
 Python Laboratory

 SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD

OF THE DEGREE OF

BACHELOR OF TECHNOLOGY

(Information Technology)

SUBMITTED BY: SUBMITTED TO:

Jay Kumar (2203844) Prof. Reema Varma

DEPARTMENT OF INFORMATION TECHNOLOGY

GURU NANAK DEV ENGINEERING COLLEGE LUDHIANA

(An Autonomous College Under UGC ACT)

 Python Practical File

 Name: Raushan Kumar

 CRN:2221139

 URN:2203751

 Branch: IT(B2)

1. The tax calculator program of the case study outputs a floating-point number that might

show more than two digits of precision. Use the round function to modify the program to

display at most two digits of precision in the output number.

print("Name:Raushan kumar\nCRN:2221139\nURN:2203751")

total=int(input("enter your total amount:"))

tax=(3/100)*total

tax1=round(tax)

print("your 3% tax of total amount is:",tax1)

2. You can calculate the surface area of a cube if you know the length of an edge. Write a program

that takes the length of an edge (an integer) as input and prints the cube’s surface area as output.

print("Name:Raushan kumar\nCRN:2221139\nURN:2203751")

edge=int(input("enter the length of an edge:"))

print("the surface area of a cube is:",6*edge*edge)

3. Five Star Retro Video rents VHS tapes and DVDs to the same connoisseurs who like to buy LP

record albums. The store rents new videos for $3.00 a night, and oldies for $2.00 a night. Write a

program that the clerks at Five Star Retro Video can use to calculate the total charge for a

customer’s video rentals. The program should prompt the user for the number of each type of

video and output the total.

print("Name:Raushan kumar\nCRN:2221139\nURN:2203751")

rents_new_video=int(input("enter the store rents new videos:"))

oldies=int(input("enter the oldies:"))

total_rents_new_video=3*rents_new_video

total_oldies=2*oldies

total=total_rents_new_video + total_oldies

print("The total cost for the rentals is:$",total)

4.Write a program that takes the radius of a sphere (a floating-point number) as input and then

outputs the sphere’s diameter, circumference, surface area, and volume.

import math

print("Name:Raushan kumar\nCRN:2221139\nURN:2203751")

radius=float(input("Enter the radius of a sphere:"))

diameter=2*radius

circumference=2*math.pi*radius

sarea=4*math.pi*radius*radius

volume=(4/3)*math.pi*radius*radius*radius

print("The diameter of sphere is:",diameter)

print("The circumference of sphere is:",circumference)

print("The surface area of sphere is:",sarea)

print("The volume of sphere is:",volume)

5.An object’s momentum is its mass multiplied by its velocity. Write a program that accepts an

object’s mass (in kilograms) and velocity (in meters per second) as inputs and then outputs its

momentum.

print("Name:Raushan kumar\nCRN:2221139\nURN:2203751")

mass=int(input("Enter object’s mass in kg:"))

velocity=int(input("Enter object’s velocity in meters per second:"))

momentum=mass*velocity

print("The monemtum of object is:",momentum)

 Methods

6.write a program to differentiate append vs extend method in list.

print("Name:Raushan kumar\nCRN:2221139\nURN:2203751")

list=[1,2,3]

print("before append:",list)

list.append(4)

print("after append:",list)

#n list.append(5,6) -->error not allowed

print("before extend:",list)

list.extend([4,5])

print("after extend:",list)

list2=[6,7]

print("before append:",list)

list.append(list2)

print("after append:",list)

list3=[8,9]

print("before extend:",list)

list.extend(list3)

print("after extend:",list)

7. write a program to demonstrate how to insert element and how to remove element

from a list.

print("Name:Raushan kumar\nCRN:2221139\nURN:2203751")

def insert_element(lst, index, element):

 # lst.insert(element) -->error

 lst.insert(index, element)

 print(f"Element {element} inserted at index {index}")

 print("updated list:",lst)

def remove_element(lst, element):

 lst.remove(element)

 print(f"Element {element} removed from the list.")

 print("updated list:",lst)

mylist = [1, 2, 3, 4, 5]

insert_element(mylist, 2, 10)

remove_element(mylist, 4)

mylist.pop()

mylist.pop(2)#by index

mylist.remove(2)# by element

print("after pop and remove:",mylist)

8.write a program to demonstrate count , index ,reverse ,sort ,min ,max function in list.

print("Name:Raushan kumar\nCRN:2221139\nURN:2203751")

my_list = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5]

print("Original List:", my_list)

Count function: Count occurrences of a specific element

count_of_5 = my_list.count(5)

length=len(my_list)

print("length of my_list is:", length)

print("Count of 5:", count_of_5)

Index function: Find the index of the first occurrence of a specific element

index_of_9 = my_list.index(9)

print("Index of 2:", index_of_9)

Index function: Find the index of the first occurrence of a element in between sub list

index_of_2 = my_list.index(2,4,8)

print("Index of 2:", index_of_2)

Reverse function: Reverse the elements of the list

my_list.reverse()

print("Reversed List:", my_list)

Sort function: Sort the elements of the list in ascending order

my_list.sort()

print("Sorted List:", my_list)

Sort function: Sort the elements of the list in decending order

my_list.sort(reverse=True)

print("Sorted List:", my_list)

Min function: Find the minimum element in the list

min_element = min(my_list)

print("Minimum Element:", min_element)

Max function: Find the maximum element in the list

max_element = max(my_list)

print("Maximum Element:", max_element)

PRACTICAL NO.5

Design with FuncƟons

1.A list is sorted in ascending order if it is empty or each item except the last
one is less than or equal to its successor. Define a predicate isSorted that
expects a list as an argument and returns True if the list is sorted, or returns
False otherwise.
CODE:

def isSorted(lst):

 if len(lst) <= 1:

 return True

 for i in range(len(lst) - 1):

 if lst[i] > lst[i + 1]:

 return False

 return True

Test cases

print(isSorted([])) # Output: True

print(isSorted([1])) # Output: True

print(isSorted([1, 2, 3])) # Output: True

print(isSorted([3, 2, 1])) # Output: False

print(isSorted([1, 3, 2])) # Output: False

OUTPUT:

2.Write a recursive function that expects a pathname as an argument. The
pathname can be either the name of a file or the name of a directory. If the
pathname refers to a file, its name is displayed, followed by its contents.
Otherwise, if the pathname refers to a directory, the function is applied to
each name in the directory. Test this function in a new program.
CODE:

import os

def display_contents(path):

 if os.path.isfile(path):

 with open(path, 'r') as file:

 print(f"File: {os.path.basename(path)}")

 print("Contents:")

 print(file.read())

 elif os.path.isdir(path):

 print(f"Directory: {os.path.basename(path)}")

 print("Contents:")

 for item in os.listdir(path):

 display_contents(os.path.join(path, item))

Test

display_contents('example_directory')

OUTPUT:

3.Write a program that computes and prints the average of the numbers in a
text file. You should make use of two higher-order functions to simplify the
design.
CODE:
def read_numbers(filename):
 with open(filename, 'r') as file:
 numbers = [float(line.strip()) for line in file]
 return numbers

def compute_average(numbers):
 if not numbers:
 return 0
 total = sum(numbers)

 return total / len(numbers)

Main function
def main():
 filename = 'numbers.txt'
 numbers = read_numbers(filename)
 average = compute_average(numbers)
 print("Average of the numbers:", average)

Test
main()

OUTPUT:

PRACTICAL NO.6

Design with Classes

1.Add three methods to the Student class that compare two Student objects.
One method should test for equality. A second method should test for less
than. The third method should test for greater than or equal to. In each case,
the method returns the result of the comparison of the two students’ names.
Include a main function that tests all of the comparison operators.

C0DE:

class Student:

 def __init__(self, name):

 self.name = name

 def __eq__(self, other):

 return self.name == other.name

 def __lt__(self, other):

 return self.name < other.name

 def __ge__(self, other):

 return self.name >= other.name

def main():

 # Creating student objects

 student1 = Student("Alice")

 student2 = Student("Bob")

 student3 = Student("Charlie")

 # Testing equality

 print("Testing equality:")

 print("student1 == student2:", student1 == student2)

 print("student1 == student1:", student1 == student1)

 # Testing less than

 print("\nTesting less than:")

 print("student1 < student2:", student1 < student2)

 print("student2 < student1:", student2 < student1)

 print("student1 < student3:", student1 < student3)

 # Testing greater than or equal to

 print("\nTesting greater than or equal to:")

 print("student1 >= student2:", student1 >= student2)

 print("student2 >= student1:", student2 >= student1)

 print("student1 >= student3:", student1 >= student3)

if __name__ == "__main__":

 main()

OUTPUT:

2. This project assumes that you have completed Project 1.
Place several Student objects into a list and shuffle it. Then run
the sort method with this list and display all of the students’
informaƟon.

CODE:

import random

class Student:

 def __init__(self, name, age, grade):

 self.name = name

 self.age = age

 self.grade = grade

 def __str__(self):

 return f"Name: {self.name}, Age: {self.age}, Grade: {self.grade}"

def main():

 # Creating a list of Student objects

 students = [

 Student("Alice", 20, "A"),

 Student("Bob", 22, "B"),

 Student("Charlie", 21, "C"),

 Student("David", 19, "B"),

 Student("Eva", 20, "A")

]

 # Shuffling the list of students

 random.shuffle(students)

 # Sorting the list of students by their names

 students.sort(key=lambda student: student.name)

 # Displaying all students' information

 for student in students:

 print(student)

if __name__ == "__main__":

 main()

OUTPUT:

3.The str method of the Bank class returns a string containing the accounts in
random order. Design and implement a change that causes the accounts to be
placed in the string by order of name. (Hint: You will also have to define some
methods in the SavingsAccount class.)

CODE:
class SavingsAccount:
 def __init__(self, account_number, holder_name, balance):
 self.account_number = account_number
 self.holder_name = holder_name
 self.balance = balance

 def __str__(self):
 return f"Account Number: {self.account_number}, Holder Name:
{self.holder_name}, Balance: {self.balance}"

 def __lt__(self, other):
 return self.holder_name < other.holder_name

 def __eq__(self, other):
 return self.holder_name == other.holder_name

class Bank:
 def __init__(self, accounts):
 self.accounts = accounts

 def __str__(self):
 sorted_accounts = sorted(self.accounts, key=lambda acc: acc.holder_name)
 return '\n'.join(str(acc) for acc in sorted_accounts)

Testing
if __name__ == "__main__":
 account1 = SavingsAccount(12345, "Alice", 1000)
 account2 = SavingsAccount(54321, "Bob", 2000)
 account3 = SavingsAccount(98765, "Charlie", 1500)

 bank = Bank([account1, account2, account3])
 print(bank)

OUTPUT:

