

Remote Git

Refers to the Git repository hosted on a
remote server (e.g., GitHub, GitLab, Bitbucket).
Used to collaborate with others by sharing
changes and maintaining a central repository.
Requires an intemnet connection to push or pull
changes.

Accessible globally to users with appropriate
permissions.

Stores repository data on a remote server or

cloud platform.

Facilitates team collaboration by allowing
multiple users to clone, push, pull, and merge

changes.

Acts as a backup of the repository, as it is
stored on a remote server.

A repository hosted on platforms like GitHub,
GitLab, or Bitbucket.

Relevant commands: git push, git pull,

git fetch .

Security depends on remote platform policies

and user access controls.




Q5. Discuss bootstrap table and various classes that can change the appearance of table and also
write the code to create a tables
ans=>Bootstrap Table and Classes

Bootstrap provides an easy way to style HTML tables with built-in classes that enhance their
appearance and functionality. Here's a quick overview:

Key Table Classes:
1. table: The base class to apply Bootstrap styles to a table.
2. table-striped: Adds alternating row colors for better readability.
3. table-bordered: Adds borders to all table cells.
4. table-hover: Highlights rows when hovered over.
5. table-dark: Adds a dark theme to the table.
6. table-sm: Creates a more compact table by reducing padding.

7. table-responsive: Makes the table scrollable horizontally on small screens.

Code Example
Here’s a simple example using some of these classes:
<body>
<div class="container mt-4">
<h3 class="mb-3">Bootstrap Table Example</h3>
<table class="table table-striped table-bordered table-hover table-sm">
<thead class="table-dark">
<tr>
<th>#</th>
<th>Name</th>
<th>Age</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>

<td>1</td>



<td>John Doe</td>
<td>25</td>
<td>New York</td>

<ftr>

<tr>
<td>2</td>
<td>Jane Smith</td>
<td>30</td>
<td>Los Angeles</td>

<ftr>

<tr>
<td>3</td>
<td>Michael Brown</td>
<td>35</td>
<td>Chicago</td>

<ftr>

</tbody>
</table>
</div>
Q6. Why is there a need for Exception Handling? Write a code to demonstrate it in PHP.
Ans=> Why is there a need for Exception Handling?

Exception handling is crucial in programming because it allows us to handle errors gracefully, instead
of letting the program crash. It provides a way to:

1. Prevent Program Crashes: It ensures that errors are caught and handled properly, so the
program doesn’t stop unexpectedly.

2. Improve Readability and Maintenance: It separates normal code from error-handling code,
making the program easier to read and maintain.

3. Handle Unexpected Errors: It helps in managing errors that are beyond our control, such as
file not found or database connection failures.

4. Provide Meaningful Error message: It can show meaningful error messages to users,
improving the user experience.

Example Code for Exception Handling in PHP

Here is a simple PHP code demonstrating exception handling:



<?php
$a=10;
$b=0;
try {
if ($b == 0) {
// Throwing an exception if the divisor is zero
throw new Exception("Division by zero is not allowed.");
}
echo($a / $b);
} catch (Exception Se) {
// Catch the exception and display the error message
echo 'Error: ' . Se->getMessage();
}
>
Q7. Create the Laravel project (write the steps for installation, environment setup, configuration)
with route definition that can be redirected to the web application home page.
Ans=>1. Install Laravel
First, ensure you have Composer installed on your machine. Then, follow these steps:
Open a terminal and run the following command to install Laravel via Composer:
composer create-project --prefer-dist laravel/laravel my-laravel-project
Replace my-laravel-project with your desired project name.
2. Set Up the Environment
Navigate to the project folder:
cd my-laravel-project
Laravel uses a .env file for environment variables. You can configure database and app settings here.

Make sure the .env file is present in your project directory. If it's missing, create one by copying from
.env.example:

cp .env.example .env
Configure the app key (run the following command to generate a new app key):

php artisan key:generate



3. Configure the Web Server
You can use Laravel's built-in server for development:
php artisan serve
This will start a development server at http://127.0.0.1:8000.
4. Define Routes
Laravel uses the routes/web.php file for defining web routes.
Open routes/web.php and define a route to redirect to the home page:
Route::get('/', function () {
return view('welcome');
N
This route points to the default welcome.blade.php view, which is located in resources/views.
5. Check the Home Page

After running the server (php artisan serve), visit http://127.0.0.1:8000 in your browser. It should
show the Laravel home page, which is the welcome.blade.php view

Q8. what is version control system? Write its main purpose. Also provide the steps for
inszallatiOfi of any VCS?

Ans=>A Version Control System (VCS) is a tool that helps manage and track changes to files,
documents, or code over time. It allows multiple users to collaborate on a project, ensures that
changes can be tracked and reverted if necessary, and provides an organized history of how a project
evolves.

Main Purpose of VCS:

1. Track Changes: It keeps track of changes made to the files, helping users see what
modifications have been made, by whom, and when.

2. Collaboration: Multiple users can work on the same project simultaneously without
interfering with each other’s work. Conflicts can be resolved.

3. Backup and Restore: VCS maintains a history of changes, so previous versions can be
restored if something goes wrong.

4. Branching and Merging: It allows different versions (branches) of a project to be worked on
separately and later merged into the main version.

Steps for Installing Git (a popular VCS):
1. Download Git:
o Visit the Git website.

o Download the appropriate version for your operating system (Windows, macOS, or
Linux).



2. Install Git:
Windows: Run the downloaded .exe file and follow the installation prompts.
Ensure to check options like "Add Git to your PATH" during installation.
3. Configure Git:
After installation, open a terminal or command prompt and set your name and email:
git config --global user.name "Your Name"
git config --global user.email "your.email@example.com"
4. Verify Installation:
Check if Git was successfully installed by typing the following command:
git --version
This will show the installed Git version, confirming the installation is successful.
5.Start Using Git:
e Create a new Git repository using:
git init
e Or clone an existing repository:

git clone https://github.com/username/repository.git

Q9. How Will you differentiate between ActionResuit and ViewResult? Support your answer
with a basic syntax code.

Ans=> 1. ActionResult: This refers to the result of a controller action. In Laravel, this would typically
be the return value of a controller method that processes a request, which could be a redirect, JSON
response, or any other type of response, depending on the action.

2. ViewResult: This refers to a response that renders a view. In Laravel, you can return a view from a
controller method to render a specific page in the application.

Basic Syntax in Laravel:

ActionResult Example:

public function store(Request Srequest)

{
// Handle storing data or performing an action
Sdata = Srequest->all();

return redirect()->route('home')->with('status’, 'Data successfully saved!');



ViewResult Example:
// ViewResult Example (controller method returning a view)
public function index()
{
Sitems = Item::all(); // Retrieve all items from the database
return view('items.index', compact('items'));

}

Q10. compare fluid and default grid system.

Feature

Definition

Responsiveness

Layout Flexibility

Best Fit/Usage

Scalability

Column Sizing

Design Flexibility

Complexity

Content
Overflow

Control Over
Layout

Fluid Grid System

A grid system where columns and layout adjust

based on screen width, using percentages.

Highly responsive; adapts to various screen

sizes.

Provides flexible layouts that adjust fluidly to

screen sizes.

Ideal for responsive web design, especially for

mobile-first approaches.

Scales automatically with screen size, providing

an adaptive layout.

Columns are sized in percentages, which allows

them to resize based on the viewport.

Offers more dynamic and flexible design, as the

layout changes according to the screen size.

Slightly more complex as it requires
percentage-based calculations and sometimes

additional media queries for refinement.

Less likely to cause content overflow because of

its fluid nature.

Less control over exact column widths because

they are fluid, but can be ma ||, d with

breakpoints.

Default Grid System

A fixed-width grid system with
predefined column sizes, usually in

pixels.

Not responsive by default; needs
custom media queries to adjust for

different devices.

Less flexible; layout stays fixed

unless manually adjusted.

Best for fixed, traditional websites

where layout consistency is required.

Does not scale automatically;
requires custom breakpoints and

adjustments.

Columns are typically sized in pixels,
leading to fixed widths.

More static design; the layout
remains the same regardless of

screen size.

Simpler to implement as it uses fixed

pixel values for layout.

Can cause content overflow if the
viewport is smaller than the fixed
width.

More control over the exact layout,

as column sizes are predefined in

pixels.



Q11. Write the meaning of these commands: git stain* gil log, git branch, git git

cenfig., git restores git init, git pull, git push, git add, git diffi git checkout.

Ans=>Here are the meanings of the commands you've mentioned, corrected and explained:
1. gitstatus:

o Shows the current status of your working directory and staging area. It lists changes
that have been staged, changes that are not staged, and untracked files.

2. gitlog:

o Displays the commit history of the repository, showing a list of commits with details
like commit hash, author, date, and commit message.

3. gitbranch:

o Lists all the branches in your repository and highlights the currently active branch. It
can also be used to create, delete, or rename branches.

4. git config:

o Configures Git settings like user information (name and email), editor, and other
settings. Example: git config --global user.name "Your Name".

5. gitrestore:

o Restores files in the working directory to the state of the last commit, undoing
changes made to tracked files.

6. gitinit:

o Initializes a new Git repository in the current directory, creating a .git subdirectory to
store the repository's configuration and history.

7. gitpull:

o Fetches changes from a remote repository and automatically merges them into the
current branch. It’s a combination of git fetch and git merge.

8. git push:

o Sends your local commits to a remote repository, updating the remote branch with
your changes.

9. gitadd:

o Adds changes (new files, modified files, deleted files) in the working directory to the
staging area, preparing them for commit.

10. git diff:

o Shows the differences between the working directory and the last commit (or
between commits, branches, etc.), highlighting what changes have been made.

11. git checkout:



o

Switches between branches or restores files in the working directory to a previous
state (e.g., from a different branch or commit). It can also be used to create a new

branch from a specific point.

Q11. compare bootstrap 4 with 5.

Here is a comparison of Bootstrap 4 and Bootstrap 5 in a tabular form based on 8 key points:

Feature
jQuery
Dependency

Custom Forms

Grid System

Utility API

Gutters

Bootstrap 4

Bootstrap 4 requires jQuery for some
components like modals, tooltips, and

popovers.

Custom forms are available but with a

limited set of customizations.

The grid system in Bootstrap 4 uses

.col-{breakpoint}-{size} classes.

Bootstrap 4 includes predefined
utility classes but lacks flexibility for

custom utilities.

Cards were introduced in Bootstrap 4

but had limited styles and options.

Bootstrap 4 does not include an

official icon library.

Bootstrap 4 has .row with a default

gutter space for grid columns.

Bootstrap 4 supports Internet
Explorer 10+ and some legacy

browsers.

Bootstrap 5

Bootstrap 5 no longer requires jQuery and is fully
written in vanilla JavaScript.

Bootstrap 5 provides more customizable forms,
including better support for custom checkboxes,
radio buttons, and switches.

In Bootstrap 5, the grid system is extended with

additional breakpoints like xx1 .

Bootstrap 5 introduces a utility API, making it
easier to create custom utility classes.

Bootstrap 5 enhances the card component with

additional options like card groups and overlays.

Bootstrap 5 introduces its own icon library called

“Bootstrap Icons” as a first-party solution.

Bootstrap 5 allows more control over gutter
spacing with the .g-* classes for better

customization.

Bootstrap 5 drops support for Internet Explorer

(IE 10 and 11) and focuses on modern browsers.



