$$F = \frac{S_1^2}{c^2} = \frac{13.5}{11.3} = 1.195$$ $F = \frac{S_1^2}{S_2^2} = \frac{13 \cdot 5}{11 \cdot 3} = 1 \cdot 195$ For $v_1 = 8 \cdot 1 = 7$ and $v_2 = 10 \cdot 1 = 9$, $F_{05} = 3 \cdot 29$ The calculated value of F is less than the table value. Hence, we accept the null hypothesis and conclude that the difference in the variances of two samples is not significant at 5% level. Example 22. Two random samples drawn from normal populations are: | Sample I: | 20 | 16 | 26 | 27 | 23 | 22 | 18 | 24 | 25 | 10 | | |-------------|----|----|----|----|----|----|----|----|----|----|---| | Sample II : | 27 | 33 | 42 | 35 | 32 | 34 | 38 | 28 | 41 | 19 | - | Obtain estimates of the variances of the two populations and test whether two populations have the same variances. Solution. Let us take the hypothesis that two populations have the same variance i_{e_n} $H_0: \sigma_1^2 = \sigma_2^2 = \sigma_0^2$ | Sample I | $(X_1 - \overline{X}_1)$ $\overline{X}_1 = 22$ | $(X_{1} - \overline{X}_{1})^{2}$ | Sample II
X ₂ | $(X_2 - \overline{X}_2)$ $\overline{X}_2 = 35$ | $(X_2-\overline{X}_2)^2$ | |-------------------------------|--|---|-------------------------------|--|---| | 20 | - 2 | 4 | 27 | - 8 | 64 | | 16 | - 6 | 36 | 33 | -2 | 4 | | 26 | + 4 | 16 | 42 | +7 | 49 | | 27 | +5 | 25 | 35 | 0 | 0 | | 23 | +1 | 1 = | 32 | - 3 | 9 | | 22 | 0 | 0 | 34 | -1 | 1 | | 18 | - 4 | 16 | 38 | + 3 | 9 | | 24 | + 2 | 4 | 28 | -7 | 49 | | 25 | + 3 | 9 | 41 | + 6 | 36 | | 19 | - 3 | 9 | 43 | + 8 | 64 | | | (a) | | 30 | -5 | -25 | | | | | 37 | +2- | 4 | | $\Sigma X_1 = 220$ $n_1 = 10$ | | $\Sigma (X_1 - \overline{X}_1)^2$ = 120 | $\Sigma X_2 = 420$ $n_2 = 12$ | p Incare | $\Sigma (X_2 - \overline{X}_2)^2$ $= 314$ | $$\overline{X}_1 = \frac{\Sigma X_1}{n_1} = \frac{220}{10} = 22; \qquad \overline{X}_2 = \frac{\Sigma X_2}{n_2} = \frac{420}{12} = 35$$ $$S_1^2 = \frac{\Sigma (X_1 - \overline{X}_1)^2}{n_1 - 1} = \frac{120}{10 - 1} = \frac{129}{9} = 13 \cdot 33$$ $$S_2^2 = \frac{\Sigma (X_2 - \overline{X}_2)^2}{n_2 - 1} = \frac{314}{12 - 1} = \frac{314}{11} = 28 \cdot 545$$ st. we have Applying F-test, we have Tests of Hypothesis – Small Sample Tests $$F = \frac{S_2^2}{S_1^2} = \frac{28.545}{13.33} = 2.14$$ where $S_2^2 > S_1^2$ For $v_1 = 11$ and $v_2 = 9$, $F_{05} = 3 \cdot 11$ Since, the calculated value of F is less than the table value, the null hypothesis is accepted and hence it may be concluded that the two populations have the same variance. The following data relate to a random sample of Government employees in two states of Indian Union: Example 23, | Sample size : | State I | State II | |---------------------------|---------|----------| | Mean monthly income (Rs.) | 16 | 25 | | Sample variance | 440 | 460 | | | 40 | 40 | In the light of the data, test the hypothesis that the varainces of two populations are equal. Let us take the null hypothesis that the variances of the two populations are equal Solution. i.e., $H_0: \sigma_1^2 = \sigma_2^2$ We are given: $$n_1 = 16$$ $s_1^2 = 40$ $$n_2 = 25$$ $s_2^2 = 42$ $$S_1^2 = \frac{n_1}{n_1 - 1} \cdot s_1^2 = \frac{16}{16 - 1} \times 40 = \frac{16}{15} \times 40 = \frac{640}{15} = 42 \cdot 67 \times 62$$ $$S_2^2 = \frac{n_2}{n_2 - 1} \cdot s_2^2 = \frac{25}{25 - 1} \times 42 = \frac{25}{24} \times 42 = \frac{1050}{24} = 43 \cdot 75$$ $$F = \frac{43 \cdot 75}{42 \cdot 67} = 1 \cdot 025 \qquad \text{where, } S_2^2 > S_1^2$$ For $v_1 = 24$ and $v_2 = 15$. For $v_3 = 24$ and $v_3 = 15$. Example 24. For $v_1 = 24$, and $v_2 = 15$, $F_{05} = 2.29$ Since, the calculated value of F is less than the table value of F, we accept the null hypothesis and hence it may be concluded that the variances of two populations are equal. Two independent samples of 8 and 7 items respectively had the following | values of variable | weight | in gran | s): | | | | | _ | |--------------------|--------|---------|-----|----|----|---|----|----| | Sample I: | 9 | 11 | 13 | 11 | 15 | 9 | 12 | 14 | | Sample II . | 10 | 10 | 10 | 14 | 9 | 8 | 10 | | Do the two estimates of population variance differ significantly? Solution. Let us take the null hypothesis that the two populations have the same variance i.e., $H_0: \sigma_1^2 = \sigma_2^2$. Tests of Hypothesis - Small Sample | | nple I | Sam | ple II | |-----------------------------|-----------------------------|-------------------|----------------------| | Sar | X ₁ ² | X ₂ | X2 | | X_1 | 81 | 10 | - | | 9 | 121 | 12 | 100 | | 11 | 169 | 10 | 144 | | 13 | 121 | 14 | 100 | | 11 | 225 | 9 | 196 | | 15 | 81 | 8 | 81
64 | | 9 | 144 | 10 | 100 | | 12
14 | 196 | | 100 | | | $\Sigma X_1^2 = 1138$ | $\Sigma X_2 = 73$ | $\Sigma X_2^2 = 785$ | | $\Sigma X_1 = 94$ $n_1 = 8$ | | $n_2 = 7$ | | $$\overline{X}_1 = \frac{\Sigma X_1}{n_1} = \frac{94}{8} = 11.75;$$ $\overline{X}_2 = \frac{X_2}{n_2} = \frac{73}{7} = 10.43$ Since, the actual means are in fractions, we make use of original values. Thus, $$S_1^2 = \frac{1}{n_1 - 1} \left[\Sigma X_1^2 - \frac{(\Sigma X_1)^2}{n_1} \right] = \frac{1}{8 - 1} \left[1138 - \frac{(94)^2}{8} \right] = \frac{33 \cdot 5}{7} = 4 \cdot 78$$ $$S_2^2 = \frac{1}{n_2 - 1} \left[\Sigma X_2^2 - \frac{(\Sigma X_2)^2}{n_2} \right] = \frac{1}{7 - 1} \left[785 - \frac{(73)^2}{7} \right] = \frac{23 \cdot 7}{6} = 3 \cdot 95$$ Applying F-test, we have : $F = \frac{4.78}{3.95}$ $$F = \frac{4.78}{3.95} = 1.21$$ For v_1 =7 and v_2 =6, F_{05} =4·21 Since, the calculated value of F is less than the table value of F, we accept the null hypothesis and it may be concluded that the two estimates of population variances do not differ significantly. #### IN IMPORTANT TYPICAL EXAMPLE xample 25. Can the following two samples be regarded as coming from the same normal | population ? | | | 1 (to 19) | |--------------|------|-------------|---------------------------------------| | Sample | Size | Sample mean | Sum of squares of deviation from mean | | 1 | 10 | 12 | 120 | | 2 | . 12 | 15 | 314 | lution. To test if two independent samples have been drawn from the same normal population, we have the same and (ii) the population, we have to test (i) the equality of population means, and (ii) the equality of population variances. Equality of means will be Equality of population variances. Equality of means will be tested by applying t-test and equality of variance will be tested by F-test. Since, t-test assumes $\sigma_1^2 = \sigma_2^2$, we first apply F-test and then t-lest. Set up H ...2 2 F-test: Set up $$H_0: \sigma_1^2 = \sigma_2^2$$ Tesls of Hypothesis – Small Sample Tests We are given: $$n_1 = 10$$, $\Sigma (X_1 - \overline{X}_2)^2 = 314$ $$S_1^2 = \frac{\Sigma (X_1 - \overline{X}_1)^2}{n_1 - 1} = \frac{120}{10 - 1} = \frac{120}{9} = 13 \cdot 33$$ $$S_2^2 = \frac{\Sigma (X_2 - \overline{X}_2)^2}{n_2 - 1} = \frac{314}{12 - 1} = \frac{314}{11} = 28.55$$ Applying F-test, $$F = \frac{S_2^2}{S_1^2} = \frac{28.55}{13.33} = 2.14$$ For $v_1=11-1=10$ and $v_2=10-1=9$, $F_{05}=3\cdot14$ The calculated values of F is less than the table value. Hence, we accept the null significant at 5% level. Since, $\sigma_1^2 = \sigma_2^2$, we can now apply *t*-test for testing $H_0: \mu_1 = \mu_2$ Aplying t-test, we have $$t = \frac{\overline{X}_1 - \overline{X}_2}{S} \sqrt{\frac{n_1 n_2}{n_1 + n_2}}$$ $$= \frac{12 - 15}{4 \cdot 65} \times \sqrt{\frac{10 \times 12}{10 + 12}} = 1.506$$ Degrees of freedom (v) = $n_1 + n_2 - 2 = 10 + 12 - 2 = 20$ Table value of t for 20 d.f. at 5% level of signficance = 2.086. Since, the calculated value of t is less the table value, we accept the null hypothesis and conclude that the difference in means is not significant. Hence, we may regard that the given samples to have been drawn from same population. # EXERCISE - 6 ^{1.} Two samples of sizes 9 and 8 give the sum of squares of deviations from their respective means equal to 160 and 91 inches squares. Calculate the value of F and say whether it is significant or not at 5% level of significance? (Given F_{05} for 8 and 7 d.f = 3·73) Two samples of sizes 9 and 8 give the sum of squares of deviations from their respective means equal to 160 and 91 inches squares. Can they be regarded as drawn from the same normal population at α = 05? [Ans. F = 1.54, the samples can be regarded as drawn from the same normal population.] samples can be regarded as drawn from the same normal population Two random samples drawn from normal populations are: 66 67 75 76 82 84 88 90 92 Sample 1: 66 07 74 78 82 85 87 92 93 95 Sample II: Sample II: 09 97 Obtain estimates of the variances of the two populations and test whether the two populations have the same variances. (Given $F = 3 \cdot 35$ at 5% level for $v_1 = 10$ and $v_2 = 8$) [Ans. $F = 1 \cdot 414$, the two populations have the same variance.] For a random sample of 10 pigs fed on diet A, the increase in weight in pounds in certain control of the property propert periods were: 10, 6, 16, 17, 13, 12, 8, 14, 15, 9 For another random sample of 12 pigs fed on diet B, the increase in weight in the same period were: 7, 13, 22, 15, 12, 14, 18, 8, 21, 23, 10, 17 7, 13, 22, 15, 12, 14, 18, 8, 21, 23, 10, 17 Test whether both the samples come from population having same variance. (Given: F₀₅ for v₂ = 9 is 3-112). [Ans. F = 2·14, samples come from population having same variance] 4. It is known that the mean diameters of rivels produced by two firms A and B are practically the same but standard deviations differ. For 22 rivels produced by firm A, the standard deviation is 3·8 mm. Compute the statistic you would use to test whether the product of firm A has the same variability as those of firm B. firm A has the same variability as those of firm B. [Ans. F = 1.748, the two populations have the same variance] In a lest given to two groups of students drawn from two normal populations,
the marks obtained were as follows: | Group A: | 18 | 20 | 36 | 50 | 49 | 36 | 34 | 39 | 4 | |----------|----|----|----|------|----|----|----|----|---| | Group B: | 29 | 28 | 26 | 35 - | 30 | 44 | 46 | | | Examine at 5% level, whether the two populations have the same variance. [Ans. F = 2.103, populations have the same variances] Two sets of random samples drawn from normal population are given below. Obtain the estimates of the variances of the two populations and test whether the two populations have the same variance. Use F-test. | Tanne rarie | aice. O | se r-i | est. | | | | | | 100 | | | 07 | |-------------|---------|--------|------|----|----|----|----|----|-----|----|----|-----| | Sample I : | 20 | 16 | 26 | 27 | 23 | 22 | 18 | 24 | 25 | 19 | 30 | 3/_ | | Sample II : | 27 | 33 | 42 | 35 | 32 | 34 | 38 | 28 | 41 | 43 | | | (Table value of F for v_1 = 11 and v_2 = 9 at 5% level = 3 · 112) (lans. F=2.142, population have the same variance) are the time the strength of two types of steel wire is to compared. Given a sample of 10 observations of type A wire yielding a variance of 100.4 and a sample of 12 observations of type B wire yielding a variance of 15.5, test the hypothesis that the two populations have equal variances. observations or type bewine yielding a variance oppulations have equal variances. [Ans. F = 1.0625, population have the same variance] 18th of Hypothesis – Small Sample Tests 119 of the two normal populations. The summary statistics are: statistics are: $x_1 = 8$, $\Sigma(X_1 - \overline{X}_1)^2 = 84.4$ inches cs are : $n_1 = 8$, $\Sigma (X_1 - \overline{X}_1)^2 = 84.4 \text{ inches}$ $n_2 = 13$, $\Sigma (X_2 - \overline{X}_2)^2 = 102.6$ inches $n_2 = 13$, $2(N_2)$ 2. In the light of the data, test whether the two variances differ significantly. In the light of t Sample mean Sample Sum of squares of deviation from mean 15 [Hints: Use F-test; $$F = \frac{S_1^2}{S_2^2} = 1.019$$ and t-test for $H_0: \mu_1 = \mu_2, |t| = 0.742$] [Ans. The samples are drawn from the same normal population] 10. The means of two random samples of size 9 and 7 are 196. 42 and 198. 82 respectively. The sum of the squares of the deviations from the mean are 26-94 and 18-73 respectively. Can the samples by considered to have been drawn from the same normal population? [Ans. F=1.078, | f|=2-634, Reject H₀] 11. The following data relate to a random sample of Government employees in two states of Indian Union. First carry out a test of hypothesis that the variance of the two populations are equal. In the light of the result of the above test, carry out a test of hypothesis that the means of two populations are equal: | | State I | State II | |--|---------|----------| | Sample Size | 16 | 25 | | Mean monthly income of sample employees (in days.) | .440 | 460 | | Sample Variance | 40 | 42 | [Ans. F=1.025, Accept H_0 , t=9.72, Accept H_0] ### MISCELLANEOUS SOLVED EXAMPLES Example 26. Prices of shares of a company on different days in a month were found to be: 66, 65, 69, 70, 69, 71, 70, 63, 64 and 68 Discuss whether the mean price of the shares should be 65. (The table value of t for 9 degree of freedom at 5% level is $2 \cdot 262$) Let us take the hypothesis that the mean price of the share is 65, i.e., | us to | ike the hypothesis tha | | (⇒Two tailed test) | |-------|------------------------|--------------------|--------------------| | | $H_0: \mu = 65$ | | d^2 | | | X | A = 67 $d = X - A$ | 1 | | 9- | 66 | -1 | 4 | | | 65 | -2 | 4 | | | 69 | + 2 | | Tests of Hypothesis - Small Sample | 70
69
71
70
63
64 | + 3
+ 2
+ 4
+ 3
- 4
- 3 | 9
4
16
9
16
9 | |----------------------------------|--|------------------------------| | $n = 10, \Sigma X = 675$ | $\Sigma d = 5$ | $\Sigma d^2 = 73$ | $A = \frac{1}{n} = \frac{1}{10}$ or $\frac{1}{10}$ Since, the actual means of X is in fraction, we should take deviations from assumed mean to simplify the calculations. with the calculations. $$\frac{1}{d} = \frac{\sum d}{n} = \frac{5}{10} = 0.5$$ $$S = \sqrt{\frac{\sum d^2 - n(\vec{d})^2}{n - 1}} = \sqrt{\frac{73 - 10(0.5)^2}{9}} = 2.799$$ Applying t-test, $$t = \frac{\overline{X} - \mu}{S} \cdot \sqrt{n} = \frac{67 \cdot 5 - 65}{2 \cdot 799} \times \sqrt{10} = \frac{2 \cdot 5 \times 3 \cdot 162}{2 \cdot 799} = 2 \cdot 82$$ Degrees of freedom (v) = n-1=10-1=9 For v = 9, $t_{0.05}$ for two tailed test = 2.262 Since, the calculated value of t is greater than the table value, we reject the null hypothesis and therefore, conclude that mean price of the shares could not be equal to Rs. 65. Example 27. To compare the price of a certain commodity in two towns, ten shops were selected at random in each town. The following figures give the price found. 56 44 60 59 56 63 Town A: 61 62 63 56 58 57 54 55 54 47 59 51 Test whether the average price can be said to be the same in two towns. Let us take the hypothesis that there is no difference in the average price of two towns i.e. H. ... Solution. towns: i.e., $H_0: \mu_1 = \mu_2$ and $H_1: \mu_1 \neq \mu_2$ (\Rightarrow Two tailed test) | | -0.41 k2 m | .a | | T | $(X_2-\overline{X}_2)$ | |-------|------------------------|----------------------------|------|-----------|------------------------| | X_1 | $X_1 - \overline{X}_2$ | $(X_1 - \overline{X}_1)^2$ | X 2 | X^2-X_2 | 1 | | 61 | 3 | 9 | · 55 | 71 | 4 | | 62 | 4 | 16 | 54 | -2 | 81 | | 56 | -2 | 4 | 47 | -9 | 9 | | 63 | 5 | 25 | . 59 | 3 | 25 | | 56 | - 2 | 4 | , 51 | -5 | 25 | | 63 | 5 | 25 | 61 | | | | , rivino | othesis – Small | Sample Te | ests | | | | |---------------|-------------------------------|-----------|---|--------------------|----|---| | Tests of Fife | 59 | 1 | 1 | | | 121 | | | 56 | - 2 | 4 | 57 | 1 | 1 | | | 44 | -14 | 196 | 54
64 | -2 | 4 | | | 60 | 2 | 4 | 58 | 8 | 64 | | | $\Sigma X_1 = 580$ $n_1 = 10$ | 0 | $\Sigma (X_1 - \overline{X}_1)^2$ = 288 | $\Sigma X_2 = 560$ | 0 | $\Sigma (X_{-} - \overline{Y})^{2}$ | | | | | 200 | $n_2 = 10$ | | $\Sigma (X_2 - \overline{X}_2)^2$ = 216 | $$\begin{split} \overline{X}_1 &= \frac{\Sigma X_1}{n_1} = \frac{580}{10} = 58, & \overline{X}_2 = \frac{\Sigma X_2}{n_2} = \frac{560}{10} = 56 \\ S &= \sqrt{\frac{\Sigma (X_1 - \overline{X}_1)^2 + \Sigma (X_2 - \overline{X}_2)^2}{n_1 + n_2 - 2}} \\ &= \sqrt{\frac{288 + 216}{10 + 10 - 2}} = \sqrt{\frac{504}{18}} = \sqrt{28} = 5 \cdot 29 \end{split}$$ Applying t-test, $$t = \frac{\overline{X}_1 - \overline{X}_2}{S} \cdot \sqrt{\frac{n_1 n_2}{n_1 + n_2}} = \frac{58 - 56}{5 \cdot 29} \sqrt{\frac{10 \times 10}{10 + 10}} = \frac{2 \times 2 \cdot 236}{5 \cdot 29} = 0.845$$ Degrees of freedom = $v = n_1 + n_2 - 2 = 10 + 10 - 2 = 18$ For v = 18, $t_{0.05} = 2.101$ Since, the calculated value of t is less than the table value, we accept the null hypothesis and conclude that there is no significant difference in the mean price. An I.Q. test was administrated to 5 officers before and after they were trained. The results are given below: Example 28. | 1 | Ш | III | IV | V | |-----|------------|-----|-------------|-----------------| | 110 | 120 | 123 | 132 | 125 | | 120 | 118 | 125 | 136 | 121 | | | 110
120 | 110 | 110 120 123 | 110 120 123 132 | Test whether there is any change in I.Q. after the training programme. [For v = 4, $t_{0.01} = 4.6$] Let us take the hypothesis is that there is no change in I.Q. after the training programme. i.e., $H_0: \bar{d}=0$ or $\mu_2-\mu_1=0$ and $H_1: \bar{d}>0$ or $\mu_2-\mu_1>0$ | One tailed test) | | | ,2 | |------------------|---------------|-----------------|--------------------| | I.Q. Before | I.Q. After II | d (II – I) | 100 | | 110 | 120 | + 10
- 2 | 4 | | 120 | 118 | . 2 | 4 | | 123 | 125 | + 4 | 16 | | 132 | 136 | -4 | 16 | | 125 | 121 | $\Sigma d = 10$ | $\Sigma d^2 = 140$ | | n=5 | | | | $$\begin{split} & \frac{\sum d}{n} = \frac{10}{5} = 2 \\ & S = \sqrt{\frac{\sum d^2 - n(\bar{d})^2}{n - 1}} \\ & = \sqrt{\frac{140 - 5(2)^2}{5 - 1}} = \sqrt{\frac{140 - 20}{4}} = \sqrt{\frac{120}{4}} = \sqrt{30} = 5.477 \end{split}$$ Applying I-test, For v=4, $t_{0.01}=4\cdot6$ The calculated value of t is less than the table value. We accept the null hypothesis and hence there is no change in I.Q. after the raining programme. Example 29. Two types of batteries are tested for their length of life and the following data are obtained: | obtained: | No. of samples | Mean life in hours | Variance | |-----------|----------------|--------------------|----------| | Type A: | 9 | 600 | 121 | | Type B: | 8 | 640 | 144 | Is there a significant difference in two mean ? Value of t for 15 degrees of freedom at 5% level is 2·131. Solution. Let us take the hypothesis that there is no significant difference in mean life of two Let us take the hypothesis that there is no significant difference in mean types of batteries i.e., $H_0: \mu_1 = \mu_2$ and $H_1: \mu_1 \neq \mu_2$ (\Rightarrow Two tailed test) Given: $n_1 = 9$, $\overline{X}_1 = 600$, $s_1^2 = 121$ $$\begin{split} n_2 = 8, \ \overline{X}_2 = 640, \ s_2^2 = 144 \\ S = \sqrt{\frac{(n_1 - 1) \, s_1^2 + (n_2 - 1) \, s_2^2}{n_1 + n_2 - 2}} \\ &= \sqrt{\frac{(9 - 1) \times 121 + (8 - 1) \times 144}{9 + 8 - 2}} = \sqrt{\frac{968 + 1008}{15}} \\ &= \sqrt{\frac{1976}{15}} = \sqrt{131 \cdot 73} = 11 \cdot 47 \end{split}$$ Applying I-test, $$\begin{split} t &= \frac{|\overline{X}_1 - \overline{X}_2|}{5} \cdot \sqrt{\frac{n_1 n_2}{n_1 + n_2}} \\ &= \frac{|600 - 640|}{11 \cdot 47} \times \sqrt[5]{\frac{5/2 \cdot 8}{9 + 8}} \\ &= \frac{40}{11 \cdot 47} \times 2 \cdot 057 = \frac{82 \cdot 28}{11 \cdot 47} = 7 \cdot 17 \end{split}$$ fe^{ls of} Hypothesis – Small Sample Tests Degrees of freedom = $v = n_1 + n_2 - 2 = 9 + 8 - 2 = 15$ Degrees of freedom = $v = n_1 + n_2 - 2 = 9 + 8 - 2 = 15$ For v = 15, $t_{0.05} = 2 \cdot 131$ Since, the calculated value of t
is greater than the lable value, we reject H_0 and hence, the difference in the means is significant. 123 Two types of drugs were used on 5 and 7 patients for reducing their weights. Drug A was imported and drug B indigenous. The decreases in the weights using drugs for six months are as follows: | Drug A: | 10 12 44 | The Weigh | |---------|----------|-----------| | Drug B: | 8 9 10 | 11 14 | | | 8 9 12 | 14 15 | Is there a significant difference in the efficacy of the two drugs? If not, which drug should you buy. (For v = 10, $t_{0.05} = 2.223$) Let us take the hypothesis that there is no significant difference in the efficacy of two drugs, i.e., $H_0: \mu_1 = \mu_2$ and $H_1: \mu_1 \neq \mu_2$ (\Rightarrow Two tailed test). | . X ₁ | $\overline{X}_1 = 12$ | $(X_1 - \overline{X}_1)^2$ | X ₂ | \overline{X}_2-11 | T | |-----------------------------|-----------------------|--|--|---------------------|---| | 10
12 | - 2
0 | 4 0 | 8 9 | -3 | $(X_2 - \overline{X}_2)^2$ | | 13
11
14 | +1
-1
+2 | 1
1
4 | 12
14
15 | +1
+3
+4 | 1
9
16 | | $\Sigma X_1 = 60$ $n_1 = 5$ | | $\Sigma (X_1 - \overline{X}_1)^2$ = 10 | $ \begin{array}{c} 10 \\ 9 \\ \Sigma X_2 = 77 \\ n_2 = 7 \end{array} $ | -1
+2 | $ \begin{array}{c} 1\\ 4\\ -\Sigma(X_2 - \overline{X}_2)^2\\ = 44 \end{array} $ | $$\overline{X}_1 = \frac{\Sigma X_1}{n_1} = \frac{60}{5} = 12, \qquad \overline{X}_2 = \frac{\Sigma X_2}{n_2} = \frac{77}{7} = 11$$ $$S = \sqrt{\frac{\Sigma (X_1 - \overline{X}_1)^2 + \Sigma (X_2 - \overline{X}_2)^2}{n_1 + n_2 - 2}} = \sqrt{\frac{10 + 44}{5 + 7 - 2}} = \sqrt{\frac{54}{10}} = \sqrt{5 \cdot 4} = 2 \cdot 324$$ $$t = \frac{\overline{X}_1 - \overline{X}_2}{S} \cdot \sqrt{\frac{n_1 n_2}{n_1 + n_2}}$$ $$= \frac{12 - 11}{2 \cdot 324} \cdot \sqrt{\frac{5 \times 7}{5 + 7}}$$ $$= \frac{1 \times 1 \cdot 708}{2 \cdot 324} = \frac{1 \cdot 708}{2 \cdot 324} = 0 \cdot 735$$ Degrees of freedom (v) = $n_1 + n_2 - 2 = 5 + 7 - 2 = 10$ regrees of freedom $(v) = n_1 + n_2 - 2 = 5 + t - 2 - 10$. For v = 10, $t_{0.05} = 2 \cdot 228$. Since, the calculated value of t is less than the table value, we accept H_0 and conclude that there is no significant difference in the efficacy of two drugs. Since, drug B is indigenous and there is no difference in the efficacy of imported and indigenous drug. We should buy indigenous drug B. indigenous drug. Example 31. indigenous drug. He sain in weights (lbs) of cows fed on two diets X and Y; Below are given the gain in weight (lbs) Cain Weight (lbs) | | 25 | 32 | 30 | 32 | 24 | 14 | 32 | | |---------|----|----|----|----|----|----|----|-------| | Diet X: | 24 | 34 | 22 | 30 | 42 | 31 | 40 | 30 00 | Test at 5% level, whether the two diets differ as regards their effect on mean increase in weight (Table value of t for 15 degrees of freedom at 5% = 2.131). Solution. Let us take the null hypothesis that diet X and Y do not differ significantly with regard to their effect on increase in weight, i.e., $H_0: \mu_1 = \mu_2$ and $H_1: \mu_1 \neq \mu_2$ | ⇒ Two tai | leu iesi) | | | | | |-------------------|---|-------------------------------|-----------------------------|--|-------------------------------------| | X | $\overline{X} = 27$
$X - \overline{X}$ | $(X-\overline{X})^2$ | Y | $\overline{Y} = 32$ $Y - \overline{Y}$ | $(Y - \overline{Y})^2$ | | 25 | - 2 | 4 | 24 | - 8 | 64 | | 32 | + 5 | 25 | 34 | + 2 | 4 | | 30 | + 3 | 9 | 22 | -10 | 100 | | 32 | + 5 | 25 | 30 | -2 | 4 | | 24 | - 3 | 9 | 42 | + 10 | 100 | | 14 | -13 | 169 | 31 | -1 | 1 | | 32 | + 5 | 25 | 40 | + 8 | 64 | | <i>D</i> L | | | 30 | - 2 | 4 | | | | 4 . | 32 | 0 | 0 | | | | 100 | 35 | + 3 | 9 | | $\Sigma X = 189$ | $\Sigma (X - \overline{X}) = 0$ | $\Sigma (X - \overline{X})^2$ | $\Sigma Y = 320$ $n_2 = 10$ | $\Sigma\left(Y-\overline{Y}\right)=0$ | $\Sigma (Y - \overline{Y})^2 = 350$ | $$\frac{-7}{X} = \frac{2X}{n_1} = \frac{189}{7} = 27, \qquad \frac{2Y}{n_2} = \frac{27}{10} = 32$$ $$S = \sqrt{\frac{2(X - \overline{X})^2 + \Sigma(Y - \overline{Y})^2}{n_1 + n_2 - 2}} = \sqrt{\frac{266 + 350}{7 + 10 - 2}} = \sqrt{\frac{616}{15}} = \sqrt{41 \cdot 066} = 6 \cdot 40$$ Tipe Lebest Applying t-test, $$|t| = \frac{X - Y}{S} \cdot \sqrt{\frac{n_1 n_2}{n_1 + n_2}} = \frac{|27 - 32|}{6 \cdot 40} \times \sqrt{\frac{7 \times 10}{7 + 10}}$$ $$= \frac{5}{6 \cdot 40} \times 2 \cdot 029 = \frac{10 \cdot 1459}{6 \cdot 40} = 1 \cdot 58$$ Degrees of freedom $= v = n_1 + n_2 - 2 = 7 + 10 - 2 = 15$ For $v = 15$, $t_{0.05}$ for two tailed test $= 2 \cdot 131$ Since, the calculated value of t is less than the table value, we accept the pull hypothesis and conclude that diets X and Y do not differ significantly as regards their effects on increase in weight $\frac{1}{2}$. their effects on increase in weight is concerned. _{fels of Hypothesis} – Small Sample Tests A random sample of 18 pairs from a bivariate normal population showed a correlation coefficient of 0.4. Is this value significant of a correlation in the population. Let us take the hypothesis that the variables are uncorrelated in the population. $H_0: \rho=0$ and $H_1=\rho \neq 0$ Applying t-test, (⇒ two tailed test) toplying t-test, $$t = \frac{r \times \sqrt{n-2}}{\sqrt{1-r^2}} = \frac{0.4 \times \sqrt{18-2}}{\sqrt{1-0.16}}$$ $$= \frac{0.4 \times 4}{0.94} = \frac{1.6}{0.91} = 1.76$$ Degrees of freedom = v = n - 2 = 18 - 2 = 16 For v=16, $t_{0.05}$ for two tailed test = 2.12 For v = 10, $t_{0.05}$ for the classical conditions and the table value, we accept H_0 and hence, A correlation coefficient of 0-63 is obtained from a sample of 20 paired of observations. Is it significantly different from 0.5? We are given: n = 20, r = 0.72, $\rho = 0.8$ We are given in a support the state of the population is 0.5 i.e., take the null hypothesis that the correlation in the population is $$0.5$$ i.e., $H_0: p=0.5$ and $H_1: p\neq0.5$ (\Rightarrow two tailed test) Z—transformation of $P_1: p\neq0.5$ and $P_2: p\neq0.5$ (\Rightarrow two tailed test) $P_2: p\neq0.5$ (\Rightarrow two tailed test) $P_3: Applying Fisher's $$Z$$ —test $$|Z| = \frac{Z_r - Z_p}{\text{SE}_{Z_1 - Z_2}} = \frac{0.741 - 0.549}{0.243} = \frac{0.192}{0.243} = 0.79.$$ The critical value of Z at 5% for two tailed test=1.96. The critical value of Z at 5% for two tailed test=1.96. Since, the calculated value of |Z| is less than 1.96 (5%), we accept null hypothesis and and conclude that the given correlation coefficient is not significantly different from 0.5 therefore experiment, two samples gave the following results | Example 34. In a la | Size | Sample Mean | Sum of squares of | deviations f | 105 | |---------------------|------|-------------|-------------------|--------------|-------------| | Sample | 10 | 15 | | 90 | om the mean | | 1 | 12 | 14 | | 108 | | | 2 | | | . =0/ 1 1 . | | | Test the equality of sample variances at 5% level of significance. Let the null hypothesis be that the two population variances are equal i.e., Solution $H_0:\sigma_1^2=\sigma_2^2$ We are given: $$\begin{aligned} n_1 &= 10 \,, \\ n_2 &= 12 \,, \end{aligned} \qquad & \Sigma (X_1 - \overline{X}_1)^2 &= 90 \\ S_1^2 &= \frac{\Sigma (X_2 - \overline{X}_2)^2}{n_1 - 1} = \frac{90}{10 - 1} = \frac{90}{9} = 10 \\ S_2^2 &= \frac{\Sigma (X_2 - \overline{X}_2)^2}{n_2 - 1} = \frac{108}{12 - 1} = \frac{108}{11} = 9 \cdot 82 \end{aligned}$$ Applying F-test, $$F = \frac{S_1^2}{S_2^2}$$ where $S_1^2 > S_2^2$ $$= \frac{10}{9.87} = 1.018$$ For v_1 =10-1=9 and v_2 =12-1=11, F_{05} =2-90 Since, the calculated value of F is less than the table value, we accept the null hypothesis and conclude that the two populations have the same variance. Example 35. The profit of an automobile dealer varies from day to day. However, the dealer believes that the per day profit averages at least Rs. 3500. The profits per day during the past week were reported to be Rs. 2000, Rs. 3000, Rs. 5200, Rs. 3400, Rs. 2500 and 3700. Would you agree with the belief of the dealer. Use at 0.15 level of significance 2 level of significance? Solution. Let us take the hypothesis that the average profit of the dealer is at least Rs. 3500 i.e., $H_0: \mu \ge 3500$ and $H_1: \mu < 3500$ Since, the dealer belief would be false if the average rate is less than 3500] It is one 1.322. | Sales X | $\overline{X} = 3300$ $(X - \overline{X})$ | $d-(X-\overline{X})/100$ | 169 | |---------|--|--------------------------|-----| | 2000 | - 1300 | -13 | 10. | | 3000 | - 300 | - 3 | 9 | | 5200 | | | 361 | | _ | + 1900 | + 19 | 1 | | 3400 · | + 1000 | .+1 | | | uvpoth | esis – Small Samp | ole Tests | |----------------|--------------------------|---| | fests of FI) F | 3700 | + 400 | | | $\sum X = 19800$ $n = 6$ | $\begin{array}{c c} +4 & 64 \\ \Sigma d = 0 & 16 \end{array}$ | | _ | | $\overline{X} = \frac{\Sigma X}{n} = \frac{19800}{6} = 3300$ | | | | $S = \sqrt{\frac{\sum (X - \overline{X})^2}{n - 1}} \times c$ [here (a. 4 and | | | applying t-test, | $=\sqrt{\frac{620}{5}} \times 100 = \sqrt{124} \times 100 = 11 \cdot 1355 \times 100 = 1113 \cdot 55$ | Applying t-test, $$|t| = \frac{\overline{X} - \mu}{S} \cdot \sqrt{n}$$ $$= \frac{|3300 - 3500|}{1113 \cdot 35} \sqrt{6} = \frac{200}{1113 \cdot 35} \times 2.449 = \frac{489 \cdot 897}{1113 \cdot 35} = 0.44$$ $$v = n - 1 = 6 - 1 = 5$$ tailed test = 2.015 value of t is less than the table value, we accept the null de that the claim of the dealer is instificial. Degrees of freedom = v = n - 1 = 6 - 1 = 5For v = 5, $t_{0.05}$ for one tailed test = 2.015 Since, the calculated value of t is less than the table value, we accept the
null hypothesis and conclude that the claim of the dealer is justified. # IMPORTANT FORMULAE 1. Tests of Hypothesis about population mean: where, $$S = \sqrt{\frac{\sum (X - \overline{X})^2}{n - 1}} \text{ or } \sqrt{\frac{\sum d^2 - (\overline{d})^2 \times n}{n - 1}}$$ 2. Test of Hypothesis about the difference between two population means in case o independent samples: Where, $$t = \frac{\overline{X}_1 - \overline{X}_2}{S} \cdot \sqrt{\frac{n_1 n_2}{n_1 + n_2}}$$ $$S = \sqrt{\frac{\sum (X_1 - \overline{X}_1)^2 + \sum (X_2 - \overline{X}_2)^2}{n_1 + n_2 - 2}}$$ $$= \sqrt{\frac{(n_1 - 1) s_1^2 + (n_2 - 1) s_2^2}{n_1 + n_2 - 2}}$$ $$d.f. = n_1 + n_2 - 2$$ Test of Hypothesis about the difference of the two population means with dependent samples $$t = \frac{d}{S} \cdot \sqrt{n}$$ $$S = \sqrt{\frac{\sum d^2 - (\overline{d})^2 \times n}{n - 1}}$$ 1.f. = $$v = n - 1$$ 4. Test of Hypothesis about correlation coefficient : $$t = \frac{r}{\sqrt{1 - r^2}} \times \sqrt{n - 2}$$ d.f.=v=n-2where, sher's Z-test 5. Test of Hypothesis about correlation coefficient $(H_0: p = p_0):$ $|Z| = \frac{Z_r - Z_p}{SE_z}$ isher's Z-test $$|Z| = \frac{Z_r - Z_p}{SE_2}$$ 6. Test of Hypothesis about two correlation coefficients ($H_0: \rho_1 = \rho_2$): $|Z| = \frac{Z_S - Z_p}{\text{SE}_{Z_1 - Z_2}}$ $$|Z| = \frac{Z_S - Z_p}{SE_{Z_1} - Z_2}$$ 8. Test of Hypothesis about two population variances ($H_0: \sigma_1^2 = \rho_2^2$): $$F = \frac{S_1^2}{S_2^2}$$ ### QUESTIONS - 1. Define student's t-test and explain some of its applications. - Explain how I-test is used to test the significance of the difference between the means of two samples. 2. - 3. Explain briefly various application of the t-test. - Explain how t-test is used to test the significance of the sample correlation coefficient in a sample drawn from a bivariate normal population. Discuss Fisher's 7 1-11 - 5. Discuss Fisher's Z-test for testing the significance of correlation coefficient. - 6. Discuss the *F*-test for testing the equality of two sample variances. - Discuss the usefulness of F-test. - Explain the procedure for testing hypothesis regarding equality of two variances. Explain how would be setting the setting hypothesis regarding equality of two variances. - Explain how would test the significance of the correlation coefficient in case of small sample. # Chi-Square Test VIRODUCTION RODUCLION. The Chi-Square test (χ^2 -test) is an important test amongst several tests of significance comballions. the Chi-Square tests of significance tests of significance by the statisticians is. Chi-Square, symbolically written as x² (Pronounced as proposed by the statistical measure used in the context of sampling analysis for testing the formal population variance. As a non-parametric test, it can be used as a test of goodness of $\frac{1}{2}$ and as a test of attributes. Thus, the Chi-Square test is applicable to a very large number of $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ are the summed up under the following heads: $(1)\chi^2$ -test as a test for population variance. (2) χ^2 -test as a non-parametric test. Let us discuss them briefly (i) χ^2 -test as a test for population variance : χ^2 -test is often used to test the significance of mulation variance i.e. we can use this test to judge if a random sample has been draw from a mal population with mean (μ) and with a specified variance (σ_0^2). (i) Set up the null hypothesis $H_0: \sigma^2 = \sigma_0^2$ and $H_1: \sigma^2 > \sigma_0^2$ $^{\mbox{\scriptsize (ii)}}$ We compute χ^2 by using any one of the following formula : $$\chi^{2} = \frac{\sum (x - \bar{x})^{2}}{\sigma^{2}} \text{ or } \frac{ns}{\sigma^{2}}$$ $$s^{2} = \frac{\sum (x - \bar{x})^{2}}{n}$$ $$ns^{2} = \sum (x - \bar{x})^{2}$$ No. of degrees of freedom are worked out by using the following formula: and the desired level of significance. and the desired level of significance. Otherwise, under value of χ^2 with reterence to the area of χ^2 , we reject the null hypothesis H_0 . Otherwise, under the result of χ^2 and χ^2 are the null hypothesis H_0 . Otherwise, we accept H_0 . calculated $\chi^2 > \chi_{\sigma/2}$ with variance of a normal population $\sigma^2 = 5.80$ and the sum of the squares of the deviations of 15 sample values from their mean is 150, commutate deviations of 15 sample values from their mean is 150, commutate deviations of 15 sample values from their mean is 150, commutate deviations of 15 sample values from their mean is 150, commutate deviations of 15 sample values from their mean is 150, commutate deviations of 15 sample values from their mean is 150, commutate deviations of 15 sample values from their mean is 150, commutate deviations of 15 sample values from their mean is 150, commutate deviations of 15 sample values from their mean is 150, commutate deviations of 15 sample values from their mean is 150, commutate deviations of 15 sample values from their mean is 150, commutate deviations of 15 sample values from their mean is 150, commutate deviations of 15 sample values from their mean is 150, commutate deviations of 15 sample values from their mean is 150, commutate deviations of 15 sample values from their mean is 150, commutate deviations of 15 sample values from their mean is 150, commutate deviations of 15 sample values from the With variance of a normal popularies of the squares of the deviations of 15 sample values from their mean is 150, compute the χ^2 . We are given: n = 15, $\sigma^2 = 5.80$ and $\Sigma (X - \overline{X})^2 = 150$ Solution. The χ^2 -value is calculated as : $$\chi^2 = \frac{\Sigma (X - \overline{X})^2}{\sigma^2} = \frac{150}{5.8} = 25.86$$ A sample of 10 units drawn from a normally distributed population shows Example 2: A sample of 16 data sample of 18 $\alpha = 0.01$ level of significance. We are given: n = 10, $s^2 = 25$, $\sigma^2 = 36$, $\alpha = .01$ Solution. Let us take the null hypothesis that the population variance is 36 i.e. $H_0: \sigma^2 = 36$ and $H_1: \sigma^2 > 36$ (\Rightarrow Right tai $H_0: \sigma^2 = 36$ The value of χ^2 is calculated as follows: $$\chi^2 = \frac{ns^2}{\sigma^2}$$ $$= \frac{10 \times 25}{36} = 6.94$$ Degrees of freedom = v = n - 1 = 10 - 1 = 9 For v = 9, $\chi_{.01}^2 = 21.7$ Since, the calculated value of χ^2 is less than the table value of $\chi^2_{0.01}$ we accept ${\rm H}_0$ and conclude that the population variance $\sigma^2 = 36$. A random sample of size 20 from of normal population gives a sample mean of 42 and sample standard deviation of 6. Test the hypothesis that the population standard deviation is 9. Clearly state the alternative hypothesis you allow for and the level of significance and the significance and the significance and the significance and the significance and significan Example 3: and the level of significance adopted. Solution. We are given: n = 20, $\overline{X} = 42$, $s = 6 \Rightarrow s^2 = 36$, $\sigma = 9 \Rightarrow \sigma^2 = 81$ Let us take the null hypothesis that the population standard deviation is 6, i.e. H. ~ -0 (⇒ Right Tailed Test) $H_0: \sigma = 9$ and $H_1:\sigma>9$ χ^2 -value is calculated as : Example 4: $$\chi^2 = \frac{ns^2}{\sigma^2} = \frac{20 \times 36}{81} = 8.89$$ Degrees of freedom = v = 20 - 1 = 19 For v = 19, $\chi_{.05}^2 = 30.1$ For $v = \chi \gamma_{0.05}$. Since, the calculated value of χ^2 is less than the table value of $\chi^2_{0.05}$, we accept H_0 and conclude that the population standard deviation is 9. Weights in kg of 10 students are given below: 131 Can we say that variance of the distribution of weight of all students from which the above sample of 10 students was drawn, is equal to 20 kgs? Test this at 5% and 1% level of significance. (At 9 d.f., $\chi^2_{.05} = 16.92$, $\chi^2_{.01} = 21.67$ at 10 d.f; $\chi^2_{.05} = 18.31, \chi^2_{.01} = 23.21)$ Let us take the null hypothesis that populati | et us take the half his | Potriesis | mat population vari | iance is 20, i.e. | |-------------------------------|-----------|---------------------|-----------------------| | $H_0: \sigma^2 = 20$ | and | $H_1:\sigma^2>20$ | (⇒ Right tailed test) | | pplying χ ² - test | | | | | x | $\overline{X} = 47$ $X - \overline{X}$ | $(X-\overline{X})^2$ | |------------------|--|--------------------------------| | 38 | -9 | 81 | | 40 | -7 | 49 | | 45 | -2 | 4 | | 53 | 6 | 36 | | 47 | 0 | 0 | | 43 | 4 | 16 | | ,55 | 8 | 64 | | 48 | 1 | 1 | | 52 | 5 | 25 | | 49 | 2 | - 4 | | $\Sigma X = 470$ | | $\Sigma(X-\overline{X})^2=280$ | $$\bar{X} = \frac{470}{10} = 47$$ χ^2 -value is calculated as : $$\chi^2 = \frac{\Sigma(X - \overline{X})^2}{\Omega^2} = \frac{280}{20} = 14$$ Degrees freedom = v = n - 1 = 10 - 1 = 9 For v = 9, $\chi_{.05}^2 = 16.92$ For v = 9, $\chi_{.01}^2 = 21.67$ For v = 9, $\chi_{01}^{2} = 21.07$ Since, the calculated value of χ^{2} is less than the table value at 5% and 1% level of Since, the calculated value of X is a significance, we accept null hypothesis and conclude that the variance of the distribution of weights of all students in the population is equal to 20 kgs. distribution of weights of the state of the specific properties of the squared deviations from the mean of the given sample is 50. Test the hypothesis that the variance of the population is 5. Use $\alpha=0.05$ level of Solution. We are given: n = 10, $\Sigma(X - \overline{X})^2 = 50$, $\sigma^2 = 5$ Let us take the null hypothesis that the population variance is 5, i.e. $$H_0: \sigma^2 = 5$$ and $H_1: \sigma^2 > 5$ (⇒ Right Tailed Test) The χ^2 - value is calculated as: ated as: $$\chi^2 = \frac{\Sigma (X - \overline{X})^2}{\sigma^2}$$ Putting the vlues, we have $$\chi^2 = \frac{50}{5} = 10$$ Degrees of freedom = v = n - 1 = 10 - 1 = 9 For v = 9, $\chi_{.05}^2 = 16.92$ Since, the calculated value of χ^2 is less than table value, we accept the null hypothesis and
conclude that the variance of the population is 5. ### **EXERCISE - 1** 1. A normal population has a standard deviation σ = 2.50. A random sample of 12 values selected from this population yields sample variance s^2 =5.60. Computer the X^2 -value. [Ans. $\chi^2 = 10.75$] 2. A sample of size n=17 drawn from a normally distributed population shows a variance $s^2 = 25$. Test the hypothesis that the population variance $\sigma^2 = 35$ against the alternative $\sigma^2 > 35$ using $\sigma = 0.05$ level. [Ans. $\chi^2 = 12.14$, Accept H_0] $\sigma^2 > 35$ using $\alpha = 0.05$ level of significance. 3. A random sample of size 10 from a normal population gives the following values: 65, 72 68, 74, 77, 61, 63, 69, 73, 71 Test the hypothesis that the population variance is 32 [Ans. $\chi^2 = 7.316$, H_0 is accepted.] A sample of 20 observations gave a variance of 0.009. Is this compatible with the hypothesis that the sample is from a normal population with variance 0.010? [Ans.: $\chi^2 = 18$, Accept H_0] Chi-Square Test A company producing TV tuners knows that on the average its product works satisfactorily for 7 years, with a standard deviation of 1.75 years. A sample of 5 tuners results in life times of 6, 8, 10, 7 and 9 years. Should the producer be satisfied that his product still continues to have a standard deviations of 1.75 years? [Ans, χ^2 = 3·26, Accept H_0] A random sample of size 25 from a population gives the sample S.D. to be 8.5 Test the hypothesis that the population S.D. is 10. [Ans. χ^2 = 18·06, Accept H_0] 2 test as a non-parametric test: χ²-test is an important non-parametric test and as such no $\alpha \chi^2$, test as a very example of the type of population. We require only the degrees of freedom for using this test. As a non-parametric test, χ^2 -test can be used (i) as a test of goodnesss of freedom for the type of independence of attributes. of freedom to parameter of fit (ii) as a test of independence of attributes. it (ii) as a test of goodness of fit: Under the test of goodness of fit, we try to find out how $(i)\chi^2$ -test as a test of goodness of prive other order to the standard of t (i) x²-test as a test of given phenomenon are significantly different from the expected values of a given phenomenon are significantly different from the expected values for the observed values of a grant parameter are significantly different from the expected values is there is good compatibility between theory and experiment or the fit is good. The term goodness of fit is also used for comparison of observed sample distribution with the expected sample distribution with the expected of the control o goodness of the stations (such as Binomial, Poisson, Normal). x²-test determines how well probability distributions (such as Binomial, Poisson), fit the empirical distributions (i.e. those obtained from sample data) (I) Set up the null hypothesis that there is no significant difference between the observed and the expected (or theoretical) values i.e. there is good compatibility between theory and experiment or the fit is good. (2) We compute the value of χ^2 by using the formula: $$\chi^2 = \Sigma \left[\frac{(Q - E)^2}{E} \right]$$ Where, O = Observed frequency, E = Expected frequency The above formula can also be written as: $$\chi^2 = \Sigma \left[\frac{O^2}{E} \right] - N$$ Where, N is the total expected frequency and $\Sigma O = \Sigma E = N$ Note: The second form of the formula is more convenient for computation in case the expected $\frac{\partial U}{\partial U}$ equencies comes in fractions. 3) Degrees of freedom are worked out by using the following formula: Degrees of freedon, v = n - 1The case of Freedon, v=n-1 in case of Binomial, Poisson and Normal distributions, the degrees of freedom are obtained by the case of Binomial, Poisson and Normal distributions, the degrees of freedom are obtained by sales of Binomial, Poisson and Normal distributions, the degrees of freedom are unafted by biblicating the number of independent constraints from the total frequency (n). The number of independent constraints in a given data depends upon the number of parameters involved in the lame data. This is in a given data depends upon the number of parameters involved in the Same data. This is indicated as under: | 134 | Constraints | No. of
Constraints | Degrees of freedom | |--|---|-----------------------|--------------------| | Type of distribution Binomial distribution Poisson distribution | Total frequency (n) Total frequency (n) and arithmetic mean (m) | 1 2 | n-1
n-2 | | Poisson distribution Normal distribution | n, X and σ | 3 | n-3 | Normal usual Normal value of χ^2 as such is than compared with the table value of χ^2 for given (4) The calculated value of χ^2 have of significance. If the calculated χ^2 exceeds the contract of excee (4) The calculated value of χ^2 for given degrees of freedom at 5% and 1% level of significance. If the calculated χ^2 exceeds the table value of freedom at 5% and 1% level of significance. If the calculated value of χ^2 exceeds the table value of χ^2 is the calculated value of χ^2 in the fit is not good. If the calculated value of χ^2 is the calculated value of χ^2 in the calcu degrees of freedom at 5^{-0} and 10^{-0} and 10^{-0} to fit is not good. If the calculated value of χ^2 is less than the of χ^2 , we reject H_0 and conclude that the fit is good which means of χ^2 , we reject H_0 and conclude that the fit is good which means that the divergence between the observed and expected frequencies is attributable to fluctuations of sampling. # CONDITIONS FOR USING THE χ^2 -TEST χ^2 -test as a goodness of fit can be used only when (i) n i.e. total frequency is large i.e. n > 50 (ii) χ^2 -test as a goodness of fit can be used only when (j, n) is total frequency is large i.e. n > 50 (ii) The sample observations are independent (iii) The constraints on the cell frequencies, if any, are linear (iv) no theoretical (or expected) frequency should be small i.e. E < 5; if any E < 5, we use pooling technique i.e. we add the small frequencies with the preceding or succeeding frequency to obtain the required sum > 5 and adjust degrees of freedom (d.f.) accordingly. A die is thrown 180 times with the following results: | | | | | | | - | |----|----|-----|-------|---------|-----------------------------|-------------| | 1 | 2 | 3 | 4 | 5 | 6 | Total | | 25 | 35 | 40 | 22 | 32 | 26 | 180 | | | 1 | 1 2 | 1 2 3 | 1 2 3 4 | 1 2 3 4 5
25 35 40 22 32 | 1 2 3 4 5 6 | Test the hypothesis that die is unbiased. Set up the null hypothesis that the die is unbiased. On the basis of the hypothesis, Solution. the expected frequency of each number turned up = $np = 180 \times \frac{1}{6} = 30$. Applying v2-test : | | ^ | pprying & -test. | | The second of the Tradex are a | |----------------|----------------|------------------|-----------------|--------------------------------| | 0 | E | (O – E) | (O - E)2 | $(O-E)^2/E$ | | 25
35
40 | 30
30
30 | -5
+5
+10 | 25
25
100 | 0.833
0.833
3.333 | | 22
32
26 | 30
30
30 | -8
+2
-4 | 64
4 | 2.133
0.133
0.533 | | | | 1 | | $\Sigma(O-E)^{2/E} = 7.798$ | Degrees of freedom = v = 6 - 1 = 5 The tabulated value of χ^2 at 5% level of significance for 5 d.f. = 11.07 t. Since, the calculated value of χ^2 is less than the table value, we accept the null thorsis and conclude that die is unbiased. The following figures show the distributions of digits in numbers chosen at random a telephone directory: | Digit: | 0 | 1 | 2 | 3 | 4 | | _ | | | - | |------------|-------|--------|--------|------|--------------|------|-----|-----|-----|--------| | Frequency: | 1026 | 1107 | 997 | 966 | 1075 000 | 6 | 7 | 8 | 9 | Total | | Frequency: | wol w | hether | the di | alt. | 1 2070 933 | 1107 | 972 | 964 | 853 | 10.000 | nay be taken to occur equally frequently in the
directory. (Given $\chi^2_{0.05}$ for 9 d.f. = 16.919). Let us take the hypothesis that the digits may be taken to occur equally frequently $$\begin{array}{lll} 10,000 \times \frac{1}{10}, 10,000 \times \frac{1}{10}, & 10,000 \times \frac{1}{10}, & 10,000 \times \frac{1}{10}, & 10,000 \times \frac{1}{10}, & 10,000 \times \frac{1}{10} \\ 10,000 \times \frac{1}{10}, 10,000 \times \frac{1}{10}, & 10,000 \times \frac{1}{10}, & 10,000 \times \frac{1}{10}, & 10,000 \times \frac{1}{10}, & 10,000 \times \frac{1}{10} \end{array}$$ Applying χ^2 -test: | О | E | (O - E) | (O - E)2 | (O - E)2/E | |----------------|---------------|---------|----------|-----------------------------------| | 1,026 | 1,000 | + 26 | 676 | 0-676 | | 1,107 | 1,000 | + 107 | 11,449 | 11.449 | | 997 | 1,000 | -3 | 9 | 0009 | | 966 | 1,000 | - 36 | 1,156 | 1.156 | | 1,075 | 1,000 | + 75 | 5,625 | 5 - 625 | | 933 | 1,000 | - 67 | 4,489 | 4489 | | 1,107 | 1,000 | + 107 | 11,449 | 11-449 | | 972 | 1,000 | - 28 | 784 | 0.784 | | 964 | 1,000 | - 36 | 1,296 | 0-296 | | 853 | 1,000 | - 147 | 21,609 | 21609 | | and the second | 2 tv9 v u . I | | | $\Sigma (O - E)^2 / E$ $= 57.542$ | $$\chi^2 = \Sigma \left[\frac{(O - E)^2}{E} \right] = 57.542$$ Degrees of freedom (v) = 10-1=9 The table value of χ^2 for 9 d.f. at 5% level of significance = 16.919. Since, the calculated value of χ^2 is greater than the table value, we reject the hypothesis and conclude that the digits may not be taken to occur equally frequently α frequently in the directory. A sample analysis of examination results of 500 students were made. It was found that 220 students had failed, 170 had secured a third class, 90 were placed in second class. second class and 20 got a first class. Are these figures commensurate with the Solution. general examination result which is in the ratio of 4:3:2:1 for the v_{ax} categories respectively? (The table value of χ^2 for 3 d.f. at 5% level of significance is 7.81). Let us take the hypothesis that the observed results are common general examination results which is in the ratio of 4:3:2:1. Solution. general examination results who have failed $=\frac{4}{10} \times 500 = 200$ The expected no. of students who have obtained a III-class = $\frac{3}{10} \times 500 = 150$ The expected no. of students who have obtained a II class = $\frac{2}{10} \times 500 = 100$ The expected no. of students who have obtained a I class = $\frac{1}{10} \times 500 = 50$ Applying χ²-test : | Category | 0 | E | (O – E) | $(O-E)^2$ | (O - E)2 | |-----------|-----|-----|---------|-----------|----------| | Failed | 220 | 200 | + 20 | 400 | 2.000 | | 3rd class | 170 | 150 | + 20 | 400 | 2-667 | | 2nd class | 90 | 100 | - 10 | 100 | 1.00 | | Ist class | 20 | 50 | - 30 | 900 | 18-00 | | 13t Clubo | | 1 | | | 23 - 66 | $$\chi^2 = \Sigma \left[\frac{(O-E)^2}{E} \right] = 23 \cdot 667$$ Degrees of freedom(v) = 4 - 1 = 3 The tabulated value of χ^2 at 5% level of significance for 3 d.f. = 781. Since, the calculated value of χ^2 is greater than the table value of χ^2 , we reject it null hypothesis and conclude that the observed results are not commensurate with the general examination result. In an experiment on peas breeding, Mendal obtained the following frequency of seeds: 315 round and yellow, 101 wrinked and yellow, 108 round and gets, 32 wrinkled and green. According to his theory of heredity the numbers should be in proportion 9-3-3-3-1. In the new section 2.3-3-4. To the number of the section Example 9: be in proportion 9:3:3:1. Is there any evidence to doubt his theory at 5% led of significance? Let us take the hypothesis that there is no siginficant difference in the observed and expected values. On the basis of this assumpation, the expected frequence should be: $556 \times \frac{9}{16} = 312.75, 556 \times \frac{3}{16} = 104.25, 556 \times \frac{3}{16} = 104.25, 556 \times \frac{1}{16} = 34.5$ Chi-Square Test Category 0 (O - E) $(O - E)^2$ Round and Yellow 315 (O - E)2/E 312-75 2.25 Wrinkled and Yellov 5.0625 101 104-25 0.016 - 3.25 10-5625 Round and green 108 0-101 104-25 - 3.75 Wrinkled and green 14-0625 0.135 32 34.75 7.5625 0-218 Σ(O-E)2/E $$\chi^2 = \Sigma \left[\frac{(O - E)^2}{E} \right] = 0.47$$ Degrees of freedom = v = n - 1 = For v = 3, $\chi^2_{0.05} = 7.82$ Since, the calculated vlaue of χ^2 is less than the table value, we accept null hypothesis. Hence, there is no evidence to doubt the theory at 5% level of significance. Example 10: The following table gives the number of aircraft accidents that occured during the various days of the week. | Days of the week | Sun. | Mon | Tue. | Wed | Thur. | Fri. | Sat. | Total | |------------------|------|-----|------|-----|-------|------|------|-------| | No. of accidents | | 16 | 8 . | 12 | 11 | 9 | 14 | 84 | Find whether the accidents are uniformily distributed over the week: (Given the table value of $\chi^2_{0.05}$ for 6 d.f. is 12.59) Solution. Let us take the hypothesis that the accidents are uniformily distributed over the week *i.e.* they are independent of the day of the week. On the basis of this hypothesis, we should expect 84/7 = 12 accidents on each day. Applying χ^2 -test: | 0 | E | $(O-E)^2$ | $(O-E)^2/E$ | |----------------------------|----|-----------|--------------------------------| | 14 | 12 | 4 | 0.333 | | 16 . | 12 | 16. | 1 · 333 | | 8 | 12 | 16 | 1 · 333 | | 12 , \ | 12 | 0 | 0.00 | | 11 | 12 | 1 | 0.083 | | 9 . | 12 | 9 | 0-750 | | 14 | 12 | / 4 | 0.333 | | Part and the second second | | / | $\Sigma (O-E)^2 / E$ $= 4.165$ | | Σ0=84 | | 1 | = 4.165 | $$\chi^2 = \Sigma \left[\frac{(O-E)^2}{E} \right] = 4 \cdot 165$$ Degrees of freedom = v = n - 1 = 7 - 1 = 6 For v = 6, $\chi_{0.05}^2 = 12.59$ For v = 0, 2.0.05 Since, the calculated value of χ^2 is less than the table value, we accept the null Since, the calculated value of A to loss that the laure value, we accept the null hypothesis and conclude that the accidents are uniformily distributed over the week. Example 11: The number of automobile accidents per week in a certain city were as follows: 12, 8, 20, 2, 14, 10, 15, 6, 9, 4 Are these frequencies in agreement with the belief that accident's numbers were the same during these 10 week period. Solution. Let us take the this hypothesis be that the number of accidents per week in a certain are equal during the 10 week period. On the basis of this hypothesis, the expected number of accidents per week $\frac{100}{10} = 10.$ Applying χ^2 - test: | O Plying \(\chi \) - test . | E | $(O-E)^2$ | $(O-E)^2/E$ | |------------------------------|----|-----------|---------------------------------| | 12 | 10 | 4 | 0.4 | | 9 | 10 | 4 | 0.4 | | 20 | 10 | 100 | 10.0 | | 2 | 10 | 64 | 6.4 | | 14 | 10 | 16 | 1.6 | | 10 | 10 | 0 | 0.0 | | 15 | 10 | 25 | 2.5 | | 6 | 10 | 16 | 1.6 | | 9 | 10 | 1 | 0.1 | | 4 | 10 | 36 | 3.6 | | | | | $\Sigma (O - E)^2 / E$ $= 26.6$ | | | | | = 26.6 | $$\chi^2 = \Sigma \left[\frac{(O - E)^2}{E} \right] = 26 \cdot 6$$ Degrees of freedom =v=n-1=10-1=9 For v = 9, $\chi^2_{0.05} = 16.92$ Since, the calculated value of χ^2 is greater than the table value, we reject the null hypothesis and a familiary hypothesis and conclude that the accident conditions were not the same (uniform) over the 10 week period. Chi-Square Test Example 12: In a city 1000 children were born last week and out of these 600 were males and 400 females. Use chi-square test to assess the general hypothesis that the sex Let us assume that the sex ratio for the newly born children is 1:1 Let us assume n = 1000 $p = probability of a male child <math>= \frac{1}{2}, q = probability of a female$ child = $\frac{1}{2}$. On the basis of the null hypothesis, Expected no. of male child = $\frac{1}{2} \times 1000 = 500$ Expected no. of female child = 1000 - 500 = 500 | 0 | F | | | |------------|------|---------|--------------------------| | 600
400 | 500 | 10,000 | (O - E) ² / E | | 1000 | 1000 | 10,000 | 20 | | | 400 | 400 500 | 400 500 10,000
10,000 | Degrees of freedom = v = n - 1 = 2 - 1 = 1 For x = 1, $\chi_{.05}^2 = 3.84$ Since, the calculated value of χ^2 is grater than the table value of χ^2 , we reject the null Since, the value of χ , we reject then the position of the newly bronchildren is not 1:1. Test of Goodness of Fit of a Binomial Distribution: Example 13: A set of 5 coins is tossed 3200 times and the number of h | time is noted. T | CO ACAMPATATION DAMPED TO THE PERSONNEL TO THE | | | the Road | мениз прре | carnig each | |------------------|--|-----|------|----------|------------|-------------| | No. of heads | 0 | -1 | 2 | 3 | 4 | - | | Frequency | 80 | 570 | 1100 | 900 | 500 | 50 | Let us take the null hypothesis that the coins are unbiased i.e. $p(H) = \frac{1}{2}$ On the basis of null hypothesis, the expected number of heads in a toss of 5 coins is calculated by the use of binomial distribution as follows: $P(x) = n_{C_x} q^{n-x} . p^x \qquad \text{where } x = 0, 1, 2, 3, 4, 5$ Given: n = 5, N = 3200, $p = p(H) = \frac{1}{2}$, $q = \frac{1}{2}$ | X | $fe(x) = N \times n_{C_X} \cdot P(X)$ | E | |-----------|---|--------| | Tall'in 0 | $3200 \times {}^{5}C_{0} \left(\frac{1}{2}\right)^{5} \cdot \left(\frac{1}{2}\right)^{0}$ | = 100 | | 1 | $3200 \times {}^{5}C_{1} \left(\frac{1}{2}\right)^{4} \cdot \left(\frac{1}{2}\right)^{1}$ | = 500 | | 2 | $3200 \times {}^{5}C_{2} \left(\frac{1}{2}\right)^{3} \cdot \left(\frac{1}{2}\right)^{2}$ | = 1000 | | | | | -d-Square 7 | |---|---|---|-------------| | Γ | 3 | $3200 \times {}^{5}C_{3} \left(\frac{1}{2}\right)^{2} \cdot \left(\frac{1}{2}\right)^{3}$ | = 1000 | | | 4 | $3200 \times {}^{5}C_{4} \left(\frac{1}{2}\right)^{1} \cdot \left(\frac{1}{2}\right)^{4}$ | = 500 | | 1 |
5 | $3200 \times {}^{5}C_{5} \left(\frac{1}{2}\right)^{0} \cdot \left(\frac{1}{2}\right)^{5}$ | = 100 | | | | | | Applying χ^2 - test : | C O | E | $(O-E)^2$ | (O - E)2/E | |---------------------------------------|-----------------------------------|--|--| | 80
570
1100
900
500
50 | 100
500
1000
1000
500 | 400
4900
10,000
10,000
0
2500 | 4·00
9·80
10·00
10·00
25·00 | | 30 | | | $\Sigma \left[\frac{(O-E)^2}{E} \right] = 58.8$ | $$\chi^2 = \Sigma \left[\frac{(O-E)^2}{E} \right] = 58.8$$ Degrees of freedom = v = n - 1 = 6 - 1 = 5 For v = 5, $\chi^2_{0.05} = 11.07$ Since, the calculated value of χ^2 is greater than the table value, we reject the $\mbox{\scriptsize null}$ hypothesis and conclude that the coins are biased. # Example 13. A random sample of 100 families with four children each disclosed the following data: | following data . | | | | 2 | 004 | |----------------------|---|---------|----------------------|--------------|------| | No. of Female Births | 0 | 1 | 2 | 3 | - 40 | | No. of families | 5 | 25 | 40 | 20 | 10 | | No. of families | | 200 000 | Port of A Laborate w | The state of | | Verify at $\alpha = 0.05$ if these data are inconsistent with the hypothesis that make and female are equally likey. Let us take the null hypothesis that the male and female births are equally probable i.e. p = q = 1/2 with 0, 1, 2, 3, 4 female basis. On the basis of null hypothesis, the expected number of families can be calculated by the use of binomial distribution. The probability of x female birth in a family of the use of binomial distribution. The probability of x female birth in a family of x is given by: where, x = 0, 1, 2, 3, 4 $P(x) = {^n}C_x q^{n-x} p^x$ Given: n=4, N=100, $p=\frac{1}{2}$, $q=\frac{1}{2}$ | x | | $fe(x) = N \cdot P(x)$ | = 6.25 | |---|-----|--|--------| | 0 | - 3 | $100 \times {}^{4}C_{0} \left(\frac{1}{2}\right)^{4} \cdot \left(\frac{1}{2}\right)^{0}$ | | | 1 | | | |-----------|--|--------| | 1 10 11 | $100 \times {}^{4}C_{1} \left(\frac{1}{2}\right)^{3} \cdot \left(\frac{1}{2}\right)^{1}$ | 141 | | 2 | 100 40 (1)2 (1)2 | ≈ 25 | | 3 | $100 \times {}^{4}C_{2} \left(\frac{1}{2}\right)^{2} \cdot \left(\frac{1}{2}\right)^{2}$ | = 37.5 | | 4 | $100 \times {}^{5}C_{3} \left(\frac{1}{2}\right)^{1} \cdot \left(\frac{1}{2}\right)^{3}$ | = 25 | | - Indiana | $100 \times {}^{4}C_{4} \left(\frac{1}{2}\right)^{0} \cdot \left(\frac{1}{2}\right)^{4}$ | = 6.25 | Applying χ^2 - test, we have | 0 | E | | | |----------------------------|--------------------------------------|--|---| | 5.
25
40
20
10 | 6·25
25·0
37·5
25·0
6·25 | 0 - E) ² 1.5625 0 6.25 25.0 14.0625 | $(O - E)^{2} / E$ $0 \cdot 25$ 0 $0 \cdot 17$ $1 \cdot 00$ $2 \cdot 25$ | | 100 . | | lb. | $\Sigma (O-E)^2/E = 3.67$ | $$\chi^2 = \Sigma \left[\frac{(O - E)^2}{E} \right] = 3.67$$ Degrees of freedom = v = n - 1 = 5 - 1 = 4 For v = 5, $\chi^2_{0.05} = 9.49$ Since, the calculated value of χ^2 is less than the table value of χ^2 , we accept the null hypothesis and conclude that the data are consistent with the hypothesis that male and fermale births are equally probable. Test of Goodness of Fit of a Poisson Distribution: Example 15: The number of defects per unit in a sample of 330 units of a manfactured product was found as follow: | No. of defect : | 0 | 1. 5.4 | 2 | 3 | 4 | |-----------------|-----|--------|----|---|-----| | No of units : | 214 | 92 | 20 | 3 | . 1 | Fit a Poisson distribution to the data and test goodness of fit. (Given $e^{-439} = 6447$) | | ting of Poisson Distribution | | |---|------------------------------|-------------------| | x | f | Jx | | To a not a time ! | 214 | 92 | | the the I agest become | 92 | 40 | | 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 20 . | 9 | | 3 | 3 | 4 | | 4 | N = 330 | $\Sigma fx = 145$ | $$\overline{X} = m = \frac{\sum fx}{N} = \frac{145}{330} = 0.439$$: Mean of the distribution = m = 0.439P (0) = $e^{-m} = e^{-439} = .6447$ [From the table] By Poisson distribution, the expected frequencies are calculated as $fe(x) = N. P(x) = \frac{N. e^{-m} \cdot m^x}{n}$ ## Computation of Expected Frequencies | x | $fe(x) = N \times P(x)$ | F | |---|---|----------| | 0 | $f(0) = 330 \times e^{-439} = 330 \times 0.6447$ | = 212-75 | | 1 | $f(1) = f(0) \cdot \frac{m}{1} = 212 \cdot 75 \times 0.439$ | = 93.4 | | 2 | $f(2) = f(1) \cdot \frac{m}{2} = 93 \cdot 4 \times \frac{\cdot 439}{2}$ | = 20.5 | | 3 | $f(3) = f(2) \cdot \frac{m}{3} = 20.5 \times \frac{.439}{3}$ | = 3.00 | | 4 | $f(4) = f(3) \cdot \frac{m}{4} = 3 \cdot 0 \times \frac{\cdot 439}{4}$ | = 0.33 | After fitting Poisson distribution, we now apply χ^{2} test of goodness of fit. Let us take the null hypothesis that there is no significant difference between observed frequencies and the frequencies obtained by fitting Poisson distribution Appling χ^2 -test, we have | Defects | 0 | E | $(O-E)^2$ | $(O-E)^2/E$ | |---------|---------|---------------|-----------|---------------------| | 0 | 214 | 212-75 | 1.5625 | 0-0073 | | 1 | 92 | 93 · 4 | 1.96 | 0.0210 | | 2 | 20 7 | 20-5 7 | | | | 3 | 3 24 | 3.0 23.83 | 0.0289 | 0.0012 | | 4 | 1 | 0.33 | - 1 | 2 | | | 170 100 | A tradition I | | $\Sigma(O-E)^2/E=0$ | In the above data, the frequencies of 3 and 4 defects are less than 5, so literate frequencies for these defects have been pooled together with defects at $2 \ln \text{ order}$ to make the sum total more than 5 or 5 and $E = 23 \cdot 83$. Appling the formula Appling the formula. Chi-Square Test Degrees of freedom = v = n - 2 = 3 - 2 = 1 Degrees of freedom - - - 2 - 2 - 1 [Since, after grouping only 3 classes are left, therefore n = 3] Since, the calculated value of χ^2 is much less than the table value, we accept the null hypothesis and conclude that the fit is good. # EXERCISE - 2 1. A die is thrown 100 times and the frequency of various faces | Face | 1 | 2 | 3 | ious races are | given as belo | ow: | |-----------|----|----|----|----------------|---------------|-----| | Frequency | 17 | 14 | 20 | 17 | 5 | 6 | | | | | | 17 | 17 | 15 | [Ans. $\chi^2 = 1.2796$, Accept H_0] Test the hypothesis that die is unbiased. Use 5% l.o.s. Test me hypothesis and a consider section in the se | Digits | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 0 | _ | | |-------------|----|----|------|----|-----|-----|----|----|----|----|-------| | Engage | 18 | 19 | 22 | - | 10. | 100 | - | | 0 | 9 | Total | | Frequencies | 10 | 19 | - 23 | 21 | 16 | 25 | 22 | 20 | 21 | 15 | 200 | Using χ^2 -test to assess the correctness of the hypothesis that the digits were distributed in equal numbers in the table from which they were drawn (The 5% value of χ^2 for 9 d.f. is [Ans. $\chi^2 = 4.30$, Accept H_0] A research investigator selected a random sample of 200 voters to find which political party they would vote in the municipal elections. The results were observed as under: | Political Party | Α | В | С | D | |-----------------|----|----|----|----| | No. of voters | 40 | 90 | 50 | 20 | Verify at $\alpha=0.05$ if the observed data provide sufficient evidence that the four political parties are equaly preferred. [Ans. $\chi^2=4\cdot30$, Accept H_0] In an experiment on peas breeding, the following frequencies of feeds were obtained 2:18 round and yellow; 72 wrinkled and yellow; 90 round and green, 20 wrinkled and green, Total 400. Theory products that the frequencies should be in the proportions 9:3:3:1. Examine the difference between theory and experiment (Value of χ^2 at 4 and 3 degrees of freedom and the state of χ^2 and χ^2). Accord that freedom are 9.448 and 7.815) at 5% level of significance. [Ans. $\chi^2 = 4.338$, Accept H₀] The theory predicts the proportion of beans in the four groups, A, B, C and D should be 9:3:3:3:1. In an experiment among 1600 beans, the number in the four groups were 82, 313, 287 and 118. Does the experiment result support the theory? Apply χ^2 - test. $[\chi^2 = 47226, Accept H_0]$ 6. The following tables gives the number of books borrowed from a public library during a particular use 1particular week: Chi-Square T | | Mon | Tue | Wed | Thu | Fei | Taute, Tes | |-----------------------|------|----------|------------|-------------|-------|------------| | Days of the week | | 132 | 160 | 148 | 134 | Sat | | No. of Books borrowed | 1mba | of books | borrowed o | loes not de | mon d | 150 | es not depend on the day of the [Ans. $\chi^2 = 3.941$, Accept H_0] Test the hypothesis that the number o week. Test at 5% level of significance. of 320 families with 5 children each revealed the following distributi | vey of 320 families | 5 | 4 | 3 | 2 | 1 | |---------------------|----|------|-----|----|----| | o. of girls : | 0 | 1 | 2 | 3 | 4 | | of families : | 14 | - 56 | 110 | 88 | 40 | No. or ramines Is this result consistent with the hypothesis that male and female births are equally probable? [Ans. $\chi^2 = 7.16$. Accept H_0] 8. 4 coins were tossed 160 times and the following results were obtained: No. of heads: 52 No. of obseved 17 6 frequency: Under the assumption that coins are unbiased, find the expected frequencies of getting 0, 1, 2, 3 or 4 heads and test the goodness of fit. [Ans. $\chi^2 = 12.725$, Reject H_0] 9. A book has 700 pages. The number of pages with various number of misprints is recorded | No. of misprints : | 0 | 1 | 2 | 3 | 4 | 5 | Total | |---------------------|-----|----|----|---|---|-----|-------|
| No. of pages with x | 616 | 70 | 10 | 2 | 1 | . 1 | 700 | [Ans. $\chi^2 = 11.04$, Reject H_0 , Fit is not good] 10. | The following mistakes per pa | age were o | bserved in | n a book: | | | The same | |-------------------------------|------------|------------|-----------|-----|---|----------| | No. of mistakes per page : | 0 | - 1 | 2 | 3 , | 4 | Total | | No. of units : | 211 | 90 | 19 | 5. | 0 | 325 | Does this information verify that the mistakes are distributed according to Poisson distribution? $[e^{-0.44}=0.644]$ [Ans. $\chi^2=0.07$, Accept H_0] [Ans. $\chi^2 = 0.07$, Accept H_0] 11. The number of car accidents in a metropolitan city was found as 20, 17, 12, 6, 7, 15, 8, 5, 16 and 14 per month respectively. Use chi square test to check whether these frequencies are in agreement with the belief that occurrence of accidents was the same during the 10 months period. Test at 5% level of significance. (Take value at 5% level for v=9 is 16.9) [Ans. $\chi^2 = 20.331$ Reject H_0] 12. The following grades | The following gr | aues were gi | ven to a class | of 100 students | The part of pa | |------------------|--------------|----------------|-----------------|--| | Grade : | Α | В | C | D 16 | | Frequency: | 14 | 18 | 32 | 20 | Test the hypothesis at the 0.05 level, that the distribution of grade is uniform. Chi-Square Test 145 Degree of Freedom: χ^2 -value : 7.81 11-07 13. In the accounting department of a bank 100 accounts are selected at random and examined for errors. Suppose the following results have been obtained: No. of errors : No. of accounts: 36 No. of accounts: On the basis of this information can it be concluded that the errors are distributed according to the poisson probability law? [Ans. $\chi^2 = 1.450$, Accept H_0] 19 14. A survey of 200 families with 3 children selected at random gave the following results. Test the hypothesis that male and female are equally likely at 5% level of significance. [Ans. $\chi^2 = 24.1$, Reject H_0] 15. In a city the percentage of smokers was 90. A random sample of 100 persons was taken and out of them universe 85 were found smokers. Use thi square test and tell whether sample ratio significantly differs from the universe ratio for the city [Ans. $\chi^2 = 2.778$, Accept H_0] 16. The manager of a theatre complex with four theatres wanted to see whether there was a difference in popularity of the four movies currently showing for saburday afternoon matinees. The number of custmers for each movie was recorded for one Satuday afternoon with the following results: 63, 55, 75 and 77 customers viewed movies, 1, 2, 3 and 4 respectively. Complete the test to see whether there is a difference at the 5% level of significance. [Ans. $\chi^2 = 4.78$, Reject H_0] (ii) χ^2 -test as a test of independence of attributes: χ^2 -test enables us to examine whether or not two attributes are associated or independent of one another. For example, we may be interested and wo attributes are associated or independent of one another, For example, we may be inknowing whether a new medicine is effective in controlling fever or not. χ^2 -test will help us in deriding the controlling fever or not. deciding this issue. Procedure : Set up the null hypothesis that the two attributes (viz. new medicine and control of fever) are independent which means that new medicine is not effective in controlling fever. On the basic controlling fever. in are independent which means that new medicine is not effective in controlling rever. On the basis of the null hypothesis, we calculate the expected frequencies by using the following form. following formula: Expected frequency = $\frac{(R) \times (C)}{N}$ Where, R = Row Total, C = Column total, N = Total number of observations. (iii) We compute the χ^2 -value by using the following formula: $$\chi^2 = \Sigma \left[\frac{(O-E)^2}{E} \right]$$ 6 (iv) For a contingency table which has 'r' rows and 'c' columns, degrees of freedom are worked out by using the formula. Degrees of freedom = v = (c - 1) (r - 1) Degrees of freedom = v = (c or table value) of \chi^2 with reference to the degrees of freedom for the view problem and the desired level of significance. Obtain the critical value (or table value) of χ^- with refere the given problem and the desired level of significance. the given problem and the table value at a certain level of significance for (vi) If the calculated value of χ^2 is less than the table value at a certain level of significance for (vi) If the calculated on, we accept the null hypothesis and conclude that are for i) If the calculated value of χ^* is sess than the table value at a certain level of significance for given degrees of freedom, we accept the null hypothesis and conclude that the two attributes are independent (i.e. the new medicine is not effective in controlling the fever). But if the calculated value χ^2 is greater than its table value, we reject the null hypothesis and conclude that the two attributes are associated (i.e. new medicine is effective in controlling fever). Example 16: A sample of 200 persons with a particular disease was selected. Out of them, 100 | | No. of Persons Given | | | | | |-----------|----------------------|---------|------|--|--| | 1.5 | Drug | No Drug | Tota | | | | Curred | 55 | 65 | 120 | | | | Not Cured | 45 | 35 | 80 | | | | Total | 100 | 100 | 200 | | | Test whether the drug has been effective in curing the disease. Solution. Let the null hypothesis be that drug has not been effective in curing the disease. On the basis of this hypothesis, the expected frequencies are calculated as follow: $E_{11} = \frac{100 \times 120}{200} = 60$ $$E_{11} = \frac{100 \times 120}{200} = 60$$ The remaining frequencies can be found by subtractions from the column and row totals. | The expected frequencies to | able would be as follows: | | |-----------------------------|---------------------------|-----| | 60 | 60 | 120 | | 40 | 40 | 80 | | 100 | 100 | 200 | Applying χ^2 - test : | 0 | E | (O - E) | $(O-E)^2$ | $(O-E)^2/E$ | |----------------------|----------------------|----------------|----------------------------|---| | 55
45
65
35 | 60
40
60
40 | -5
+5
+5 | 25
25
25
25
25 | $0.416 \\ 0.625 \\ 0.416 \\ 0.625$ $\Sigma (O - E)^2 / E = 2$ | $$\chi^2 = \Sigma \left[\frac{(O-E)^2}{E} \right] = 2.082$$ Chi-Square Test Degrees of freedom = v = (2-1)(2-1) = 1For v = 1, $\chi_{0.05}^2 = 3.84$ For v=1 , x, uv_2 . Since, the calculated value of χ^2 is less than the table value of χ^2 , we accept the null Since, the calculates that the drug has not been effective in curing the disease. | Lethich. | Attacked | Notes to Pidemic o | f cholera : | |----------------|----------|--------------------|-------------| | Inoculated - | 31 | Not Attacked | Total | | Not Inoculated | 185 | 469 | 500 | | Total | 216 | 1,315 | 1,500 | | | | 1,784 | 2,000 | Use χ^2 test to determine whether inoculation is effective in preventing the Use χ test to a preventing one attack of cholera (Given as 5% level of significance, the value of $\chi^2_{0.05}$ for 1 d.f. = Solution. Let us take the hypothesis that inoculation is not effective in preventing the attack of cholera. On the basis of this hypothesis, the expected frequencies are: $E_{11} = \frac{216 \times 500}{2,000} = 54$ $$E_{11} = \frac{1}{2,000} = 56$$ The remaining frequencies can be found out by subtractions from the column and The expected frequecies table would be as follows: | 54 | 446 | 500 | |-----|------|------| | 162 | 1338 | 1500 | | 216 | 1784 | 2000 | Applying χ²-test: | 0 | E | (O - E) | $(O - E)^2$ | (O - E)2/E | |------|------|---------|-------------|---------------------------------| | 31 | 54 | -23 | 529 | 9.797 | | 185 | 162 | + 23 | 529 | 3-266 | | 469 | 446 | +
23 | 529 | 1.187 | | 1315 | 1338 | - 23 | 529 | 0-396 | | | | | | $\Sigma (O - E)^2 / E = 14.646$ | $$\chi^2 = \Sigma \left[\frac{(O - E)^2}{E} \right] = 14.46$$ Degrees of freedom = v = (r-1)(c-1) = (2-1)(2-1) = 1 For v=1, $\chi^2_{0.05}=3.84$ Since, the calculated value of χ^2 is greater than the table value, we reject the null hypothesis. hypothesis and conclude that inoculation is effective in preventing the attack of cholera. Example 18: Two investigators study the income of group of persons by the method of sampling | Following results | Poor | Middle class | Well-to-do | | |-------------------|------|--------------|------------|------------| | Investigator | 160 | 30 | 10 | Total | | A | 140 | 120 | 40 | 200 | | Total | 300 | 150 | 50 | <u>300</u> | Show that the sampling technique of at least one of the investigator is suspected. (Given the value of $\chi^2_{0.05}$ for 2 d.f. = 5.991) Solution. Let us take the hypothesis that there is no suspicion about the sampling technique of the two investigators. On the basis of this hypothesis, the expected frequencies $E_{12} = \frac{150 \times 200}{500} = 60$ shall be: $$E_{11} = \frac{300 \times 200}{500} = 120,$$ $E_{12} =$ The remaining frequencies can be found out by subtractions from the column and row totals. | Die of exp | ected frequencies | | | |------------|-------------------|----|-----| | 120 | 60 | 20 | 200 | | 180 | 90 | 30 | 300 | | 300 | 150 | 50 | 500 | applying x2-test | 0 | E | (O - E) | $(O-E)^2$ | $(O-E)^2/E$ | |----------|------|---------|-----------|--------------------------------| | 160 | 120 | 40 | 1600 | 13 - 333 | | 140 | 180 | - 40 | 1600 | 8 · 888 | | 30 | - 60 | - 30 | 900 | 15.000 | | 120 | 90 | 30 | 900 | 10.000 | | | 20 | -10 | 100 | 5.000 | | 10
40 | 30 | + 10 | 100 | 3 - 333 | | 40 | 30 | + 10 | 100 | $\Sigma (O - E)^2 / E = 55.55$ | $$\chi^2 = \Sigma \left[\frac{(O-E)^2}{E} \right] = 55.554$$ Degrees of freedom = v = (r-1)(c-1) = (2-1)(3-1) = 2 Since, the calculated value of χ^2 is greater than the table value, we reject the null hypothesis and condition that the same of the hypothesis and conclude that the sampling technique of at least one of the investigators is suspected. Chi-Square Test Example 19: A milk producer's union wishes to test whether the preference pattern of con-sumers for its product is dependent on income levels. A random service of con-individuals gives the following data: | Income | The second second | D _m , 1 | A randon | • | |--------|-------------------|--------------------|-----------|-------| | | Product A | Product B | Preferred | | | Low | 170 | 30 | Product C | Total | | Medium | 50 | 25 | .80 | 280 | | High | 20 | 10 | 60 | 135 | | Total | 240 | 65 | 55 | 85 | | | | 05 | 195 | | Can you conclude that the preference patterns are independent of income levels? (For $$v = 4$$, $\chi^2_{0.05} = 9.49$) Let us take the hypothesis that preference patterns are independent of income levels. On the basis of this hypothesis, the expected frequencies corresponding to different rows and columns shall be: $\begin{array}{ccc} 240\times280 & & 65\times280 \\ & & & & 65\times280 \end{array}$ | E ₁₁ : | $=\frac{\frac{130 \times 230}{500}}{\frac{240 \times 135}{500}} = 134.4$ | | $E_{12} = \frac{65 \times 280}{500} = 36$ $E_{22} = \frac{65 \times 135}{500} = 17$ | | |-------------------|--|---------|---|--| | 134 - 40 | 36-40 | 109-20 | 280 | | | 64.80 | 17.55 | 52-65 | 135 | | | 40.80 | 11.05 | 33 - 15 | 85 | | | 240 | 6E 00 | 105.00 | E00 | | Applying χ^2 - test: | 0 | E | (O - E)2 | $(O-E)^2/E$ | |------|--------|-----------|---------------------------------| | 170 | 134-40 | 1267 - 36 | 9-430 | | 50 | 64.80 | 219-04 | 3 · 3802 | | 20 | 40.80 | 432-64 | 10.603 | | 30 | 36-40 | 40.96 | 1.125 | | 25 | 17.55 | 55.50 | 3.162 | | 10 | 11.05 | 1.10 | 0.099 | | 80 | 109-20 | 852-64 | 7.808 | | 60 | | 54.02 | 1.026 | | | 52-65 | 477 - 42 | 14.402 | | - 55 | 33.15 | 11.12 | $\Sigma (O - E)^2 / E = 51.036$ | $$\chi^2 = \Sigma \left[\frac{(O-E)^2}{E} \right] = 51.036$$ Degrees of freedom = v = (r - 1)(c - 1) = (3 - 1)(3 - 1) = 4For v = 4, $\chi_{0.05}^2 = 14.860$ For v=4, $\chi^2_{0.05}=14^{\circ}$ oov Since, the calculated value of χ^2 is greater than the table value, we reject the $n_{\rm ull}$ Since, the calculated that preference patterns are not independent of income levels. income leveis. In a survey of 200 boys, of which 75 were intelligent, 40 had educated fathers, while 85 of the unintelligent boys had uneducated fathers. Do these figure support the hypothesis that educated fathers have intelligent boys. Use X-tst. Example 20: (The value of χ^2 for 1 degree of freedom at 5% level is 3 · 84), Solution. The given data can be tabulated as follows: | Boys/Fathers | Educated | Uneducated | Tot | |---------------|----------|------------|-----| | Intelligent | 40 | 35 | 7 | | Unintelligent | 40 | 85 | 12 | | Total | 80 | 120 | 20 | Let us take the hypothesis that there is no association between the education of fathers and intelligence of sons. fathers and intelligence of soils. On the basis of this hypothesis, the expected frequencies shall be: $E_{11} = \frac{75 \times 80}{200} = 30$ $$E_{11} = \frac{75 \times 80}{200} = 30$$ The remaining frequencies can be found be subtracting from the column and row The table of expected frequencies shall be as follows: | 30 | 45 | 75 | |----|-----|-----| | 50 | 75 | 125 | | 80 | 120 | 200 | Applying γ^2 -test: | E | $(O-E)^2$ | $(O-E)^2/E$ | |----------|------------|--| | 30
50 | 100
100 | 3 · 333
2 · 000
2 · 222 | | 45
75 | | $\frac{1 \cdot 333}{\sum (O - E)^2 / E = 8 \cdot 888}$ | | | 50
45 | 30 100
50 100
45 100 | $$\chi^2 = \Sigma \left[\frac{(O - E)^2}{E} \right] = 8.888$$ Degrees of freedom = v = (r - 1)(c - 1) = (2 - 1)(2 - 1) = 1 Since, the calculated value of χ^2 is greater than the table value, we reject the roll hypothesis and hence that of χ^2 hypothesis and hence that educated fathers have intelligent boys. Alternative Formula for Finding the Value of χ^2 in a (2×2) table Alternative formula of calculating the value of χ^2 in a (2×2) table. There is an alternative formula of calculating the value of χ^2 in a (2×2) table. If we | a — | - Build (C | otals in case of a (2 × 2) tabl | |-------|------------|---------------------------------| | c - | | n + b | | a + c | b + d | C+d | then the formula for calculating the value of χ^2 will be written as follows: $$\chi^2 = \frac{N \cdot (ad - bc)^2}{(a + c) (b + d) (a + b) (c + d)}$$ where, $N = a + b + c + d$ Note : The alternative formula is rarely used in finding the value of χ^2 as it is not applicable uniformaly in all cases but can be used only in a 2×2 contingency table. In an anti-malaria campaign in a certain area, quinine was administrated to 812 persons out of a total population of 3248. The number of fever cases is shown Example 21. | Treatment | Fever | No Fever | | |------------|-------|----------|-------| | Quinine | 20 | | Total | | | | 792 | 812 | | No quinine | 220 | 2216 | 2436 | | Total | 240 | | | | | 240 | 3008 | 3248 | Discuss the usefulness of quinine in checking malaria. (Given for v=1, Let us take the null hypothesis that the quinine is not effetive in checking malaria. Arrange the given data in a designated form, we have | | Fever | No Fever | Total | |------------|--------------|---------------|---------------| | Quinine | 20 | b
792 | a + b
812 | | No Quinine | 220 | d
2216 | c + d
2436 | | Total | a + c
240 | b + d
3008 | N
3248 | For 2×2 table, using the direct formula of computing χ^2 , we have $$\chi^2 = \frac{N\left(ad-bc\right)^2}{\left(a+c\right)\left(b+d\right)\left(a+b\right)\left(c+d\right)}$$ Putting the values, we have we $$= \frac{3248 (20 \times 2216 - 220 \times 792)^2}{(240) (3008) (812) (2436)} = 38.48$$ Degrees of freedom = v = (c-1)(r-1) = (2-1)(2-1) = 1For v = 1, $\chi_{0.05}^2 = 3.84$ # YATES CORRECTIONS IN A 2×2 TABLE ATES CORRECTIONS IN A STATE OF CONTINUITY IN χ² value calculated in a 2 × 2 table, F. Yates has suggested by Yates in a 2 × 2 table, and the correction suggested by Yates in a 2 × 2 table. F. Yates has suggested corrections for continuity in χ^2 value calculated in a 2×2 table, particularly, when any cell frequency is less than 5. The correction suggested by Yates is Popularly known as Yates' Correction. It involves the reduction of the deviation of observed from expected frequencies which of course reduces the value of χ^2 . The rule for correction is to increase the observed frequencies which is less than 5 by 0.5 and than the remaining frequencies are adjusted by adding or subtracting 0.5 to them without disturbing the marginal totals. The observed value, thus corrected will be represented by O from which deviations of the corresponding expected values, E will be found. Note: In a 2×2 table, the method of pooling cannot be applied Note: In a 2×2 table, the method of pooling cannot be applied. The result of a certain survey of 50 ordinary shops of small size is given bel Example 22: | ne result of a co- | Sho | ps in | Total | |--------------------|-------|----------|-------| | | Towns | Villages | Total | | Run by Men | 17 | 18 | 35 | | Run by Women | 3 | 12 | 15 | | Total | 20 | 30 | 50 | Can it be said that shops run by women are relatively more in villages than in towns. Use χ^2 -test. (Table value of $\chi^2_{0.05}$ for one degree of freedom at 5% level of significance is 3 · 84). Soluiton: Let us take the null hypothesis that shops run by women are equal in number in villages as well as in towns. On the basis of this hypothesis, the expected frequencies will be as
follows: $$E_{11} = \frac{20 \times 35}{50} = 14$$ The remaining frequencies can be found out by subtractions from the column and row totals. | able of expected i | requires will be . | | |--------------------|--------------------|----| | 14 | 21 | 35 | | 6 | 9 | 15 | | 20 | 30 | 50 | Since, one of the observed frequency is less 5, we increase the value of that observed frequency by 0.5 and adjust other frequencies using Yates' corrections. The adjusted observed frequencies after Yates' corrections will be as follow: | and the observed free | delicies after rates corre | 35 | |-----------------------|----------------------------|----| | 17 - 0.5 = 16.5 | 18 + 0.5 = 18.5 | 15 | | 3 + 0.5 = 3.5 | 12 - 0.5 = 11.5 | 50 | | 20 | 30 | | Chi-Square Test With the above expected and corrected observed values, the | 16·5 14
3·5 6 | (O - E) | 10 | | |-------------------|--------------------------------|--------------------------------------|---| | 18·5 21
11·5 9 | 2·5
- 2·5
- 2·5
+ 2·5 | 6·25
6·25
6·25
6·25
6·25 | (O − E) ² /E
0·446
1·042
0·298
0·694 | $$\chi^2 = \Sigma \frac{(O-E)^2}{E} = 2.48$$ Degrees of freedom = v = (c-1)(r-1) = (2-1)(2-1) = 1For v = 1, $\chi^2_{0.05} = 3.84$ Since, the calculated value of χ^2 is less than the table value, we accept the null hypothesis and conclude that number of shops run by women are not relativiely more in villages than in towns. In an experiment on the immunization of goats from Anthrax, the following results were obtained. Derive your inference on the efficacy of the Example 23: | | the efficacy of the vaccine | | | | |--------------------------|-----------------------------|----------|-------|--| | | Diet of Anthrax | Survived | Total | | | Inoculation with vaccine | 2 | 10 | 12 | | | Not inoculated | 6 | 6 | 12 | | | | 8 | 16 | 24 | | Solution. It is quite obvious from the above data that Yates' correction shall be applied here. Let us take the null hypothisis that there is no relationship between Inoculation with vaccine and death from anthrax. | red frea | uencies | Observ | red frequ | uencies | Expe | ction frequenc | ies | |----------|---------|--------|---------------------------|-----------------------|---|--|--| | | 1.07 | with Y | ates' cor | rections | $\frac{12\times8}{4}=4$ | 12 - 4 = 8 | 12 | | 10 | 12 | 2.5 | 9.5 | 12 | 24 | | | | 6 | 12 | 5.5 | 65 | 12 | 8 - 4 = 4 | 12 - 4 = 8 | 12 | | 16 | 24 | 3.5 | | 2. | 8 | 16 | 24 | | | 10 | 6 12 | 10 12 with Y 2.5 6 12 5.5 | 10 12 2.5 9.5 | 10 12 with Yates' corrections 2.5 9.5 12 16 24 5.5 6.5 12 | 10 12 2.5 9.5 12 3.4 4 = 4 | with Yates' corrections 10 12 6 12 5.5 6.5 12 8 -4 12 -4 = 8 24 10 -4 = 8 1 | $$\chi^2 = \frac{(2.5 - 4)^2}{4} + \frac{(9.5 - 8)^2}{8} + \frac{(5.5 - 4)^2}{8} + \frac{(6.5 - 8)^2}{8}$$ = 0.56250 + 0.28125 + 0.56250 + 0.28125 = 1.6875 Degrees of freedom = v = (c-1)(r-1) = (2-1)(2-1) = 1 For v = 1, $\chi^2_{.05} = 3.84$ Since the calculated value of χ^2 is less than the table value, we accept the null hypothesis and conclude that thre is no relationship between inoculation with vaccine and death from anthrax *i.e.* immunization is not effective. 154 Test of Equality of Several Population Proportions Test of Equality of Several ropulation poportions is an extension of the Testing of equality of two or more population poportions is an extension of the χ^2 -test of independence, χ^2 -test is also used to examine the equality two or more χ^2 -test of independence, χ^2 -test of independence, χ^2 -test of procedure. χ^2 -lest of independence. χ consider the equality two population proportions. The following examples clarify the procedure. Example 24: A social organisation claiming to be the promoters of sex education sought the views of parents from the states of Punjab, Bihar and Haryana introducing sex education at the school level. The views of 80 parents selected at random from each of the three states are as follows: | each of the thirt | Punjab | Bihar | Haryana | |-------------------|--------|---------|---------| | | 50 | 20 | 45 | | In favour | 30 | 60 | 35 | | Against | 80. | SO that | | Do the sample provide enough evidence to the view that the proportion of parents in favour of introducing sex education in schools is the same in all three states? Use $\alpha=01$. Solution. Let the null hypothesis be that the proportion of parents in favour of sex education in schools is the same in the three states. In schools is the same after the expected frequencies are calculated as follows: One the basis of this hypothesis, the expected frequencies are calculated as follows: $E_{11} = \frac{80 \times 115}{240} = 38.3$ $E_{12} = \frac{80 \times 115}{240} = 38.3$ The remaining frequencies can be found out by subtracting from the column and ncies would be as follows: | 29. 2 | 38-3 | 38-4 | 115 | |-------|------|------|-----| | 41.7 | 41.7 | 41.6 | 125 | | 80 | 80 | 80 | 240 | | | | | 2 | |--------------------------------------|--|--|---| | Е | (O - E) | $(O-E)^2$ | $(O-E)^2/E$ | | 38.3
38.3
38.4
41.7
41.7 | 11.7
-18.3
6.7
-11.7
18.3
- 6.6 | 44:89
136.89
334.89 | 3.57
8.74
1.169
3.28
8.03
1.04
$\Sigma [(O - E)^2 / E] = 25.88$ | | | E
38.3
38.3
38.4
41.7
41.7 | E (O - E) 38.3 11.7 38.3 -18.3 38.4
6.7 41.7 -11.7 41.7 18.3 | E (O - E) (O - E) ² 38.3 11.7 136.89 38.3 -18.3 334.89 38.4 6.7 44.89 41.7 -11.7 136.89 41.7 18.3 334.89 | $$\chi^2 = \Sigma \left[\frac{(O - E)^2}{E} \right] = 25.83$$ Degrees of freedom = v = (c-1)(r-1) = (3-1)(2-1) = 2For v = 2, $\chi^2_{0.01} \cdot 0.1 = 9.21$ Since, the calculated value of χ^2 is less than the table value of χ^2 , we reject H_0 and Since, the Land Region A is sess than the table value of χ^2 , we reject H_0 and conclude that the proportions of parents in favour of introducing education at the school level are not the same in the three states. The following data gives the HDL-level in random samples of sizes 120, 200, 150 and 130 from the adult population of the four cities A R C | | A | | ies A, B, C and I | D. | |--------------|-----------|-----------|-------------------|-----| | High HDL | 53 | В . | С | - | | Not High DHL | 67 | 80
120 | 68 | - 0 | | | december. | 120 | 82 | 77 | Test the equality of proportions of adults with high HDL Cholesterol in these four cities. Use $\alpha=0.025$. Solution Let P_1,P_2,P_3 and P_4 represents the true proportions of adults with high HDL cholesterol in the cities A, B, C and D respectively. Set up the hypothesis: Set up the hypothesis: $H_0: P_1 = P_2 = P_3 = P_4$ Alternative hypothesis: $H_1: P_1, P_2, P_3$ and P_4 are not all equal. Compute the expected frequency for each observed frequency by the formula (under the hypothesis of independence): (Row Total) (Column Total) Expected Frequency (Row Total) (Column Total) Grand Total . The observed and the expected frequencies are given in Table below. The bold figures in brackets (), represent the corresponding expected frequencies. Observed and Expected Frequencies | | | -Freien riedn | critica | | | |---|--------|---------------|---------|--------|-------| | | Α | В | С | D | Total | | High HDL | 53 | 80 | 68 . | 57 | 258 | | 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | (51.6) | (86) | (64.5) | (55.9) | | | Not High HDL | 67 | 120 | 82 | 73 | 342 | | | (68.4) | (144) | (85.5) | (74.1) | | | Total | 120 | 200 | 150 | 130 | 600 | $$\chi^{2} = \Sigma \left[\frac{(O - E)^{2}}{E} \right]$$ $$= \frac{(53 - 51.6)^{2}}{51.6} + \frac{(80 - 86)^{2}}{86} + \frac{(68 - 64.5)^{2}}{64.5} + \frac{(57 - 55.9)^{2}}{55.9} + \frac{(67 - 68.4)^{2}}{144} + \frac{(82 - 85.5)^{2}}{85.5} + \frac{(73 - 74.1)^{2}}{74.1}$$ $$= \frac{(67 - 68.4)^{2}}{68.4} + \frac{(120 - 114)^{2}}{114} + \frac{(82 - 85.5)^{2}}{85.5} + \frac{(73 - 74.1)^{2}}{74.1} + \frac{(120 - 114)^{2}}{144} + \frac{(120 - 114)^{2}}{144} + \frac{(120 - 114)^{2}}{85.5} +$$ = 0.0380 + 0.4186 + 0.1899 + 0.0216 + 0.0287 + 0.3158 + 0.1433 + 0.0163 = 1.1722Degrees Degrees of freedom: v = (r-1)(c-1) = (2-1)(4-1) = 3resets or reedom: v = (r-1)(c-1) = (2-1)(4-1) = 3recritical value of chi square for 3 d.f. and level of significance 0.025 is $\frac{1}{2}$ $\chi^2_{3(0.025)} = 9.348.$ Since, the computed value of test statistic is less than the critical (tabulated) value, it is not significant. Hence, we fail to reject the null hypothesis at 0.025 level of significance. significance. Conclusion: H_0 may be accepted at level of significance α =0.025 and we may conclude that the proportion of adults with high HDL cholesterol level is most likely the same in all the four cities. Example 26. likely the Santa A. 18 of 250 housewives in Delhi, 22 of 220 housewives in Mumbai It is found that 35 of 200 librase in Mumbal and 39 of 300 housewives in Chandigarh watch at least one talk show every day. At the 0.05 level of significance, test that there is no difference between the true proportions of housewives who watch talk shows in these cities. Let P_1 , P_2 and P_3 represent the true proportion of housewives who watch talk shows in the cities of Delhi, Mumbai and Chandigarh, respectively. shows in the cities of Delhi, Mumbai and Chandigarh, respectively. Null hypothesis: $H_0: P_1 = P_2 = P_3$ Alternative hypothesis: $H_1: P_1, P_2 \text{ and } P_3 \text{ are not all equal.}$ Expected frequencies: Compute the expected frequency for each of the cell frequencies by the formula (under the hypothesis of independence): $\frac{(\text{Row Total}) \ (\text{Columm Total})}{\text{Grand Total}}$ The observed frequencies, along with the expected frquencies [(in the bold in brackets ()] are given in the following Table. Observed and Expected Frequencies | | Delhi | Mumbai | Chandigarh | Total | |--------------|---------|---------|------------|-------| | Watch Talk | 35 | 22 | 39 | 96 | | Show | (31.2) | (27.4) | (37.4) | | | Do not Watch | 215 | 198 | 261 | 674 | | Talk Show | (218.8) | (192.6) | (262.6) | | | Total | 250 | 220 | 300 | 770 | $$\chi^2 = \Sigma \left[\frac{(O - E)^2}{E} \right]$$ $$=\frac{(35-31.2)^2}{31.2}+\frac{(22-27.4)^2}{27.4}+\frac{(39-37.4)^2}{37.4}+\frac{(215-218.8)^2}{218.8}+\frac{(218-192.6)^2}{192.6}+\frac{(261-262.6)^2}{262.6}$$ = 0.4628 + 1.0642 + 0.0684 + 0.0660 + 0.1514 + 0.0097 = 1.8225. The critical value of chi-square for 2 df, and 0.05 level of significance is 5.991. Conclusion: Since, the calcluated value of test statistic ($\chi^2 = 1.8225$ is less than the labulated value) $x^2 = 1.8225$ is less than the labulated value) $x^2 = 1.8225$ is less than the tabulated value) χ^2 =5.991, it is not significant. Thus, the data do not provide enough evidence against 15% level enough evidence against the null hypothesis, which may be accepted at $^{5\%}$ level Chi-Square Test of significance. Hence, we conclude that the proportion of housewives who talk shows is same in all the three cities. 157 # TEST OF HOMOGENITY ST OF HOME The test of homogenity is another extension of the χ^2 -test of independence. Tests of the test of independence are used to determine whether two or more independent random are used. The test of nonnogentry is amounter extension of the χ^2 -test of independence. Tests of homogenity are used to determine whether two or more independent random samples are from the sample population. Instead of one sample as we use with independence problem, we shall now have two or more samples are from each population. whave two have the procedure of the test: A insurance company has introduced a new scheme for employees. Independent random samples of 100 males and 120 females when examined to know their views about the new scheme yielded the following results. Example 27: | 7, 1 | For | tonowing results : | | | |--------|-----|--------------------|-------------|-------| | Male | 25 | Against 40 | Indifferent | Total | | Female | 35 | 55 | 35 | 100 | | Total | 60 | 95 | 65 | 120 | Test the hypothesis at α =-01 that the two samples have come from a homogenous populations. Solution. Let us take the null hypothesis that the two samples have come from a homogenous population. On the basis of the hypothesis, The expected frequencies are calculated as: $$E_{11} = \frac{60 \times 100}{220} = 27.3$$ $E_{12} = \frac{95 \times 100}{220} = 43.2$ The remaining frequencies can be found out by subtracting from the column and row totals. The expected frequencies worked be as follows: | 27 - 3 | 43.2 | 29.5 | 100 | |--------|------|------|-----| | 32.7 | 51.8 | 35-5 | 120 | | . 60 | 95 | 65 | 220 | | 0 | Ε . | (O - E) | $(O-E)^2$ | $(O-E)^2/E$ | |----|------|---------|-----------|-----------------------| | 25 | 27.3 | - 2.3 | 5.29 | 0-1937 | | 40 | 43.2 | - 3.2 | 10-24 | 0-2370 | | 35 | 29.5 | 5.5 | 30-25 | 1·025
0·1617 | | 35 | 32.8 | 2.3 | 5.29 | 0.1976 | | 55 | 51.8 | 3-2 | 10.24 | 0.8521 | | 30 | 35.5 | 5.5 | 30.25 | $(O-E)^2 / E = 2.667$ | $$\chi^2 = \sum_{n=1}^{\infty} \left[\frac{(O-E)^2}{n} \right] = 2 \cdot 6$$ Degrees of freedom = v = (r-1)(c-1) = (2-1)(2-1) = 1 For v = 1, $\chi^2_{.05} = 3.84$ For $v=1, \chi_{.05} = 3$. Since, the calculated value of χ^2 is less than the table value, we accept the null hypothesis and Since, the calculated value of the land value, we accept conclude that the two samples have come from homogenous populations. ### EXERCISE - 3 A survey amongst women was conducted to study the family life. The observations are as follows: | Education | | Family Life | * - y | |--------------|-------|-------------|-------| | Education | Нарру | Not Happy | Total | | Educated | 70 | 30 | 100 | | Non-Educated | 60 | 40 | 100 | | Total Total | 130 | 70 | 200 | Test whether there is any association between familiy life and education. (The table value of $\chi^2_{0.05}$ for 1 d.f. = 3 · 84) [Ans. $\chi^2 = 2.198$, Accept H_0] 2. Calculate the expected frquencies for the following data persuming the two attributes, viz, | | | Condition of Home | | | |--------------------------
--|-------------------|-------|--| | | A DESCRIPTION OF THE PERSON | Clean | Dirty | | | Condition of Child | Clean | 70 | 50 | | | Containion of Containing | Fairly Clean | 80 | 20 | | | | Diety | 35 | 45 | | Use chi-square test at 5% level of signifiance whether the two attributes are indendent. (Table values of chi-square at 5% for 2 d.f. is 5.991 and for 3 d.f. is 7.815 and for 4 d.f. is 9.488.) [Ans. $\chi^2 = 25.848$, Reject H_0] Two researchers adopted different sampling techniques while investigating the same group of students to find the number of students falling in different intelligence level. The results are as follows: | Researcher | | No. of student | s in each level | All I | Total | |------------|------------------|----------------|------------------|--------|-------| | | Below
Average | Average | Above
Average | Genius | 600 | | Х | 137 | 164 | 152 | . 147 | 180 = | | Υ | 32 | 57 | 56 | 35 | 780 | | Total | 169 | 221 | 208 | 182 | | Chi-Square Test Would you say that the sampling techniques adopted by the two researchers are [Ans, $\gamma^2 = 5.93$]. From the following data, find out whether there is any relationship reference for colour: [Ans. $\chi^2 = 5.801$, not different] | Colour | Males | - Original Control of the | up between sex and | |--|--------|--|--------------------| | Green | 40 | Females | | | White | 35 | 60 | Total | | Yellow | 25 | 25 | 100 | | Total | 100 | 15 | 60 | | (Given for $v = 2$, $\chi^{2}_{0.05} =$ | 5.991) | 100 | 200 | (Given the $V = V_0$). [Ans. $\chi^2 = 8.166$, Reject H_0] was taken to know their opinion about autonomos colleges. 290 of the under-graduate actions from the form of a table and test, at 5% level, that the opinion regarding autonomous status. Present these facts in colleges is independent of the level of classes of students. (Table value χ^2 at 5% level is 3.84 (1.4 ft). [Ans. $\chi^2 = 2.66$, Accept H_0] 6. Two treatments A and B were tried to control a certain type of plant disease. The following A: 400 plants were examined and 80 were found infected. B: 400 plants were examined and 70 were found infected. Is the treatment B superior to treatment A? (Given that $\chi^2_{0.05}$ (1) = 3 · 84; $\chi^2_{0.05}$ (3) = 7 · 82) [Ans. $\chi^2 = 0.82$, Accept H_0] In an experiment on immunization of cattle from tuberculosis, the following were obtained: | | Affected | Not Affected | Total | |---------------|----------|--------------|-------| | Inoculated | 4 | 20 | 24 | | No inoculated | 6 | 50 | 56 | | Total | 10 | 70 | 80 | Calculate χ^2 and discuss the effect of vaccine in controlling suspectability to tuberculosis. [Applying Yates' correction] [Ans. $\chi^2 = 2.04$, Accept H_0] 8. The following table gives the f | | Productivity increased | Productivity not increased | Total | |--------------|------------------------|----------------------------|-------| | Automated | 99 | 468 | 500 | | ot Automated | 32 | 1316 | 1500 | | Total | 184 | | 2000 | | - Otal | 016 | 1784 | 2000 | Use χ^2 (Chi-Square) test to determine whether productivity is independent of the automatic. automation ($\chi^2_{0.05}$ at 1 d.f. = 3.84) [Ans. $\chi^2 = 13.395$, Reject H_0] | with sugar phis. The | lped Harmful | No Effect | |----------------------|--------------|-----------| | | 52 10 | 18 | | Drug | 44 10 | 26 | | Suger Pills | | 20 | Test the hypothesis that in the trealment of cold the drug is not at all effective as compared to sugar pills. [Given for v = 2, $\therefore \chi_{.05}^2 \cdot 05 = 5.991$] [Ans. $\chi^2 = 2.12$, Accept H_0] 10. Two sample polls of votes for two candidates A and B for public office are taken, one each from among residents of rural and urban areas. The results are given below. Examine whether the nature of area is related to voting preference in this election? | ether the nature of a | A | В | Total | |-----------------------|------|-------|-------| | Area/Candidate | 620 | 380 | 1000 | | Rural | 550 | 450 | 1000 | | Urban | 1170 | 830 . | 2000 | Given $\chi^2_{0.05} = 3.841, 5.991, 7.82$ for 1, 2 and 3 d.f. respectively. [Ans. $\chi^2 = 10.32$, Accept H_0] 11. Two groups of 100 people each were selected for testing the use of a vaccine. 15 persons contracted the disease out of the inoculated persons in one group, while 25 contracted the disease in the other group. Test the efficacy of the vaccine using the \(\chi^2\) test. (Given of $$v = 1$$, $\chi^2_{0.05} = 3.84$) [Ans. $\chi^2 = 3.124$, Accept H_0] A company has head offices at three places: A, B and C, A random sample of 10 executives posted at A, of 12 posted at B, and of 15 posted at C were examined to find out the number of the company has been placed by the company of | of those suffering from hyp | A | В | . с | |-----------------------------|-----|-----|-----| | Hypertension cases | 4 | . 7 | 9 | | Non-hpertension cases | . 6 | 5 | 6 | Verify at α = 0.01 if the proportion of executives suffering from the hypertension at three head offices are the same. [Ans. χ^2 = 1.0975, Accept H_0] From the adult male population of four large cities, random samples of sizes given below were taken and the number of married and single men recorded. Can we say that the proportion of married men is same in all the four cities? | City → | Α | В | · C | D | Total 600 | |---------|-----|-----|-----|--------------------------|-----------| | Married | 137 | 164 | 152 | 147 | 180 | | Single | 32 | 57 | 56 | 35 | 780 | | Total | 169 | 221 | 208 | 182 [Ans. $\chi^2 = 5$ | A acept h | Chi-Square Test ADDITIVE PROPERTY OF χ^2 ADDITIVE FROM ADDITIVE FROM Chi-Square possesses the additive property. If a number of samples of similar data have been contained there form, it is possible to the them by the simple process of addition. This helps in getting a better than the
problem in hand as instead of Chi-ordinary collected and a number of x values have been obtained there form, it is possible to combine them by the simple process of addition. This helps in getting a better idea about the combine them by the problem in hand as instead of on investigation (or one sample). An investigation was made in eight big cities of a state with. Example 28. An investigation was made in eight big cities of a state with a view to test the effectiveness of inoculation during an epidmic of cholera. The following results 161 | Cities | A | В | C | | | | | results | |----------|------|------|------|--------|------|-----------|-----------|---------| | χ² value | 2.32 | 3.64 | 3.15 | 4 · 54 | 2·24 | F
3.66 | G
4-87 | Н | | 21 | - | 1 | 1 | 1 | 1 | 1 | 1.0/ | 6.72 | Find out the pooled χ^2 for all the eight cities of any state and test your result at $H_0: f_0 = f_c$ (Observed and expected distributions are the same) $H_1: f_0 \neq f_c$ (Difference between observed and expected distributions is significant) $\alpha = .05;$ d.f. = 8, $\chi^2 = 15.507$ Cities A B C D E F G H Total χ^2 value 2·32 3·64 3·15 4·54 2·24 3·66 4·87 6·72 Pooled χ^2 = 31·14 #### INTERPRETATION The table value of χ^2 at 5% level of significance with 1 d.f. is 3-841 and 8 d.f. is 15-507. By the malysis of each city separately, it is clear that the difference is not significant in the cities A, B, C, E and F i.e. the null hypothesis is true where as the difference in cities D, G and H is significant and $\frac{1}{2}$ is the cities D, G and H is significant and $\frac{1}{2}$ is the cities D, C and H is significant and $\frac{1}{2}$ is the cities D, C and H is significant and $\frac{1}{2}$ is the cities D, C and H is significant and $\frac{1}{2}$ is the cities D, C and H is significant and $\frac{1}{2}$ is the cities D, C and H is significant and $\frac{1}{2}$ is the cities D, C and H is significant and $\frac{1}{2}$ is the cities D, C and H is significant and $\frac{1}{2}$ is the cities D, C and H is significant and $\frac{1}{2}$ is the cities D, C and H is significant and $\frac{1}{2}$ is the cities D, C and H is significant and $\frac{1}{2}$ is the cities D, C and H is significant and $\frac{1}{2}$ is the cities D, C and H is significant and $\frac{1}{2}$ is the cities D, C and H is significant and $\frac{1}{2}$ is the cities D, C and H is significant and $\frac{1}{2}$ is the cities D, C and H is significant and $\frac{1}{2}$ is the cities D, C and H is significant and $\frac{1}{2}$ is the cities D, C and H is significant and $\frac{1}{2}$ is the cities D, C and H is significant and $\frac{1}{2}$ is the cities D, C and D the null hypothesis is not ture. But the combined (or pooled) calculated χ^2 is 31·14 which is greater than 15·507. Thus combined value is greater than the table value; hence the difference in the cities together is significant. That is the null hypothesis is not true by considering all the cities together. Example 29: ### MISCELLANCEOUS SOLVED EXAMPLES A controlled experiment was conducted to test the effectivencess of a new drug. Under this experiment 300 patients were treated with the new drug and 200 Were not treated with the angle of the experiments are presented. were not treated with the drug. The results of the experiments are presented below. Using the Chi-square test, comment on the effectiveness of drug. | Details | Cured | Condition worsened | No
effect | Total | |-------------------------------|------------|--------------------|--------------|------------| | Treated with the new drug | 200 | 40
30 | 60
50 | 300
200 | | Not treated with the new drug | 120
320 | 70 | 110 | 500 | Solution. Let us take the hypothesis that the new drug is not effective. On the basis of this hypothesis, the expected frequencies are calculated as follows: $E_{11} = \frac{320 \times 300}{500} = 192; \qquad E_{12} = \frac{70 \times 300}{500} = 42 \text{ and so on.}$ The remaining frequencies can be found out by subtraction from the column and row totals. The expected frequencies is given below: | 192 | 42 | 66 | 300 | |-----|----|-----|-----| | 192 | 28 | 44 | 200 | | 120 | 70 | 110 | 500 | | 320 | 70 | | | · 1 --- · 2 tost · | 192 | 0 | | (O - E) ² /E | |-----------------------|------------------------------------|--------------------------------|--| | 128
42
28
66 | 8
- 8
- 2
2
- 6
+ 6 | 64
64
4
4
36
36 | 0·333
0·500
0·095
0·143
0·545
0·818 | | | 42
28 | 42 -2
28 2
66 -6 | 42 | $$\chi^2 = \Sigma \left[\frac{(O-E)^2}{E} \right] = 2 \cdot 434$$ Degrees of freedom = v = (c-1)(r-1) = (3-1)(2-1) = 2 For v = 2, $\chi_{.05}^2 = 5.99$ Since, the calculated value $% \left(\frac{1}{2}\right) =0$ of $\chi ^{2}$ is less than the table value, we accept the hypothesis and conclude that the drug is effective. #### Example 30: # Fit a Poisson Distribution and test the goodness of fit from the following data: | It u I Olobott B lotte | | | | | | m1 | |--------------------------|-----|-----|----|---|---|-------| | No. of mistakes per page | . 0 | . 1 | 2 | 3 | 4 | Total | | No. of pages | 211 | 90 | 19 | 5 | 0 | 325 | (Given $e^{-0.44} = 0.6440$) #### Solution. | Mistake (X) | Pages (f) | JA 0 | |-------------|-----------|------------------| | 0 | 211 | 90 | | 1 | 90 | 38 | | 2 | 19 | 15 | | 3 | 5 | 0 | | 4 | 0 | $\Sigma f X = 1$ | | | 56 - 225 | 4/1 | Chi-Square Test $$\overline{X} = m = \frac{\Sigma f x}{\Sigma f} = \frac{143}{305} = \cdot 44$$ By Poisson distibution, the expected frequency (number) of pages containing \boldsymbol{x} mistakes is given by : $$f(X) = N \cdot P(X) = 325 \times \frac{e^{-44} \times (\cdot 44)^x}{}$$ 163 Also $P(0) = e^{-44} = .6440$ Computation of Expected Frequencies Computation of Expected For | X | $fe(x) = N \times P(x)$ | _ | |---|---|-------------------| | 0 | $f(0) = 325 \times e^{-44} = 325 \times 64470$ | E. | | 1 | $f(1) = f(0) \times \frac{m}{1} = 209 \cdot 30 \times \cdot 44$ | = 209 · 30 | | 2 | $f(2) = f(1) \times \frac{m}{2} = 92.14 \times \frac{44}{2}$ | = 92.09 | | 3 | $f(3) = f(2) \times \frac{m}{3} = 20.26 \times \frac{44}{3}$ | = 20·26
= 2·97 | | 4 | $f(4) = f(3) \times \frac{m}{4} = 2.97 \times \frac{44}{4}$ | = 2.97 | (b) Test of Goodness of Fit: Let us teke the hypothesis that there is no difference between the observed and expected frequencies. Since, the frequency at one corner are less than 5, they would be combined with the adjacent frequency: | 0 | E | . (O – E) | $(O - E)^2$ | (O - E)2/E | |-----|-------|-----------|-------------|--------------------------------| | 211 | 209.3 | +1.7 | 2.89 | -0138 | | 90 | 92.09 | - 2.09 | 4-368 | 0.0474 | | 19 | 20.26 | -1.26 | 1.587 | 0.078 | | 5 | | | 1 | | | 0 | 3.29 | +1.71 | 2.924 | 0.88 | | | | | | $\Sigma(O - E)^2 / E = 1.0192$ | $$\chi^2 = \Sigma \left[\frac{(O-E)^2}{E} \right] = 1.0192$$ Degrees of freedom (v) = n-2=4-2=2 $\chi^{2}_{.05}$ for 2 d.f. =5.99. Since, the calculated value of χ^2 is less than the table of χ^2 , we accept the null hypothesis and conclude that the fit is good. Example 31: Four coins are tossed 160 times and the following results were obtained: 2 No. of heads Observed frequency Under the asumption that coins are unbiased, find the expected frequencies of getting 0, 1, 2, 3, or 4 heads and test the goodness of fit. getting 0, 1, 2, 3, or which the coins are undiased, the expected frequencies of getting On the assumption that the coins are undiased, the expected frequencies of getting 0, 1, 2, 3, and 4 heads will be given by the formula of binomial distribution: $f(X) = N.P(X) = N. \frac{n}{c_X} \cdot q^{n-X} \cdot p$ Solution. $$f(X) = N.P(X) = N. \quad \mathcal{E}_X \cdot q \qquad P$$ Here, $p = P(H) = 1/2$, $q = P(T) = 1 - \frac{1}{2} = \frac{1}{2}$, $n = 4$, $N = 160$ | No. of Heads | $fe(X) = N \times P(X)$ | E. | |--------------|--|------| | 0 | $160 \times {}^{4}C_{0} \left(\frac{1}{2}\right)^{4} \cdot \left(\frac{1}{2}\right)^{0}$ | = 10 | | 1 | $160 \times {}^{4}C_{1} \left(\frac{1}{2}\right)^{3} \cdot \left(\frac{1}{2}\right)^{1}$ | = 40 | | 2 | $160 \times {}^{4}C_{2} \left(\frac{1}{2}\right)^{2} \cdot \left(\frac{1}{2}\right)^{2}$ | = 60 | | 3 | $160 \times {}^{4}C_{3} \left(\frac{1}{2}\right)^{1} \cdot \left(\frac{1}{2}\right)^{3}$ | = 40 | | 4 | $160 \times {}^{4}C_{4} \left(\frac{1}{2}\right)^{0} \cdot \left(\frac{1}{2}\right)^{4}$ | = 10 | (b) Test of Goodness of Fit: Let us take the hypothesis that there is no difference between the observed frequencies and expected frequencies. | 0 | E | (O - E) | $(O-E)^2$ | $(O-E)^2/E$ | |----|----|---------|-----------|------------------------| | 17 | 10 | 7 | 49 | 4.900 | | 52 | 40 | 12 | 144 | 3.600 | | 54 | 60 | - 6 | 36 | 0.600 | | 31 | 40 | -9 | 81 | 2.025 | | 6 | 10 | - 4 | 16 | $\Sigma(O-E)^2/E=12.7$ | $$\chi^2 = \Sigma \left[\frac{(O-E)^2}{E} \right] = 12.725$$ Degrees of freedom (v) = n-1=5-1=4 Tabulated value of $\chi^2_{.05}$ for 4 d.f. = 9.49. Since, the calculated value of χ^2 is greater than the table value, we reject the hypothesis x=1hypothesis and hence conclude that the fit is poor. #### Example 32: | Given the following actual a | nd theoretica | l frequencies, | test the goodness | |------------------------------|---------------|----------------|-------------------| | Actual Frequency | . 25 | 50 | 75 90 | | Theoretical Frequency | 26 | 54 | 72 | Let us take the hypothesis that there is no difference in the actual frequencies and | Comp | utation | of | y 2 | |------|---------|----|-----| | | | | | | | | 1 | M OF X- | | | |-----|-------|-----|---------|----------|---------------------------| | | O | E | (O - E) | | | | | 25 | 36 | - 11 | (O - E)2 | (O - E) ² / E | | 100 | 50 | 54 | -4 | 121 | 3 · 361 | | |
75 | 72 | +3 | 16 | 0-296 | | | 102 | 90 | + 12 | 9 | 0.125 | | | | 1 7 | - 12 | 144 | 1-600 | | _ | 1 * 1 | 1 | | | $\Sigma(O-E)^2/E = 5.392$ | $$\chi^2 = \Sigma \left[\frac{(O-E)^2}{E} \right] = 5 \cdot 382$$ Degrees of freedom (v) = n-1=4-1=3 For v = 3, $\chi^2_{0.05} = 7.815$. Since, the calculated value of χ^2 is less than the table value, we accept the hypothesis and therefore conclude that the there is no difference in the actual frequencies and theoretical frequencies i.e. the fit is good. Example 33. In a certain sample of 2000 families, 1400 families are consumers of tea. Out of 1800 Hindu families, 1236 families consume tea. Use Chi-square test to test whether there is any significant difference between the consumption of tea among Hindu and Non-Hindu families. Use 5% level of significance. Solution. The above data can be conveniently arranged in the following table as: | | Hindu | Non-Hindu | Total | |-----------------------------------|-------|-----------|-------| | No. of families consuming tea | 1236 | 164 | 1400 | | No. of families not consuming tea | 564 | 36 - | 600 | | Total | 1800 | 200 | 2000 | Let the null hypothesis be that there is no significant difference between the consumers of tea among Hindu and Non-Hindu families or that the two attributes (consmption of tea and community) are independent. On the basis of this hypothesis, the expected frequencies are. $E_{11} = \frac{1800 \times 1400}{2000} = 1260$ $$E_{11} = \frac{1800 \times 1400}{2000} = 1260$$ Te remaining frequencies are found out by subtracting from the column and row totals. Th | ie expe | cted frequencie | es table would be | as follows. | |------------|-----------------|-------------------|-------------| | × 1 | 1260 | 140 | 1400 | | ATT BOX SE | 540 | 60 | 600 | | 41 252 | 1800 | 200 | 2000 | | plying χ test. | E | $(O-E)^2$ | (O - E)2/E | |----------------|------|-----------|---------------------| | 1236 | 1260 | 576 | 0·457 | | 564 | 540 | 576 | 1·067 | | 164 | 140 | 576 | 4·114 | | | 60 | 576 | 9·600 | | 30 | pl. | | $\Sigma(O-E)^2/E =$ | $$X^2 = \Sigma \left[\frac{(O - E)^2}{E} \right] = 15 \cdot 238$$ Degrees of freedom = v = (r-1)(c-1) = (2-1)(2-1) = 1 For v = 1, $\chi^2_{.05} = 3.84$ Since, the calculated value of χ^2 is much greater than the table value of χ^2 , we reject the null hypothesis and conclude that the two communities differ significantly as regard to the consumption of tea among them. # IMPORTANT POINTS Chi-square (χ^2) test is used for : (i) Testing the Significance of Population Variance χ^2 -test is used to test the significance of the population variance. The significance is tested by using the formula: rmula: $$\chi^2 = \frac{\Sigma (x - \bar{x})^2}{\sigma^2} \qquad \text{or} \qquad \frac{ns^2}{\sigma^2} \qquad \text{or} \qquad \frac{(n-1)\bar{s}}{\sigma^2}$$ Degrees of freedom v=n-1 Now the calculated value of χ^2 > tabulated value of χ^2 , we reject the null hypothesis H_0 Otherwise, we accept H_0 . (ii) Testing the independence of attributes in a contingency table of order $r \times c$. In case of contingency table, we set up the hypothesis that the two attributes are independent and on the basis of this assumption, we calculate expected frequency of each call with the fall and f cell with the following formula: Expected frequency (E) = Total of row in which it occurs × Total of column in which it occurs Total no. of observations and finally we calculate $$X^2 = \frac{\Sigma(O-E)^2}{E}$$ Degrees of freedom = (r-1) (c-1)Now, if calculated value of χ^2 < tabulated value of χ^2 at 5% level of significance for (r-1)(c-1) d.f., we accept our hypothesis otherwise reject it and conclude accordingly. Chi-Square Test (iii) Testing the goodness of fit. Testing the goodness of Π . χ^2 -test is used in testing the hypothesis that the observed sample distribution agrees with the theoretical distribution i.e., there is no difference between the observed and expected frequencies. The significance of the difference between observed and expected are tested as follows: Given that: d.f.=k-1 Now if the calculated value of χ^2 \chi^2 for (k-1), d.f., then we accept the hypothes # QUESTIONS - 1. Describe the χ^2 -test of significance and state the various uses to which it can be put. - (a) What is χ²-test of goodness of fit? What precautions are necessary while using this test? (b) What is Chi-square test of independence ? Under what conditions is it applicable ? - What is χ^2 -test? Give various uses of χ^2 -test. What are the limiting values of χ^2 ? How will you determine the degrees of freedom for χ^2 -test? - 4. Discuss the uses of χ^2 -test. - 5. Discuss the precautions which should be kept in mind while using χ^2 -test. # F-Test and Analysis of Variance INTRODUCTION Analysis of Variance (abbreviated as ANOVA) is one of the most powerful techniques of statistical analysis. It was developed by R.A. Fisher. Initially, this technique was used in statistical analysis. It was developed by R.A. Fisher Initially, this technique was used in statistical analysis. It was developed by R.A. Fisher Initially, this technique was used in sacricular experiments but now a days it is widely used in natural, social and physical science. This technique is used to test whether the different varieties of seeds or fertilisers applied on different plots of land differ whether the different varieties of seeds or fertilisers applied on different plots of land different self-significantly or not as regard their average yields. A manager of a firm may use this technique to significantly or not as regard their average yields. A manager of a firm may use this technique to significantly or not as regard their average yields. A manager of a firm may use this technique to significantly or not as regard their average yields. A manager of a firm may use this technique to significantly or not as regard their average yields. A manager of a firm may use this technique to significantly or not as regard their average yields. A manager of a firm may use this technique to significantly or not as regard their average yields. A manager of a firm may use this technique to make yields and yields a firm of the properties ### MEANING OF ANALYSIS OF VARIANCE Analysis of variance is a statistical technique with the help of which the total variation of the data is split up into various components which may be attributed to various "sources" or "causes" of variation. There may be variation between the samples and also within the samples. By comparing the variance between the samples and variance within samples, analysis of variance comparing the variance between the samples and variance within samples, analysis of variance helps in testing the homogenity of several population means. In the words of Yule and Kendell, "The analysis of variance is essentially a procedure for testing the difference between different groups of data for homogenity" To quote R.A. Fisher, "Analysis of variance is the separation of the variance ascrible to one group of causes from the variance ascrible to other groups." Thus, the analysis of variance obtains a measure of the variance within the samples and also variance between the samples and the test the circuit forces of the difference between the means of two of between the samples and then test the significance of the difference between the means of two or more populations more populations. # ASSUMPTIONS OF ANALYSIS OF VARIANCE The underlying assumptions for the study of analysis of variance are: (1) Normal Population: All the population from which samples have been drawn are normally distributed. (2) Independence of Samples: The samples are randomly and independently drawn from the population. That is, each of the sample is independent of the other samples. (3) Same Population Variance. (3) Same Population Variance: The population from where the samples have been taken should have equal population. should have equal variance $(\sigma_1^2 = \sigma_2^2 = ... = \sigma^2$, say) where σ^2 is unknown. FTest and Analysis of Variance and Additivity: The sum of variances of all the components should be equal to the total variance. (a) Auyariance, yariance technique is valid under the above assumptions. Otherwise the results the analysis of variance technique is valid under the above assumptions. Otherwise the results The analysis of the less importance. USES AND UTILITY OF ANALYSIS OF VARIANCE The following are some of the uses of analysis of variance: The following are some of the uses of analysis of variance: The following are some of the uses of analysis of variance: Test of the significance between the means of several samples: The analysis of variance is used to test the hypothesis whether the means of several samples are significantly different or not. different or not. (2) Test of the significance between the variance of two samples: F-ratio in the analysis of variance is used to test the significance of the difference between the variance of two samples. samples. 3) Study of homogenity in case of two-way classification: Homogenity of data can also be studied in analysis of variance of two-way classification because in this case the data are classified into different parts on two bases. classified into diluterative parts of the obligation of variance is used to test the significance of multiple correlation coefficient. The linearity of regression is also tested with its help. # TECHNIQUE OF ANALYSIS OF VARIANCE The technique of analysis of variance is studied under the following two headings (A) One way Classification, and (B) Two way Classification. (A) One way Classification: In one-way classification, the data are classified on the basis of one factor or criterion only. For example, the yields of several plots of land may be classified according to different types of seeds, fertilisers, etc. In case of one-way
classification, the analysis of variance can be done by the following methods: (1) Direct Method (2) Short-cutn Method (3) Coding Method (1) Direct Method: Under direct method, the following steps are followed: (i) Null Hypothesis , H₀: μ₁ = μ₂ = ... μ_k i.e., the means of the population from which the samples have been taken are equal and there is no difference among them. (ii) Variance have been taken are equal and there is no difference among them. samples have been taken are equal and there is no difference among mem. (ii) Variance between the samples: Compute the mean (x̄) of each sample. Find the combined mean (x̄) of all the sample means. Take deviations from x̄ i.e., compute x̄ − x̄ and then source the sample means. Take deviations from x̄ i.e., compute x̄ − x̄ and then source the sample means. square these deviations $(\bar{x} - \bar{x})^2$. Find the sum of these squared deviations and divide it by these deviations $(\bar{x} - \bar{x})^2$. Find the sum of these squared deviations and drive any find the variance between the samples. Symbolically, Sum of squares of the deviations between samples (SSB) $= n_1 \left(\overline{x}_1 - \overline{\overline{x}}_2 \right)^2 + n_2 \left(\overline{x}_1 - \overline{\overline{x}}_2 \right)^2 \dots + n_k \left(\overline{x}_k - \overline{\overline{x}} \right)^2$ Degrees of freedom, Variance between samples = (MSB) = $\frac{332}{k-1}$ (iii) Variance within samples: Take the deviations in each sample from the respective sample means, $x_1 - \overline{x}_1$, $x_2 - \overline{x}_2$... and find their squares, $(x_1 - \overline{x}_1)^2$, $(x_2 - \overline{x}_2)^2$. Divide the sum of these squares of deviations by relevant degrees of freedom $v_2 = N - k$, where N is the total number of observations. Thus, we find the variance with samples. Symbolically, Sum of squares of the deviation within samples (SSW) $= (x_1 - \overline{x}_1)^2 + (x_2 - \overline{x}_2)^2 + ... + (x_k - \overline{x}_k)^2$ $$=(x_1-\overline{x}_1)^2+(x_2-\overline{x}_2)^2+...+(x_k-\overline{x}_k)^2$$ Degrees of freedom, $v_2 = N - k$ Degrees of freedom, $v_2 = N - k$ Variance within the samples (MSW) = $\frac{SSW}{N - k}$ (iv) Analysis of Variance Table: The results of the above calculations is presented in a lable, called Analysis of variance or ANOVA table as follows: #### ANOVA Table | Sources of
Variation | Sum of squares | Degrees of
freedom (d.f.) | Mean sum of squares (MSS) | F-ratio | |-------------------------|---|------------------------------|---------------------------------------|-----------------------| | Between
Samples | $\Sigma n_k \left(\overline{x}_k - \overline{\overline{x}} \right)^2 $ (SSB) | k-1 | $\frac{\text{SSB}}{k-1} = \text{MSB}$ | $F = \frac{MSB}{MSW}$ | | Within Samples | $\Sigma (x - \overline{x}_k)^2 \text{ (SSW)}$ | N - k | $\frac{\text{SSW}}{N-k} = MSW$ | JORGE | | Total | $\Sigma (x - \overline{\overline{x}})^2$ (TSS) | N -1 | | | (v) The calculated value of F is compared with the table value of F for (k-1, N-k) d.f. at a specified level of significance. If the calculated value of F is less than the table value of F, we accept the null hypothesis and conclude that all population means are equal, otherwise they may be taken to be unequal. The following examples illustrate the procedure involved under direct method: Example 1. Three varieties A, B and C of wheat are sown in four plots each and the following | Plots | | Varieties | - X | |-------|-------------------|-----------|----------| | | A | В | C | | 1 | 8 | 7. 7. | 12 | | 2 | 10 | 5 | 9 | | 3 | 7 | 10 | 13 | | 4 | 14 | 9 | 12
14 | | | The second second | 0 | 14 | Set up a table of analysis of variance and find out where there is a significant difference between the mean yields of these varieties. (Given $F_{05} = 4 \cdot 26, 3 \cdot 38$ and 3.88 at d.f. (9, 2) (3, 9) and (2, 12) respectively). Solution. Null hypothesis $H_0: \mu_1 = \mu_2 = \mu_3$ i.e., mean yields of three varieties are the same FTest and Analysis of Variance | Compu | station of Arithmetic Mean | 12 | |-----------------------------|--|---| | X_1 | | | | 8 | X ₂ | | | 10 | 7 | X ₃ | | 7 | 5 | 12 | | 14 | 10 | 9 | | - 11 | 9 | 13 | | $\Sigma X_1 = 50 \ n_1 = 5$ | $\Sigma X_2 = 40 n_2 = 5$ | 12 | | Grand Mean, or | $\overline{x}_1 = \frac{50}{5} = 10, \overline{x}_2 = \frac{40}{5} = 8,$ $\overline{\overline{x}} = \frac{10 + 8 + 12}{3} = 10$ | $\sum X_3 = 60 n_3 = 5$ $\overline{X}_3 = \frac{60}{5} = 12$ | Variance between Samples Sum of squares of the deviations between samples (SSB) SSB = $$n_1 (\bar{x}_1 - \bar{x})^2 + n_2 (\bar{x}_2 - \bar{x})^2 + n_3 (\bar{x}_3 - \bar{x})^2$$ = $5 (10 - 10)^2 + 5 (8 - 10)^2 + 5 (12 - 10)^2$ $=5 \times 0 + 5 \times 4 + 5 \times 4 = 40$ Degrees of freedom, $v_1 = k - 1 = 3 - 1 = 2$ Variance between samples (MSB) = $\frac{\text{SSB}}{k - 1} = \frac{40}{2} = 20$ #### Variance within Samples | X ₁ | $(X_1 - \overline{x}_1)$ | $(X_1-\overline{x}_1)^2$ | X ₂ | $(X_2-\overline{x}_2)$ | $(X_2-\overline{x}_2)^2$ | X ₃ | $(X_3 - \overline{x}_3)$ | $(X_3-\overline{x}_3)^2$ | |----------------|--------------------------|--|----------------------|------------------------|--|------------------|--------------------------|---| | 8 | - 2 | 4 | 7 | -1 | 1 | 12 | 0 | 0 | | 0 | 0 | 0 | 5 | - 3 | 9 | 9 | - 3 | 9 | | 7 | - 3 | 9 | 10 | 2 | 4 | 13 | + 3 | 9 | | 14 | +4 | 16 | 9 | 1 | 1 | 12 | +0 | , 0 | | =10 | +1 | 1 | 9 | 1 | 1 | 14 | + 2 | 4 | | -10 | | $\Sigma (X_1 - \overline{x}_1)^2 = 30$ | $\overline{x}_2 = 8$ | la Li | $\Sigma (X_2 - \overline{x}_2)^2 = 16$ | $\bar{x}_3 = 12$ | | $\sum (X_3 - \overline{x}_3)^2$ = 14 \times | Sum of the squares of the deviations within samples (SSW) eviations within samples (SSW) $$SSW = \sum (x_1 - \overline{x}_1)^2 + \sum (x_2 - \overline{x}_2)^2 + \sum (x_3 - \overline{x}_3)^2$$ = 30 + 16 + 14 = 60 Degrees of freedom, $$v_2 = N - k = 15 - 3 = 12$$. Variance with samples (MSW) = $\frac{SSW}{N - k} = \frac{60}{12} = 5$ | Sources of | Sum of squares | Degrees of freedom (d.f.) | Mean sum of squares (MSS) | | |-----------------------------|----------------|---------------------------|-----------------------------------|-----| | Variation
etween Samples | 40 (SSB) | 2 | $\frac{40}{2} = 20 \text{ (MSB)}$ | 1 | | lithin Samples | 60 (SSW) | 12 | $\frac{60}{12} = 5$ (MSW) | | | Total | 100 (TSS) | 14 | | -,4 | For $v_1 = 2$, $v_2 = 12$, the table value of F at 5% level os significance is 3.88. Since, the computed value of F is greater than the table value i.e., $F > F_{0.05}$, we reject null hypothesis and conclude that the difference between the mean yields of 3 varieties is significant. the difference between the mean yields of varieties is significant. (2) Short cut Method: The direct method is much calculative and time consuming and moreover, the calculation becomes more complicated when the arithmetic mean is not in whole number. In such a case, short-cut method is used. It involves the following steps: (i) Find the sum of all sample observations and their squares: Sum of the sample values = ΣX_1 , ΣX_2 , ΣX_3 , ... ΣX_k Sum of the squares of sample values = ΣX_1^2 , ΣX_2^2 , ΣX_3^2 , ... ΣX_k^2 (ii) Find the correction factor: To obtain the correction factor, divide the square of the total of all values by the number of values *i.e.*, $$C.F. = \frac{T^2}{N}$$ where, C.F.= Correction factor, T^2 = Square of the total units of the samples N =Total no. of units of the samples N=Total no. of units of the samples (iii) Find the total sum of squares, TSS: To find the total sum of squares subtract correction factor from the sum of the squares of all samples values i.e., $TSS = (\Sigma X_1^2 + \Sigma X_2^2 + ... \Sigma X_k^2) - \frac{T^2}{N}$ $$TSS = (\Sigma X_1^2 + \Sigma X_2^2 + \dots \Sigma X_k^2) - \frac{T^2}{N}$$ (iv) Find the sum of squares between samples, SSB: To find the SSB, divide the sum of the squares of each samples by their size and then find their sum. Subtract the correction factor from this sum i.e., SSB = $$\left[\frac{(\Sigma X_1)^2}{n_1} + \frac{(\Sigma X_2)^2}{n_2} + \dots + \frac{(\Sigma X_k)^2}{n_k} \right] - \frac{T^2}{N}$$ (v) Find the sum of squares within samples, SSW: It is obtained by deducting the sum of squares between the samples from the total sum of squares i.e., (vi) Analysis of Variance Table and Interpretation of Significance: Analysis of variance table and interpretation are the same as in case of direct method. Note: In case sample sizes are asset to the same as in case of direct method. Note: In case sample sizes are unequal, there is no change in the analysis of variance. Ulmost care must be taken while calculating degrees of freedom in such cases. Fifest and Analysis of Variance Three varieties A, B and C of wheat are sown in following yields per acre were obtained. | A | Varieties | |----|---------------------| | | | | 8 | B | | 10 | 7 | | 7 | 5 | | 14 | 10 | | | 9 | | | 10
7
14
11 | Is there any significant difference in the production of three varieties? Use Null hypothesis, $H_0: \mu_1 = \mu_2 = \mu_3$ i.e., there is no difference between the mean | 1 1 | | | В | | | |-----------------------------|-----------------------------|------------------------------|----------------------|---------------------------|-----------------------------| | <i>X</i> ₁ | X ₁ ² | , X ₂ | X22 | X ₃ | ν2 | | 8 | 64 | 7 | 49 | 12 | X ₃ ² | | 10 | 100 | 5 ' | 25 | 0 | 144 | | 7 | 49 | 10 | 100 | 13 | 81
169 | | 14 | 196 | 9 | 81 | 12 | 144 | | 11 | 121 | 9 | 81 | 14 | 196 | | $\Sigma X_1 = 50$
$n_1 = 5$ | $\Sigma X_1^2 = 530$ | $\Sigma X_2 = 40.$ $n_2 = 5$ | $\Sigma X_2^2 = 336$ | $\sum X_3 = 60$ $n_3 = 5$ | $\Sigma X_3^2 = 734$ | $$T = \Sigma X_1 + \Sigma X_2 + \Sigma X_3 = 50 + 40 + 60 = 150$$ Correction Factor, $$C.F. = \frac{T^2}{N} = \frac{(150)^2}{15} = 1500$$ TSS = Total sum of squares $=(\Sigma X_1^2 + \Sigma X_2^2 + \Sigma X_3^2) - C.F.$ =530 + 336 + 734 - 1500 = 100 SSB = Sum of squares between samples $$= \begin{cases} \frac{(2X_1)^2}{n_1} + \frac{(2X_2)^2}{n_2} + \frac{(2X_3)^2}{n_2} - C.F. \\ = \left[\frac{(50)^2}{5} + \frac{(40)^2}{5} + \frac{(50)^2}{5} \right] - 1500 \\ = \frac{1}{5} \cdot [2500 + 1600 + 3600] - 1500 = 1540 - 1500 = 40 \end{cases}$$ SSW = TSS - SSB = 100 - 40 = 60. For $v_1 = 2$, $v_2 = 12$, the table value of F at 5% level of significance is 3-88. Since the calculated value of F is greater than the table value i.e., $F > F_{0.05}$, we reject the null hypothesis and hence, conclude that the difference between the mean yields of three varieties is significant. value of the conclude that the difference between the mean yields of three varieties is significant. (3) Coding Method: The short-cut method becomes tedious when the magnitude of the given (3) Coding method simplified the calculations involved in the short-cut method and is values is large. Coding method simplified the calculations involved in the short-cut method and is popularly used in practice. Coding refers to the addition, subtraction, multiplication or division of popularly used in practice. Coding refers to the addition, subtraction, multiplication or division of the atlay is a common factor or if a change if all the given values are coded i.e., either multiplied or divided by a common factor or if a common figure is either subtracted or added to each of the given values. By this method, big figures are reduced in magnitude by subtraction or division and the work in simplified without figures are reduced in magnitude by subtraction or division and the work in simplified without faltering the value of F. Analysis of variance table and interpretation are the same as in case of short-cut method. short-cut method. The following examples illustrate the coding method: The following table gives the yields of four varieties of wheat grown in 2 plots: Example 3 | Plots | | Varieties | | | | |-------|-----|-----------|-----|-----|--| | 11000 | A | В | C | D | | | 1 | 200 | 230 | 250 | 300 | | | , | 190 | 270 | 300 | 270 | | | 2 | 240 | 150 | 145 | 180 | | Is there any significant difference in the production of these varieties? Solution. Null hypothesis, $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$ i.e., there is no significant difference in the mean yield of four varieties. In order to simplify the calculation, subtract 200 from each sample value and dividing the difference by 10. | | | Cod | led Data | State of the last | | | $\overline{}$ | |--------------------------|-----|----------------------------|---------------------|----------------------------|---------------------------------|---|----------------------| | | A | | В | (| 2 | | v ² | | X ₁ | X12 | X ₂ | X22 | X ₃ | X ₃ ² | X ₄ | 100 | | 0 | 0 | 3 | 9 | 5 | 25 | 10 | 49 | | -1 | 1 | 7 | 49 | 10 | 100 | , , | 4 | | 4 | 16 | - 5 | 25 | -5.5 | 30 - 25 | 15 | $\Sigma X_4^2 = 153$ | | $ \Sigma X_1 = n_1 = 1 $ | | $\Sigma X_2 = 5$ $n_2 = 3$ | $\Sigma X_2^2 = 83$ | $\sum X_3 = 9.5$ $n_3 = 3$ | ΣX_3^2 $= 155 \cdot 25$ | $ \begin{array}{c} -2 \\ \Sigma X_4 = 15 \\ n_4 = 3 \end{array} $ | | Flest and Analysis of Variance $$T = \Sigma X_1 + \Sigma X_2 + \Sigma X_3 + \Sigma X_4 = 3 + 5 + 9 \cdot 5 + 15 = 32 \cdot 5$$ Correction Factor, $$C.F. = \frac{T^2}{N} = \frac{(32.5)^2}{(32.5)^2} = 88 \cdot 02$$ $$TSS = \text{Total sum of squares}$$ $$= [\Sigma X_1^2 + \Sigma X_2^2 + \Sigma X_3^2 + \Sigma X_4^2] - C.F.$$ $$= [17 + 83 + 155 \cdot 25 + 153] - 88 \cdot 02 = 320 \cdot 23$$ $$SSB = \text{Sum of squares between the samples}$$ $$= \left[\frac{(\Sigma X_1)^2}{n_1} + \frac{(\Sigma X_2)^2}{n_2} + \frac{(\Sigma X_3)^2}{n_3} + \frac{(\Sigma X_4)^2}{n_4} \right] - C.F.$$ $$= \left[\frac{(3)^2}{3} + \frac{(5)^2}{3} + \frac{(9.5)^2}{3} + \frac{(15)^2}{3} \right] - 88 \cdot 02 = 28 \cdot 39$$ $$SSW = SST - SSB = 320 \cdot 23 - 28 \cdot 39 = 291 \cdot 84$$ ANOVA Table | Sources of
Variation | Sum of squares | Degrees of
freedom (d.f.) | Mean sum of
square (MSS) | F-Ratio | |-------------------------|----------------|------------------------------|-----------------------------|--| | Between samples | 28 · 39 | 3 | - Junic (M33) | | | Within samples | 291 · 84 | 8 | 9·46
36·48 | $F = \frac{36 \cdot 48}{9 \cdot 46} = 3 \cdot 8$ | | Total | 320 - 23 | 11 | 30.40 | 7.40 | For v_1 = 3, v_2 = 3, the table value of F at 5% level of significance is 4-07. Since the calculated value of F is less than the table value i.e., $F < F_{000}$, we accept the null hypothesis and conclude that there is no significant difference in the mean yield of four varieties. Erample 4. Solution. The following figures relate to producting in kg of three varieties A,B and C of wheat sown in 12 plots : | A | 14 | 16 | 18 | | | |---|----|----|----|----|-----| | B | 14 | 13 | 15 | 22 | 100 | | C | 18 | 16 | 19 | 19 | 20 | Is there any significant difference in the production of these varieties? Null Hypothesis, $H_0: \mu_1 = \mu_2 = \mu_3$ i.e., there is no difference in the production of three varieties. In order to simplify the calculations, the given data are coded by subtracting 12 from each figure. The deviations and their squares are as follows: | 11. | | Coded Data | | | C | |-----|-----|------------|------|----------------|-------| | v | 4 | | B Y2 | X ₃ | X 2 3 | | A1 | X 2 | X 2 | A2 | 6 | 36 | | 2 | 4 | 2 | | 4 | 16 | 174 | , | 36 | 3 | 9 | 7 | | |-------------------|---------------------|-----------------------------|----------------------------------|-----------------------------|------------------| | 6 | _ | 10 | 100 | 7 | 49 | | _ | | | -114 | . 8 | 49 | | $\Sigma X_1 = 12$ | $\Sigma X_1^2 = 56$ | $\sum_{n_2=4}^{2} X_2 = 16$ | $\Sigma X_2^2 = \underline{144}$ | $\Sigma X_3 = 32$ $n_3 = 5$ | $\Sigma X_3^2 =$ | $$T = \Sigma X_1 + \Sigma X_2 + \Sigma X_3 = 12 + 16 + 32 = 60$$ $$C.F. = \frac{T^2}{N} = \frac{(60)^2}{12} = 300$$ TSS = Total sum of squares $=[\Sigma X_1^2 + \Sigma X_2^2 + \Sigma X_3^2] - C.F.$ =56+144+214-300=84 SSB = Sum of squares between samples $$= \left[\frac{(2X_1)^2}{n_1} + \frac{(2X_2)^2}{n_2} + \frac{(2X_3)^2}{n_3} \right] - C.F.$$ $$= \left[\frac{(12)^2}{3} + \frac{(16)^2}{4} + \frac{(32)^2}{5} \right] - 300$$ $=48+64+204\cdot8-300=16\cdot8$ SSW = TSS - SSB=84-16.8=67.20 #### ANOVA Table | | ANO | VA Table | | | |------------------------|---------|------------------------------|-------------------|------------------------------------| | Source of
Variation | Sume of | Degrees of
freedom (d.f.) | Mean sum
(MSS) | F-Statistic | | | 16.8 | 2 | 8.4 | F = 8.4 = 1.125 | | Between Samples | | 0 | 7.467 | $F = \frac{1}{7 \cdot 467} - 1312$ | | Within samples | 67 - 20 | 7 | e me e | | | Total | 84 | 11 | 1 - | 100,000 | For v_1 = 2, v_2 = 9, the table value of F at 5% level of significance is 4·261. Since, be calculated value of F is less than the table value of F. We accept the null hypothesis and conclude that there is no difference in the mean productivity of three varieties. #### EXERCISE - 1 wing table gives the yields on 15 sample plots under three varieties of seed: | Seeds Plots | P4 | P ₂ | P ₃ | P ₄ | 20 | |----------------|----|----------------|----------------|----------------|----------------| | Sı | 20 | 21 | 23 | 16 | . 25 | | S ₂ | 18 | 20 | 17 | 15 | 32 | | S ₃ | 25 | 28 | 22 | 28 | 14. Reject Hol | Is the difference between varieties significant. For (2, 12) degrees of freedom, $F_{0.05} = 3.88$. [Ans. F=8.1 Frest and Analysis of Variance The following data gives the retail prices of a commodity in some sh | City | | D. | | snops selected a | |-----------|-------------------|----------|--------|------------------| | A | 22 | Prices (| RsJKg) | | | В | 20 | 19 | 27 | | | C | 10 | 17 | 23 | 23 | | D | 24 | 25 | 21 | 19 | | . the amo | lysis of variance | | 29 | 18 | Carry out the analysis of variance to test the significance of the difference between the prices of the commodities in four cities for (3, 12) degrees of freedom, $F_{0.05} = 3.49$ for (3, 9) degrees of freedom, $F_{0.05} = 3.86$ [Ans. $F_{12} = 2.114$, Reject $H_{0.05} = 1.49$] [Ans. $F_{12} = 2.114$, Reject $H_{0.05} = 1.49$] for (2) degrees of freedom, $F_{0.05} = 1.49$] [Ans. $F_{12} = 2.114$, Reject $H_{0.05} = 1.49$] per acre were obtained: | per and a Cland | | The second secon | ang ficius | |-----------------|----
--|------------| | Plots of Land | Α. | Varieties of Wheat | | | 1 | 10 | 9 | С | | 2 | 6 | 7 | 4 | | . 3 | 7 | 7 | 7 | Set up a table of analysis of variance and find out whether there is a significant difference between the mean yield of three varieties (Given F_{005} = 4·25, 3·86 and 4·10 at d.f. (2, 9), (3, 9) and (2, 10) respectively). [Ans. F = 1·771 < F_{005} , Accept H_0] A test was given to 5 students chosen at random from M. Com. class of each of the three universities in Haryana. Their scores were found as follows: | University | 2.17 | 7 7 7 | Scores | ke | | |------------|-------------|-------|--------|----|----| | A | 90 | 70 | 60 | 50 | 80 | | В | 70 | 40 | 50 | 40 | 50 | | _ C | Dates 60 mm | 50 | 60 | 70 | 60 | Perform analysis of variance and show if there is any significant difference between the scores of students in the three universities. [Given F value at 5%= 3.589] 5. The following figures relate to the number of units sold in five different areas by four salesmen: | Area | | Number | of units | l n | |------|----|--------|------------|------| | 95 | A | В | C | 70 | | 1 . | 80 | 100 | 95 | 75 | | 2 | 82 | 110 | 90 | 82 | | 3 | 88 | 105 | 100
105 | , 88 | | 4 | 85 | 115 | 80 | 65 | Is there a significant difference in the efficiency of these salesmen? Hint: See Example 11. Hint: See Example 11. Table values of $F_{0.05}$ for $v_1 = 3$, $v_2 = 16$ is $3 \cdot 24$. Table values of $F_{0.05}$ for $v_1 = 3$, $v_2 = 16$ is $3 \cdot 24$. [Ans. $F = 10 \cdot 61 > F_{0.05}$, Reject H_0 i.e., there is a significant difference in the efficiency of the four salesmonly appears to Company of Rajpura (Punjab) wishes to test whether its three salesmen A, B and C tend to make sales of the same size or whether they differ in their selling ability as measured by the average size of their sales. During the last week of October, 2004, There have been 14 sales calls -A made 5 calls, B made 4 calls and C made 5 calls. calls. | 1 (Pa) | 300 | 400 | 300 | 500 | 000 | |--------------------|-----|-----|-----|-----|------| | A (Rs.)
B (Rs.) | 600 | 300 | 300 | 400 | 1000 | | C (Rs.) | 700 | 300 | 400 | 600 | 500 | Perform the analysis of variance and draw your conclusions. refront the analysis of variance and draw your conclusion [Given $F_{0.05}$ (2, 11) = 3.98; $F_{0.05}$ (2, 13) = 3.82] Yields of 3 varieties of wheat in 3 blocks are given below: [Ans. F=1.83, Accept H_0] | Blocks/Varieties | 1 | 2 | 3 | |------------------|-----|-----|-----| | I | 200 | 230 | 300 | | п | 190 | 270 | 270 | | ni | 240 | 150 | 180 | Is the difference between varieties significant? [Ans. F = 3.84, Accept H_0] The following figures relate to the production in Kg of three varieties A, B and C on wheat sown in 12 plots: | Α . | 122 | 128 | 124 | 126 | | |-----|-----|-----|-----|-----|-----| | В | 114 | 116 | 118 | 114 | 106 | | C | 130 | 128 | 124 | | | (Use Coding Method) Is there any significant difference in the production of three varieties? [Ans. $F = 16.90 > F_{0.05}$, Reject H_0] the following data: | Apply F-test on the follo | wing data : | The state of s | |---------------------------|-------------|--| | X ₁ | X 2 | 7 X 3 | | 25 | . 31 | 24 | | 30 | 39 | 30 | | 36 | 38 | 28
25 | | 38 | 42 | 28 | | 31 | 35 | 135 | | 160 | 105 | 133 | (Hints : See Example 15) Given $(F_{2,12}, 5 \text{ percent} = 3.89)$ [Ans. F=7.49, Reject Hol F-Test and Analysis of Variance Delhi est and Rule. 1070 to test the significance of the variation of the retail prices of a commodity in three principal ciclies: Bombay, Kolkata and Delhi, four shops were chosen at random in each city and prices observed in Rs. were as follows: 14 Kolkata 10 Do the data indicate that the prices in the three cities are significantly different? 11. To assess the significance of possible variation are in a performance in a certain test as random from the senior fifth form of each of the four schools. Carry out analysis of variance of the data and comment upon the results. | A | 8 | 7 | Marks
4 | 5 | by the st | udents | | | |---|----|---|------------|---|-----------|--------|---|---| | В | 7 | 5 | 5 | 4 | 5 | 5 . | 6 | 6 | | C | 5 | 3 | 4 | 4 | 3 | 4 | 6 | 4 | | D | 10 | 5 | 6 | 4 | 8 | 5 | 4 | 4 | # (B) ANALYSIS OF VARIANCE IN TWO-WAY CLASSIFICATION In two-way classification, the data are classified according to two factors. For example, the production of a manufacturing concern can be studied on the basis of workers as well as machines. production of a management and concentration is studied on the basis of workers as well as machines. A company can analyse its sales according to salesmen and seasons. In two-way classification, the following procedure is adopted in the analysis of variance: (i) Coding method can be used to simplify the calculation. (ii) Find the correction factor by using the formula: Correction Factor (C.F.) = $$\frac{T^2}{N}$$ Where, T = Grand total of all the values in all the samples, N = Total number of items. (iii) Find total sum of squares (TSS): It is obtained by subtracting the correction factor from the total of squared values of the sample i.e., TSS = $$[\Sigma X_1^2 + \Sigma X_2^2 + \Sigma X_3^2 + \Sigma X_4^2 + ... \Sigma X_K^2] - \frac{T^2}{N}$$ (iv) Find the sum of squares between columns (SSC): The total of each column is squared and divided by the number of items in the column. The correction factor is subtracted from it and it is obtained in SSC is obtained i.e., $$SSC = \Sigma \left(\frac{\Sigma X_c}{n_c}\right)^2 - \frac{T^2}{N}$$ Where, $\Sigma X_c^2 = \text{total of squared values in each column; } n_c = \text{number of items in each column.}$ (v) Find the sum of squares between rows (SSR): The total of each row is squared and divided by the number of items in respective rows. The correction factor is subtracted from the total of, thus, arrived row and SSR is obtained, i.e.,
$\begin{bmatrix} \Sigma X^2 \\ \end{bmatrix} T^2$ SSR = $$\Sigma \left(\frac{\Sigma X_r^2}{n_r} \right) - \frac{T^2}{N}$$ Where, ΣX_r^2 = Total of squared values in each row; n_r = number of items in each row. Where, $\Sigma X_7 = 10$ at of squares of the residual (SSE): The sum of the squares of the residual is obtained by deducting the SSC and SSR from TSS. Thus SSE = TSS - SSC - SSR (vii) Find the number of degrees of freedom by using the formula: No. of degrees of freedom between columns = (c-1) No. of degrees of freedom between rows = (r-1) No. of degrees of freedom for residual = (c-1)(r-1) Total no. of degrees of freedom = N-1 or cr-1 Total no. of degrees of needon 12. To the control of the analysis of variance (ANOVA) table is (viii) ANOVA Table: In a two-way classification, the analysis of variance (ANOVA) table is prepared in the following way : | Source of variation | sum of square | Degrees of freedom | Mean Sum of squares
(MSS) | F-Ratio | |---------------------|---------------|--------------------|-------------------------------------|-------------------------------------| | Between
columns | SSC | (c-1) | $SSC \div (c-1) = MSC$ | $F = \frac{MSC}{MSE}$ | | Between
Rows | SSR | (r - 1) | $SSR \div (r-1) = MSR$ | $F = \frac{\text{MSR}}{\text{MSE}}$ | | Residual | SSE | (c-1)(r-1) | $SSE \div (c-1) \times (r-1) = MSE$ | of a contagn | | Total | TSS | (N-1) or $(cr-1)$ | and the state of the land | Coding may | (ix) Interpretation: The calculated value of F is compared with the table value of F and if the calculated value of F is greater than the table value at a specified level of significance, the null hypothesis is rejected and concluded that the difference is significant otherwise vice versa. The following data represent the number of units of a commodity produced by | different workers usin | ng 3 different m | achines: | The state of s | |------------------------|------------------|----------------|--| | Machine / Workers | A | В | C | | X | 16 | 64 | 56 | | Υ | 56 | 72 apa 10 | 28 | | | | FC In the File | 20 | Test (i) Whether the mean productivity is the same for the different machine types (ii) whether the different machine types (ii) whether the different machine types (iii) whether the different machine types (iii) whether the mean productivity. types (ii) whether the three workers differ with regard to mean productivity. Solution. Let us take the hypothesis that: (i) The mean productivity for three different machines is the same. (ii) Three workers do not differ with respect to their mean productivity. FTest and Analysis of Variance | Machine | | Data | _ | | | | 181 | |---------------------------|------------------|----------------|------------|--------------|-------------|--------------|--------------| | Workers | X_1 | X ₂ | X 3 | Row
Total | So | uares of D | | | X | 16
56 | 64
72 | 40
56 | 120
184 | 256 | X2
4096 | X_{3}^{2} | | Column Total | 12
84 | 56
192 | 28
1245 | 96 | 3136
144 | 5184
3136 | 1600
3136 | | $T = \Sigma X_1 + \Sigma$ | $X_2 + \Sigma X$ | a = 84 ± 10 | | T = 400 | 3536 | 12416 | 784 | $$T = \Sigma X_1 + \Sigma X_2 + \Sigma X_3 = 84 + 192 + 14 = 400$$ $$C.F. = \frac{T^2}{N} = \frac{(400)^2}{9} = 17777 \cdot 78$$ $$TSS = [\Sigma X_1^2 + \Sigma X_2^2 + \Sigma X_3^2] - C.F.$$ $$= [3536 + 12416 + 5520] - 17777 \cdot 78 = 201472 - 17777 \cdot 78 = 3694 \cdot 22$$ $$SSC = \left[\frac{(84)^2}{3} + \frac{(192)^2}{3} + \frac{(124)^2}{3} \right] - 17777 \cdot 78 (C.F.)$$ $$= \frac{1}{3} [7056 + 36864 + 15376] - 17777 \cdot 78 = 1987 \cdot 55$$ $$SSR = \left[\frac{(120)^2}{3} + \frac{(184)^2}{3} + \frac{(96)^2}{3} \right] - 17777 \cdot 78 (C.F.)$$ $$= \frac{1}{3} [14400 + 33856 + 9216] - 17777 \cdot 78 = 19157 \cdot 33 - 17777 \cdot 78 = 1379 \cdot 55$$ $$SSE = TSS - SSC - SSR$$ #### $= 3694 \cdot 22 - 1987 \cdot 55 - 1379 \cdot 55 = 327 \cdot 12$ Degrees of freedom are TSS = N - 1 = 9 - 1 = 8 SSC = c - 1 = 3 - 1 = 2 SSR = r - 1 = 3 - 1 = 2 $SSE = (c-1)(r-1) = 2 \times 2 = 4$ #### ANOVA Table | And the second second | MIN | JVA Table | | | |-------------------------------|-----------|--------------------|--|--| | Source of variation | . Sum of | Degrees of freedom | squares (MSS) | F-Ratio | | Between columns
(Machines) | 1987 - 55 | 2 | $\frac{1987 \cdot 55}{2} = 993 \cdot 77$ | $F = \frac{993 \cdot 73}{81 \cdot 78} = 12 \cdot 15$ $F = \frac{689 \cdot 77}{81 \cdot 78} = 8 \cdot 43$ | | Between Rows
(Workers) | 1379-55 | 2 | 2 | $F = \frac{689 \cdot 77}{81 \cdot 78} = 8 \cdot 43$ | | Residual/Error | 327 - 12 | 4 . | $\frac{327 \cdot 12}{4} = 81 \cdot 78$ | | | Total | 2604.22 | 8 | | 1 | For Machines (i) For $v_1 = 2$, $v_2 = 4$, the table value of $F_{0.05} = 6.94$. Since the calculated value of F is greater than the critical value of F, the null hypothesis is rejected. Hence the mean productivity is not the same for three different machines. For Workers (ii) For $v_1 = 2$ and $v_2 = 4$, the table value of $F_{0.05} = 6.94$. Since the calculated value of F is greater than the critical value of F, the null hypothesis is rejected. Hence the workers differ with regard to mean productivity. The following table gives the number of refrigerators sold by 4 salesmen in three seasons-summer, winter and monsoon: Example 6. | Corren | Salesmen | | | | | |---------|----------|----|----|----|--| | Season | A | В | С | D | | | Summer | 62 | 62 | 32 | 60 | | | Winter | 46 | 48 | 52 | 54 | | | Monsoon | 42 | 46 | 48 | 48 | | Is there a significant difference in the sales made by the four salesmen? Is there a significant difference in the sale made during different seasons? Solution. (i) Let us take the null hypothesis that the mean sales made by the four salesmenis (ii) The sales do not differ with regard to seasons. In order to simplify calculations, the given data is coded by subtracting 50 from each observation. The data in the coded form are given below: | Season X. | | Codec | Data | | Row
Total | Squares of Coded Data | | | | | |----------------------|--------------------|--------------------|--------------------|--------------------|---------------------|-----------------------|----------------|---------------|---------------|--| | | X 1 | X ₂ | X ₃ | X 4 | | X_{1}^{2} | X 2 | X 2 3 | X | | | s
W | + 12
- 4
- 8 | + 12
- 2
- 4 | - 18
+ 2
- 2 | + 10
+ 4
- 2 | + 16
+ 0
- 16 | 144
16
64 | 144
4
16 | 324
4
4 | 10
10
4 | | | M
Column
Total | 0 | + 6 | - 18 | + 12 | T=0 | 224 | 164 | 332 | 12 | | $$T = 0 + 6 - 18 + 12 = 0$$ $$C.F. = \frac{T^2}{N} = \frac{(0)^2}{12} = 0$$ $$TSS = \Sigma X_1^2 + \Sigma X_2^2 + \Sigma X_3^2 + \Sigma X_4^2 - C.F.$$ $$= 224 + 164 + 332 + 120 - 0 = 840$$ $$SSC = \left[\frac{(0)^2}{3} + \frac{(6)^2}{3} + \frac{(-18)^2}{3} + \frac{(12)^2}{3}\right] - 0 \quad (C.F.)$$ $$= 0 + 12 + 108 + 48 - 0 = 168$$ FTest and Analysis of Variance $$SSR = \left[\frac{(16)^2}{4} + \frac{(0)^2}{4} + \frac{(-16)^2}{4}\right] - 0 \quad (C.F.)$$ $$= 64 + 0 + 64 - 0 = 128$$ $$SSE = TSS - SSC - SSR = 840 - 168 - 128 = 544$$ a are: 183 Degrees of freedom are: TSS = N - 1 = 12 - 1 = 11155 = 14 - 1 = 14 SSC = (c - 1) = (4 - 1) = 3 SSR = (r - 1) = (3 - 1) = 2 $SSE = (c - 1)(r - 1) = 3 \times 2 = 6$ The ANOVA table is shown as : ANOVA Table | | | TA Table | | | |-------------------------------|----------------|--------------------|--|--| | Source of variation | Sum of squares | Degrees of freedom | cuit Sum of | F-Ratio | | Between Columns
(Salesmen) | 168 | 3 | $\frac{\text{squares (MSS)}}{\text{MSC}} = \frac{168}{3} = 56$ | $F = \frac{\text{MSC}}{\text{MSE}} = \frac{90.67}{56}$ | |
Between Rows
(Seasons) | 128 | 2 | MSR = $\frac{128}{2}$ = 64 | $F = \frac{MSR}{MSE} = \frac{90.67}{64}$ | | Residual/Error | . 544 | 6 | $MSE = \frac{544}{6} = 90.67$ | =1-4167 | | Total | 840 | 11 | - | | Interpretation (i) For Salesmen: The calculated value of F = 1.619 Table value of F for (6, 3) d.f. = $8 \cdot 94$ Since the calculated value of F is less than the table value of F at 5% level of significance, the mult typothesis is accepted and it can be concluded that there is no difference in the sales of the four salesmen. (ii) For seasons: The calculated value of F = 1.4167 Table value for (2,6) d.f. $F_{0.05} = 5.14$ Since the calculated value of F is less than the table value of F at 5% level of significance, the multipophesis is accepted and it can be concluded that all seasons are similar so far as sales is one concerned. Example 7. Four observers determine the moisture content of samples of a powder, each man taking a sample from each of six consignments. Their assessments are | Observers | 115 | | Consig | nments | - | 6 | |-----------|-----|----|--------|----------|----|----| | 1000 | 1 | 2 | 3 | -4 | 11 | 11 | | 1 | 9 | 10 | 9 | 10 | 10 | 10 | | 2 | 12 | 11 | 9 | 11 | 11 | 10 | | 3 | 11 | 10 | 10 | 12
14 | 12 | 10 | | 4 | 2.2 | 40 | 11 | 14 | | | Analysis the data and discuss whether there is any significant difference between consignments or between observers. between that $F_{0.05}^{(5,15)} = 3 \cdot 29$, $F_{0.05}^{(5,15)=2\cdot90}$) Solution. Let us take the hypothesis that: (a) There is no significant difference between consignments. (b) There is no significant difference between observers. (b) There is no significant difference between coservers. In order to simplify the calculations, the given data are coded by subtracting 10 from each figure. The deviations and their squares are as follows: | Observers | | | Code | Data | | | Row | | Squares of Coded Data | | | | | |-----------|-----|-----|------|------|-----|-------|--------|-------------|-----------------------|-------------|---------|-----|-----| | | X 1 | X 2 | X 3 | X 4 | X 5 | X_6 | Total | X_{1}^{2} | X 2 | X_{3}^{2} | X_4^2 | X25 | X26 | | _ 1 | -1 | 0 | - 1 | 0 | 1 | 1 | 0 | 1 | 0 | . 1 | 0 | 1 | 1 | | 2 | 2 | 1 | - 1 | 1 | 0 | 0 | 3 | 4 | 1 | 1 | 1 | 0 | 0 | | 3 | 1 | 0 | 0 | 2 | 1 | 0 | 4 | 1 | 0 | 0 | 4 | 1 | 0 | | . 4 | 2 | 3 | 1 | 3 | 2 | 0 | 12 | 4 | 9 | 1 | 16 | 4 | 0 | | Column | 4 | 4 | - 1 | 7 | 4 | 1 | T = 19 | 10 | . 10 | 3 | 21 | 6 | 1 | $$T = 4+4-1+7+4+1=19$$ $$C.F. = \frac{T^2}{N} = \frac{(19)^2}{24} = 15 \cdot 04$$ $$TSS = [10+10+3+21+6+1]-15 \cdot 04 \quad (C.F.) = 35 \cdot 96$$ $$SSC = \left[\frac{(4)^2}{4} + \frac{(4)^2}{4} + \frac{(-1)^2}{4} + \frac{(7)^2}{4} + \frac{(4)^2}{4} + \frac{(1)^2}{4}\right] - 15 \cdot 04 \quad (C.F.) = 9 \cdot 71$$ $$SSR = \left[\frac{(0)^2}{6} + \frac{(3)^2}{6} + \frac{(4)^2}{6} + \frac{(12)^2}{6}\right] - 15 \cdot 04 \quad (C.F.) = 13 \cdot 13$$ SSE = TSS - SSC - SSR = 35.96 - 9.71 - 13.13 = 13.12 The ANOVA table is shown as: #### ANOVA Table | | ANOVA | Table | | | |---|---------------|--------------------|-------------------------------------|--| | Source of variation | Sum of square | Degrees of freedom | Mean Sum of
squares (MSS) | $F-Ratio$ $F = \frac{1.94}{2.23} = 2.23$ | | Between columns
(Between consignments) | 9.71 | 6-1=5 | $\frac{9.71}{5} = 1.94$ | $F = \frac{1}{0.87} = 2.22$ $F = \frac{4.38}{0.87} = 5.03$ | | Between Rows (Between
Observers) | 13 · 13 | 4-1=3 | 3 | $F = \frac{1}{0.87}$ | | Residual/Error | 13 - 12 | 23 - 8 = 15 | $\frac{13\cdot 12}{15} = 0\cdot 87$ | | | Total | 35.96 | 24 - 1 = 23 | Y | | Frest and Analysis of Variance Interpretation (i) Between Consignments: The calculated value of F=2.23 Table value of F of (5, 15) d.f. at 5% l.o.s.=2.90 Table value of F of (5, 15) d.f. at 5% l.o.s.=2.90 Table value of F of (5, 15) d.f. at 5% l.o.s. at the table value of F at 5% l.o.s., the null hypothesis is good and it can be concluded that there is no difference between consignments. Table value of F or (3, 15) d.f. at 5% l.o.s.=3.29 Table value of F for (3, 15) d.f. at 5% l.o.s.=3.29 Table value of F to (5, 45) ct., at 5% l.o.s. = 3.29 Synce, the calculated value of F is greater than the table value of F at 5% l.o.s., the null hypothesis is rejected and it can be concluded that there is significant difference between the observers. Perform a two way ANOVA on the data given bel-Example 8. | Plots of Land | | T | | | |---------------|----------|----|-------|----| | | A | R | tment | | | P | 45 | 40 | С | D | | 0 | 43 | 41 | 38 | 37 | | R | 39 | 39 | 45 | 38 | | Albino was to | G TO THE | 3) | 41 | 41 | (Use coding method subtracting 40 from the given numbers) Solution. Let us take the null hypothesis that there is no significant difference in the treatment and plots of land. By subtracting 40 from the given numbers, the deviations and their squares are given below: | Plots | - | Row | Squares of Coded Data | | | | | | | |--------|-------|-----|-----------------------|-----|-------|-----|-----|-----|-----| | - '- | X_1 | X 2 | X 3 | X 4 | Total | X 2 | X 2 | X 2 | X 2 | | P | 5 10 | 0 | - 2 | 3 | 0 | 25 | 0 | 4 | 9 | | Q | 3 | 1 | 5 | - 2 | 7 | 9 | 1 | 25 | 4 | | R | - 1 | -1 | 1 | -1 | 0 | 1 | 1 · | 1 | 1 | | Column | 7 | 0 | 4 | - 4 | T = 7 | 35 | 2 | 30 | 14 | $$T = 7 + 0 + 4 - 4 = 0$$ C.F. $$\frac{T^2}{N} = \frac{7^2}{12} = \frac{49}{12} = 4.083$$ TSS = 35 + 2 + 30 + 14 - 4.083 (C.F.) = 81 - 4.083 = 6.917 $$SSC = \left[\frac{(7)^2}{3} + \frac{(0)^2}{3} + \frac{(4)^2}{3} + \frac{(-4)^2}{3}\right] - 4.083 \text{ (C.F.)}$$ = 22.917. $$SSR = \frac{(0)^2}{4} + \frac{(7)^2}{4} + \frac{(0)^2}{4} - 4.083 = 8.167$$ SSE = TSS - SSC - SSR = 76 · 917 - 22 · 917 - 8 · 167 = 45 · 333 ### ANOVA Table | Source of variation | Sum of square | | Mans Sum of
squares (MSS) | F-Ratio | |---------------------------------|---------------|----|--|--| | Columns | 22:917 | 3 | $\frac{22.913}{3} = 7.639$ | $F = \frac{7 \cdot 639}{7 \cdot 639} = 1$ | | Between Treatment) Between Rows | 8-167 | 2 | $\frac{8\cdot167}{2} = 4\cdot083$ | $F = \frac{7 \cdot 639}{4 \cdot 083} = 1 \cdot 87$ | | (Between Fields) Residual/Error | 45 · 833 | 6 | $\frac{45 \cdot 833}{6} = 7 \cdot 639$ | and the second | | Total | 76-917 | 11 | | | Interpretation (i) Between Treatment : The calculated value of F=1 Table value of F for (3, 6) q.t. at 5% 1.0.s. = 4.76 Since, the calculated value of F is less than the table value of F, the null hypothesis is accepted. Hence, there is no significant difference between the treatments. (ii) Between Plots of land: The calculated value of F = 1.87Table value of F for (3, 6) d.f. at 5% l.o.s. = 4.76 (ii) Between Plots of land: The calculated value of F = 1.87 Table value of F for (6, 2) d.f. at 5% l.o.s. = 19.3 Since, the calculated value of F is less than the table value of F, the null hypothesis is accepted. Hence, there is no significant difference between plots of land. ### EXERCISE - 2 1. A company appoints 4 salesmen A_1,A_2,A_3 and A_4 and observes their sales in three seasons: Summer, Winter and Monsoon. The figures (in lakhs) are given ahead: ### Salesmen | | | Dares | | | Total | |----------------|----------------|----------------|----------------|----------------|-------| | Seasons | A ₁ | A ₂ | A ₃ | A ₄ | 20 | | Summer | 5 | 4 | 4 | 1.20 | 24 | | Winter | 7 | 8 | 5 | 4 | 28 | | Monsoon | 9 | 6 | 6 | 10 | 72 | | Salesmen Total | 21 | 18 | 15 | 18 | | Carry out Two-way Analysis of Variance. [Ans : F Between Salesmen = 1.335, F Between Seasons = 1.498, In both the cases, H_0 is accepted F-Test and Analysis of Variance 2 Perform a two-way ANOVA on the data given below 187 Plots of Land 38 I 45 II 42 49 III (Using coding method subtracting 40 from given numbers) Given for (3, 6) d.f. F05 = 476 and for (2, 6) d.f. F.05 = 5.14. and for (2, 6) d.f. F.05 = 5·14. [Ans: F Between the column = 1·312, H₀ is accepted; F Between the Rows = 1·218, H₀, is accepted; The price of a certain commodity was ascertained in each of the four towns A, B, C and D different towns and in different season significant? | Quarters | 4 | To | wns | | |----------|----|----|-----|----| | | A | В | С | D | | -I | 60 | 50 | 60 | 50 | | II . | 50 | 40 | 65 | 50 | | III | 45 | 35 | 45 | 50 | | IV | 65 | 45 | 60 | 70 | [Ans : F Between the column = $4\cdot89$, F between Season's = $5\cdot00$ In both the cases, H_0 is rejected] 4. The following table gives the number of units of production per day turned out by four different types of machines. | Employee | formal a min | Type of | Machines | | |----------------|----------------|----------------|----------------|----------------| | | M ₁ | M ₂ | M ₃ | M ₄ | | E ₁ | 40 | 36 | 45 | 30 | | E ₂ | 38 | 42 | 50 | 41 | | E ₃ | 36 | 30 | 48 | 38 | | -3
F | 30 | 47 | 52 | 44 | Using analysis of variance (i) test the hypothesis that the mean production is the same for the four machines, and (ii) test the hypothesis that the employees do not differ with respect to mean production. [Ans: F Between Machines 9 2.7, F Between Employees = 8.27, In both the cases, H₀ is rejected in both the cases, H₀ is rejected in the following data represent the number of a commodity produced by 3 different workers using 3 different machines: | Workers | | Machines | |---------|----|----------| | loft l | A | B 20 | | X | 8 | 32 38 | | Y | 28 | 36
28 | Test (i) whether the mean productivity is the same for different machines types, (ii) whether the three workers differ with respect to mean productivity. whether the three workers differ with respect to mean productivity. (Ans : F Between Machines = 9 · 38, H₀ is rejected, F Between Workers = 10 · 31, in both cases, H₀ is rejected.) An only cases, H₀ is rejected] cases, H₀ is rejected] cases, H₀ is rejected.
To study the performance of three detergents and three different water temperatures, the following whiteness readings were obtained with specially designed equipment: | Detergent A | Detergent B | Deterge | |-------------|-------------------------|---| | 57 | 55 | 67 | | 49 | 52 | | | E4 | 46 | 68 | | | Detergent A
57
49 | Detergent A Detergent B 57 55 | Hot water 54 Hot water 54 Perform a two way analysis of variance using 5% level of significance (Given F_{05} = 6.94) [Hint: See Example 14] [Ans: F Between Column = 9.845, H_0 is rejected. F Between Roses = 2.38], in both the cases, H_0 is accepted You are given the following data: | Workers | AN II 197 | Machir | e Type | | |---------|-----------|--------|--------|----| | Workers | A | В | С | D | | 1 | 44 | 35 | 48 | 38 | | 2 | 48 | 40 | 50 | 44 | | 3 | 37 | 38 | 40 | 36 | | 4 | 45 | 34 | 45 | 32 | | 5 | 40 | 44 | 50 | 40 | Discuss whether there is a significant difference in mean productivity between machine types or workers. [Ans: F (Between columns) = 7.85; F (between rows) = 3.74. in both cases H₀ is rejected. 8. The following table gives the number of refrigerators sold by 4 salesmen in three months, May, June and July: | Month | | Sales | smen | | |-------|----|-------|------|----| | | A | В | C | D | | May | 50 | 40 | 48 | 39 | | June | 46 | 48 | 50 | 45 | | July | 39 | 44 | 40 | 39 | Is there a significant difference in the sales made by the four salesmen? Is there a significant difference in the sales made during different months? [Ans: F Between columns = $1 \cdot 018$; F Between Rows = $3 \cdot 33$. In both cases, the sacception of the sales with 9. The following data represent the sales (Rs. 1000) per month of three brands of a detergent related among three cities: | Cities | Detergent A | Detergent B | |--------|-------------|-------------| | | A | В | | I | 12 | 48 | | П | 42 | 54 | F.Test and Analysis of Variance and Analysis — Test whether the (i) mean sales of the three brands are equal and (ii) the mean sales of detergent in each city are equal. [Ans: F Between brands = 9.4, F between Cities = 10:3. In both cases, H₀ is rejected] # MISCELLANCEOUS SOLVED EXAMPLES To test the significance of the variations of the retail prices of a commodity in three principle cities: Bombay, Kolkata and Delhi, four shops were chosen at random in each city and prices observed in rupes were chosen at Example 9: | Bombay | 16 | a rea in rup | ees were as follo | owere chosen a | |---------|----|--------------|-------------------|----------------| | Kolkata | 14 | 10 | 12 | 14 | | Delhi | 4 | 10 | 10 | 6 | | | | 10 | 8 | | Do the data indicate the prices in the three cities are significantly different? $H_0: \mu_1 = \mu_2 = \mu_3$, i.e., the mean prices in the three cities are the same. Solution: In order to simipify the calculation, subtract 10 from each observation. The deviations and their squares are as follow: Coded Data | Box | mbay | Ko | lkata | | | |-------------------|-------------------------|------------------|-------------------------|--------------------|-----------------------------| | X 1 | X 2 | X ₂ | X2 | X ₃ | | | 6 | 36 | 4 | 16 | | X ₃ ² | | - 2 | 4 | 0 | 0 | -6
0 | 36
10 | | 2 | 4 | 0 | 0 | - 2 | 4 | | 4 | 16 | - 4 | 16 | - 2 | 4 | | $\Sigma X_1 = 10$ | $\Sigma X_{1}^{2} = 60$ | $\Sigma X_2 = 0$ | $\Sigma X_{n}^{2} = 32$ | $\Sigma X_2 = -10$ | 5Y2-44 | $$T = \sum X_1 + \sum X_2 + \sum X_3 = 10 + 0 - 10 = 0$$ $$C.F. = \frac{T^2}{N} = \frac{(0^2)}{12} = 0$$ $$TSS = \text{Total sum of squares}$$ $$= \left[\sum X_1^2 + \sum X_2^2 + \sum X_3^2\right] - C.F.$$ $$= \left[60 + 32 + 44\right] - 0$$ $$= 136$$ $$SSB = \left[\frac{(2X_1)^2}{n_1} + \frac{(2X_2)^2}{n_2} + \frac{(2X_3)^2}{n_3}\right] - C.F.$$ $$= \left[\frac{(10)^2}{4} + \frac{(0)^2}{4} + \frac{(-10)^2}{4}\right] - 0 = 50$$ $$SSW = SST - SSB$$ = 136 - 50 = 86 ANOVA Table | Source o. | Sum of square
(S.S.) | Degrees of freedom | Mean Sum of squares (MSS) | F-Radio | |----------------------|-------------------------|--------------------|---------------------------|-------------| | variation | 50 | 3-1=2 | 25 | F = 25 | | Between City | 86 | 9.1.9 (2) | 9.556 | 9.556 = 2.6 | | Within city
Total | 136 | 12 - 1 = 11 | 1400000 |) h * 1 | For $v_1 = 2$ and $v_2 = 9$, the table value of F at 5% I. o.s. = 4-261 Since the calculated value of F is less than the table value of F the null hypothesis is accepted. We thus conclude that the mean prices in the three cities is not significantly different. Three samples, each of size 5, were chosen from three uncorrelated normal population with equal variances. Test the hypothesis that the population means are equal at 5% Example 10: level. | evei. | Sample 2 | Sample 3 | |----------|----------|----------| | Sample 1 | 9 7 | 14 | | 10 | 7 | 11 | | 12 | 12 | 15 | | 16 | 11 | 14 | | 13 | 11 | 16 | Solution: Let us take the hypothesis that the population means are equal for three samples i.e. $H_0: \mu_1 = \mu_2 = \mu_3$ In order to simplify the calcuation, surtract 10 from each observation. The deviations and their squares are as follows: | Coded | Data | |-------|------| | | | | | | Coded Data | × 601 | Samp | 10.3 | |-------------------|---------------------|------------------|---------------------|-------------------|-----------------------------| | San | Sample 1 | | Sample 2 | | X ² ₃ | | - X ₁ | X 2 | - X2 | X22 | X3 | 16 | | 0 | 0 | -1 31 | 1 | 1 | 1 | | 2 | 4 | - 3 | 9 | 5 | 25 | | - 1 | 1 -1 - | 2 | 4 | 4 | 16
36 | | 6 | 36. | 1 0 1 | 1 | 6 | $\Sigma X_3^2 = 94$ | | 3 | 9 | 1 | 2 46 | $\Sigma X_3 = 20$ | ΣΧ3 | | $\Sigma X_1 = 10$ | $\Sigma X_1^2 = 50$ | $\Sigma X_2 = 0$ | $\Sigma X_2^2 = 16$ | 21.3 | | FTest and Analysis of Variance $$T = \Sigma X_1 + \Sigma X_2 + \Sigma X_3 = 10 + 0 + 20 = 30$$ $$C.F. = \frac{T^2}{N} = \frac{(30^2)}{15} = 60$$ $$TSS = Total sum of squares$$ $$= [\Sigma X_1^2 + \Sigma X_2^2 + \Sigma X_3^2] - C.F.$$ $$= [50 + 16 + 94] - 60$$ $$= 160 - 60 = 100$$ $$SSB = \left[\frac{(2X_1)^2}{n_1} + \frac{(\Sigma X_2)^2}{n_2} + \frac{(\Sigma X_3)^2}{n_3} \right] - C.F.$$ $$= \left[\frac{(10)^2}{5} + \frac{(9)^2}{5} + \frac{(20)^2}{5} \right] - 60$$ $$= [20 + 0 + 80] - 60$$ $$= 100 - 60 = 40$$ $$SSW = TSS - SSB$$ $$= 100 - 40 = 60$$ The various sum of squares (S.S.) along with the degrees of freedom (d.f.) are shown in the following table: ### ANOVA Table | Source of variation | Sum of square
(S.S.) | Degrees of freedom | Mean Sum of squares (MSS) | F-Radio | |---------------------|-------------------------|--------------------|---------------------------|------------| | Between City | 40 | 3-1=2 | 20 | F = 20 = 4 | | Within city | 60 | 15 - 3 = 12 | 5 | .5 | | Total (SOI | 100 | 14 | l- | | For $v_1 = 2$ and $v_2 = 12$, the table value of F at 5% l. o.s. = 3-08. Since the calculated value of F is more than the table value, the null hypothesis is rejected. Hence the population means of the three samples do not seem to be except. equal. The following figures related to the number of units of a product sold in five different areas by four salesmen. Example 11: | Area · | 0465 7 | <u> </u> | | | |--|-------------|----------|-----|----| | Company of the | A | В | C | 70 | | 1 | 80 | 100 | 95 | 75 | | 2 | 82 | 110 | 100 | 82 | | 3 | 88 | 105 | 105 | 88 | | 4 | 85 | 115 | 80 | 65 | | The state of s | 465 0 0 0 0 | 00 | 1 1 | | Is there a significant difference in the efficiency of these salesmen? Is there a significant difference in the efficiency of these (Given that Table value of $F_{.05}$ for $v_1=3$, $v_3=16$ is $3\cdot 24$.) Solution: Let us take the hypothesis that there is no significant difference in the performance of the four salesmen i.e. $\mu_1 = \mu_2 = \mu_3 = \mu_4$. In order to simplify the calculation, subtract 80 from each observation. The deviations and their squares are as follows: ### Coded Data | | | В | | С | r |) .
| |--------------------------|--------------------|--|--|---|---|---| | X 2 | X 2 | X 2 | X 3 | X 2 3 | X_4 | X_4^2 | | | 20 | 400 | 15 | 225 | - 10 | 100 | | 4 | 30 | 900 | 10 | 100 | - 5 | 25 | | 64 | 25 | 625 | 20 | 400 | 2 | 4 | | 25 | 35 | 1225 | 25 | 625 | 8 | 64 | | 25 | 10 | 100 | 0 | 0 - | - 15 | 225 | | $\Sigma X_{1}^{2} = 118$ | $\Sigma X_2 = 120$ | $\sum X_2^2 = 3250$ | $\Sigma X_3 = 70$ | $\Sigma X_3^2 = 1350$ | $\Sigma X_4 = -20$ | $\sum X_4^2 = 4$ | | | 64
25
25 | X ₁ X ₂ X ₂ 0 20 4 30 64 25 25 35 25 10 | 0 20 400
4 30 900
64 25 625
25 35 1225
25 10 100 | $egin{array}{c ccccc} X_1^2 & X_2 & X_2^2 & X_3 \\ \hline 0 & 20 & 400 & 15 \\ 4 & 30 & 900 & 10 \\ 64 & 25 & 625 & 20 \\ 25 & 35 & 1225 & 25 \\ 25 & 10 & 100 & 0 \\ \hline \end{array}$ | $egin{array}{c ccccccccccccccccccccccccccccccccccc$ | $egin{array}{c ccccccccccccccccccccccccccccccccccc$ | $$T = \Sigma X_1 + \Sigma X_2 + \Sigma X_3 + \Sigma X_4 = 10 + 120 + 70 - 20 = 180$$ $$C.F. = \frac{7}{N} = \frac{(180)^2}{20} = 1620$$ $$TSS = [\Sigma X_1^2 + \Sigma X_2^2 + \Sigma X_3^2 + \Sigma X_4^2] - C.F.$$ $$= [118 + 3250 + 1350 + 418] - 1620$$ $$= 5136 - 1620 = 3516$$ $$SSB = \left[\frac{(\Sigma X_1)^2}{n_1} + \frac{(\Sigma X_2)^2}{n_2} + \frac{(\Sigma X_3)^2}{n_3} + \frac{(\Sigma X_4)^2}{n_4}\right] - C.F.$$ $$= \left[\frac{(10)^2}{5} + \frac{(120)^2}{5} + \frac{(70)^2}{5} + \frac{(-20)^2}{5}\right] - 1620$$ $$= 20 + 2880 + 980 + 80 - 1620$$ =[20+2880+980+80]-1620=3960-1620=2340 SSW = TSS - SSB = 3516 - 2340 = 1176 = 3516-2340=1176 The various sum of squares (S.S.) along with the degrees of freedom (d.f.) are shown in the following to the state of the shown in the following to the shown in the following to the same of th shown in the following table: Frest and Analysis of Variance ANOVA Table 193 | ۱ | Source of variation | Sum of square | | Mean Sum of | | |---|--|---------------------------------|-------------------|---------------|--------------------------------| | - | Between City | 2340 | | squares (MSS) | F-Radio | | | Within city | 1176 | 1=3 | - | | | | Total | 3516 | 20 - 4 = 16 | 73-5 | $F = \frac{780}{73.5} = 10.61$ | | 1 | For $v_1 = 3$ and v_1
Since, the calcul | 2 = 16, the table value of F is | alue of F at 5%] | | 73.5 | For $i_1 - i_2 = 3$, we table value of F at 5% I. o.s. = 3-24. Since, the calculated value of F is greater than the table value, the null hypothesis is rejected. Hence there is a significant difference in the efficiency of the four salesmen. Example 12. Complete the following incomplete ANOVA table: Sum of square (S.S) Source of Variation Degree of Freedom (d.f.) Mean sum of squares (MSS) F-test Between $v_1 = 2$ F = ? Within U2 = -Total v = 9 We get $v_2 = v - v_1 = 9 - 2 = 7$ Solution: $\frac{\text{SSB}}{\text{SSB}} = \text{MSB} \implies \text{SSB} = \text{MSB} \times v_1 = 5 \times 2 = 10$ TSS = SSB + SSW = 10 +14 = 24 SSW = 14, MSW = $\frac{\text{SSW}}{v_2} = \frac{14}{7} = 2$ $F = \frac{MSB}{MSW} = \frac{5}{2} = 2.5$ ### COMPLETE TABLE | Source of
Variation | Sum of square
(S.S) | Degree of
Freedom | Mean sum of
squares (MSS) | F-test | |------------------------|------------------------|----------------------|------------------------------|-------------------------| | Between | 10 | 2 | 5 | $F = \frac{5}{2} = 2.5$ | | Within | 14 | 7 | . 2 | | | Total | 24 | 9 | | | Example 13: A company appoints four salesman A, B, C and D and observes their sales in three seasons in summer, winter and monsoon. The figure (in lakhs) are given in the following tables: | Seasons | | Sale | smen | D | |---------|----|------|----------|------| | | Α | В | <u>C</u> | 35 | | Summer | 36 | 36 | 31 | 32 1 | | Winter | 28 | 29 | 29 | 29 | Analysis of values of the classified according to two criteria : (i) salesmen, and (ii) The above data are classification. Solution: The above data are classified according to two criteria: (i) salesmen, and (ii) seasons. It is a two way classification. Let us take the null hypothesis that there is no difference in the performance of the salesmen. This hypothesis means that there is no difference between the sales of salesmen and off seasons. In order to simplify the calculation, we subtract 30 from each observation the deveations and their squares are as follows: | | С | oded Da | ta | 2. | _ | Squ | ares of | Coded D | ata | |-----------------|-------|---------|-----|-----|--------------|------|---------|---------|-----| | Seasons | X_1 | X 2 | X 3 | X 4 | Row
Total | X12. | X 2 | X 2 3 | X24 | | S | 6 | 6 | - 9 | 5 | 8 | 36 | 36 | 81 | 25 | | w | - 2 | -1 | 1 | 2 | 0 | 4 | 1 | 1 | 4 | | М | - 4 | - 2 | - 1 | - 1 | - 8 | 16 | 4 | 1 | 1 | | Column
Total | 0 | 3 | - 9 | 6 | T = 0 | 56 | 41 | 83 | 30 | $$T = 0+3-9+6=0$$ $$C.F. = \frac{T^2}{N} = \frac{(O)^2}{12} = 0$$ $$TSS = [EX_1^2 + EX_2^2 + EX_3^2 + EX_4^2] - C.F.$$ $$= 56+41+83+30-0=210$$ $$SSC = \left[\frac{(0)^2}{3} + \frac{(3)^2}{3} + \frac{(-9)^2}{3} + \frac{(6)^2}{3}\right] - C.F.$$ $$= 0+3+27+12-0=42$$ $$SSR = \left[\frac{(8)^2}{4} + \frac{(0)^2}{4} + \frac{(8)^2}{4}\right] - C.F. = 16+0+16-0=32$$ $$SSE = TSS - SSC - SSR = 210-42-32 = 136$$ | Source of
Variation | Sum of
square (S.S) | Degree of
Freedom | Mean sum of
squares (MSS) | F-Ratio | |-------------------------------|------------------------|----------------------|-------------------------------|--| | Between Columns
(Salesmen) | 42 | 3 | $\frac{42}{3} = 14$ | $F = \frac{22.63}{14} = 1.03$ $= 22.67 = 1.43$ | | Betwen Rows
(Seasons) | 32 | 2 | $\frac{32}{2} = 16$ | $F = \frac{22.07}{16} = 1.42$ | | Residual/Error | 136 | 3 × 2 = 6 | $\frac{136}{6} = 22 \cdot 67$ | | | Total | 210 | 11 | ng still the grant | | Flest and Analysis of Variance Interpolation [alterpolation For salemen: The calculated value of F = 1.62 [b] Alayahie of F for (6, 3) d.f. at 50. Table value of F for (6, 3) d.f. at 5% l.o.s. = 8.94 Table value of 1 60 (5) and 30 (5) (5) (8 + 8.94) Since the calculated value of F is less than the table value, we accept the null hypothesis and conclude that the sales of different salesmen do not differ significantly. iclude that the sales of the calculated value of F = 1.42 Table value of F for (6, 2) d.f. at 5% l.o.s. = 5.15 Table value or F is less than the table value, we accept the null hypothesis and conclude that there is not significant difference in the seasons so far as sales ae concerned. To study the performance of three dates are conclude that there is not study the performance of three detergents and three different water temperatures, the following 'whiteness' readings were obtained with specially | | Water Temperature | Detergent A | D. | -0 | |---|-------------------|-------------|-------------|-------------| | | Coled Water | 57 | Detergent B | Detergent C | | | Warm Water | 49 | 55
52 | 67 | | - | Hot Water | 54 | 46 | 68 | | | | | 40 | 58 | Perform a two-way analysis of variance, using 5 percent level of significance. Solution : Let us take the null hpothesis that there is no significant difference in the performance of three detergents due to water temperature and vice vers In order to simplify calculatins, let us subtract 50 from each figure. The deviations and their squares ae as follows: | | - Code | Data | 1 - 1 - | | Squar | es of Coded | Data | |----------------|--------|----------------|---------|--------------|-----------------------------|-------------|---------| | Water
Temp. | X 1 | X ₂ | X 3 | Row
Total | X ₁ ² | X2 | X_3^2 | | Cold. | 7 | 5 | 17 | 29 | 49 | 25 , | 289 | | Warm | -1 | 2 | 18 | 19 | 1 | 4 | 324 | | Hot | 4 | -4 | 8 | 8 | 16 | 16 | 64 | | Column | 10 | 3 | 43 | T = 56 | 66 | 45 | 677 | $$T = \Sigma X_1 + \Sigma X_2 + \Sigma X_3 = 10 + 3 + 43 = 56$$ C. F. = $\frac{T^2}{N} = \frac{(56)^2}{9} = 348 \cdot 44$ $$TSS = [\Sigma X_1^2 + \Sigma X_2^2 + \Sigma X_3^2] - C.F.$$ $$= [66 + 45 + 677] - 348 \cdot 44$$ $$= 788 - 348 \cdot 44 = 439 \cdot 44$$ $$SSC = \left[\frac{(10)^2}{3} + \frac{(3)^2}{3} + \frac{(43)^2}{3}\right] - C.F.$$ $$= 33.3 + 3 + 616 \cdot 33 - 348 \cdot 44 = 304 \cdot 22$$ $$SSR = \left[\frac{(29)^2}{3} + \frac{(19)^2}{3} + \frac{(8)^2}{3} \right] - C.F.$$ $=280 \cdot 33 + 120 \cdot 33 + 21 \cdot 33 - 348 \cdot 44 = 73 \cdot 55$ SSE = TSS - SSC - SSR =439.56-304.22-73.55=61.79 ### ANOVA Table | Source of
Variation | Sum of square
(S.S) | Degree of
Freedom | Mean sum of
squares (MSS) | F-Ratio | |---------------------------------|------------------------|----------------------|------------------------------|---| | Between Columns
(Detergents) | 304-22 | 2 | 152-110 | $F = \frac{152 \cdot 110}{15 \cdot 445} = 9.$ | | Between Rows
(Temperatures) | 73 - 55 | 2 | 36.775 | $F = \frac{36 \cdot 775}{15 \cdot 445} = 1.$ | | Residual/Error | 61.79 | 4 | 15 · 445 | | | Total | 439-56 | 8 | 19 19 19 19 19 | A En | Interpetation Interpetation (i) For Detergents: The calculated value of F = 9.85Table value of F for (2, 4) d.f. at 5% I.o.s. = 6.94Since the calculated value of F is greater than the table value, we reject the null hypothesis and conclude that there is significant different in the three varieties of deregents. (ii) For Temperature: The calculated value of F = 2.38Table value of F for (2, 4) d.f. at 5% I.o.s. = 6.94 Since the calculated value of F is less than the table value, we accept the null hypothesis and conclude that temperature do not make a significant difference. Example 15:
Apply F-test on the following data | API | ny 1-te | st on the ro | HOWING CALL | | | | | |-----|----------------|--------------|-------------|----|----|----|--------------------| | | X 1 | 25 | 30 | 36 | 38 | 31 | $\Sigma X_1 = 160$ | | | X ₂ | 31 | 39 | 38 | 42 | 35 | $\Sigma X_2 = 185$ | | 1 | X 2 | 24 | 30 | 28 | 25 | 28 | $\Sigma X_3 = 135$ | Given $(F_{2, 12}, 5 \text{ percent} = 3.89)$ Solution: Null hypothesis, $H_0: \mu_1 = \mu_2 = \mu_3$ *i.e.* there is no significant difference in the mean of three samples. In order to simplify the calculation, subtact 30 from each sample values. Frest and Analysis of Variance Coded Data | San | iple 1 | | | | | |-----------------------------|----------------------|----------------------|----------------------|--------------------|-----------------------------| | X 1 | X 2 | X ₂ | iple 2 | Sam | nle 2 | | -5 | 25 | 1 | X22 | X 3 | X ₃ ² | | Ó | 0 | 9 | 1 | -6 | 36 | | 6 | 9 | .8 | 81 | . 0 | 0 1 | | 8 | 12 | 12 | 144 | -2 | 4 | | 1 | 5 | 5 | | -5 | 25 | | $\Sigma X_1 = 10$ $n_1 = 5$ | $\Sigma X_1^2 = 126$ | ΣX ₂ = 35 | $\Sigma X_2^2 = 315$ | $\Sigma X_3 = -15$ | 4 | | Claratota en | model and | n ₂ = 5 | | -13 15 | $\Sigma X_3^2 = 69$ | $$T = \Sigma X_1 + \Sigma X_2 + \Sigma X_3 = 10 + 35 - 15 = 30$$ Correction Factor, $$C.F. = \frac{T^2}{N} = \frac{(30)^2}{15} = 60$$ TSS = Total sum of squares $= [\Sigma X_1^2 + \Sigma X_2^2 + \Sigma X_3^2] - C.F.$ =[126+315+69]-60=450 = [126 + 315 + 69] - 60 = 450 SSB = Sum of squares between the samples = $$\left[\frac{(\Sigma X_1)^2}{n_1} + \frac{(\Sigma X_2)^2}{n_2} + \frac{(\Sigma X_3)^2}{n_3}\right]$$ - C. F. = $\left[\frac{(10)^2}{5} + \frac{(35)^2}{5} + \frac{(-15)^2}{5}\right]$ - 60 = [20 + 245 + 45] - 60 = 250 $$= \left[\frac{(10)^2}{5} + \frac{(35)^2}{5} + \frac{(-15)^2}{5} \right] - 60 = [20 + 245 + 45] - 60 = 25$$ SSW = TSS - SSB = 450 - 250 = 200 ### ANOVA Table | Source of
Variation | Sum of squares | Degree of
Freedom (d.f.) | Mean sum of
squares (MSS) | F-Ratio | |------------------------|----------------|-----------------------------|------------------------------|------------------------------| | Between
Samples | 250 | 2 | 125 | $F = \frac{125}{16.667} = 7$ | | Between
Samples | 200 | 12 | 16-667 | | | Total | 450 | 14 | | | For $v_1 = 2$, $v_2 = 12$, the table value of F at 5% level of significante is 3-89 Since the calculated value of F is greater than the table value i.e. $F < F_{0.05}$, we reject the null hypothesis and conclude that there is significant difference in the mean of three samples. ### QUESTIONS - What is analysis of variance technique? Explain its basic assumptions and uses. - What is analysis of variance rectangue. Desputing case assumptions and (a) Discuss the assumptions of Analysis of Variance test (or techniques) - (a) Discuss the assumptions of Allianges of Alliance less for technique. (b) Distinguish between one-way and two-way ANOVA technique. - (b) Distinguish between one-way and two-my file the change. Discuss the technique of analysis of variance with an illustration for one-way classification. Describe the technique of ANOVA for two-way classification. - Describe the technique of ANOVA for the trouble - Of Variance. What is analysis of variance problem? Comment on the variance between the samples and within the samples. - Within the samples. What are the objectives, assumptions and uses of analysis of variance? - What is analysis of variance? Mention its applications. - Explain the meaning and significance of ANOVA. How is an ANOVA table set up and how a test is performed. ** # Statistical Estimation Theory ## INTRODUCTION: NTRODUCTION: Very often, we will need to make an estimate of the population parameter from the sample statistic. For example, suppose we are to find out the average amount of Pepsi Cola drunk by the saludents in Kurukshetra University, Kurukshetra, per day, It is difficult to find out the average of all the students and hence what usually done is, a sample taken and the average amount of Pepsi Cola drunk is found out. This sample mean is then used to find the average amount of Pepsi fact, we estimate the population average on the basis of sample average. The theory of estimation deals with the estimation of the unknown population parameters (such as population mean and variance) from the corresponding sample statistics (such as sample mean and variance). Statistical estimation in a procedure of estimating the unknown population parameters from the corresponding sample statistics. correspondiong sample statistics. ### SOME IMPORTANT TERMS The following terms are used in the study of statistical estimation: (1) Estimators and Estimates: Generally for the purpose of estimating a population parameter we can use various sample statistics. Those sample statistics (such as sample mean \overline{X} , sample median M, sample variance σ^2 , etc.) which are used to estimate the unknown population parameters (such as population mean μ , population variance σ^2 , etc.) are called estimators and the actual value taken by the estimators are called estimates. If 0 (read as theta) denotes the parameters to be estimated, then its estimator will be denoted by $\hat{\theta}$ (read as theta hat). Thus, $\hat{\theta}$ is an estimator of the population parameter θ . (2) Point Estimate and Interval Estimate: An estimate of the population parameter can be ine in two ways: nein two ways: Point Estimate: A single value of a statistic that is used to estimate the unknown population parameter is called a point estimate. For example, the sample mean X which population parameter is called a point estimator of Usumlarly, the statistic we use for estimating the population mean μ is a point estimator of S is a point estimator of σ², where the value of s² is computed from a random sample. The point estimator of σ², where the value of s² is computed from a random sample stimator. (ii) Internation. estimator. Interval Estimate: An interval estimate refers to the probable range within which the real value of a parameter is expected to lie. The two extreme limits of such a range are called fiducial or confidence limits and the range is called a confidence interval. These are determined on the basis of sample studies of a population. Thus, on the basis of sample studies when we estimate that the average monthly expenditure of students staying in a certain hostel is between Rs. 1000 and Rs. 2000, it will be a case of interval estimate and the figures of 1000 and 2000 will be the two estreme limits within which the actual expenditure of the students would lie. ## PROPERTIES OF A GOOD ESTIMATOR PROPERTIES OF A GOOD STATUS of a population parameter. For example, the population There can be more than one estimators of a population parameter. For example, the population mean(ii) may be estimated either by sample mean (Z), etc. Similarly, the population variance (c²) may be estimated either by the sample variance (Z), etc. Similarly, the population variance (c²) may be estimated either by the sample variance (Z), etc. Similarly, the population variance (c²) may be estimated either by the sample variance (Z), etc. Similarly, the population variance (c²) may be estimated either by the sample variance (Z), etc. Similarly, the population variance (c²) may be estimated either by the sample variance (Z), etc. Similarly, the population variance (c²) may be estimated either by the sample mean (Z) and (Z) are considered to the construction of th (Z), etc. Similarly, the population of the control (s²), sample S.D. (s), sample mean terminating of determine a good estimator out of a number of available estimators. A good estimator is one which is as close to the true value of the parameter as possible. A good estimator possess the following characteristics or properties: - (1) Unbiasedness - (2) Consistency - (3) Efficiency - (4) Sufficiency - Let us consider them in detail: - (1) Unbiased Estimator: An estimator $\hat{\theta}$ is said be unbiased estimator of the population parameter θ if the mean of the sampling distribution of the estimator θ is equal to the corresponding population parameter θ . Symbolically, $$\mu_{\hat{\theta}} = 0$$ In terms of mathematical expectation, $\hat{\theta}$ is an unbiased estimator of θ if the expected value of the estimator is equal to the parameter being estimated. Symbolically, $$E(\hat{\theta}) = \theta$$ Sample mean \overline{X} is an unbiased estimate of the population mean μ because the mean of the sampling distribution of the means $\mu_{\overline{X}}$ or $E(\overline{X})$ is equal to the Example 1. pouplation mean µ. Symbolically, $$\mu_{\overline{X}} = \mu$$ or $E(\overline{X}) = \mu$ Sample variance s^2 is a biased estimate of the population variance σ^2 because Example 2. the mean of the sampling distribution of variance is not equal to the population variance. Symbolically, $$\mu_s^2 \neq \sigma^2$$ or $E(s^2) \neq \sigma^2$ However, the modified sample variance (\$\hat{s}^2\$) is unbiased estimate of the population variance σ² because $$E(\hat{s}^2) = \sigma^2$$ where, $\hat{s}^2 = \frac{n}{n-1} \times s^2$ Sample proportion p is an unbiased estimate of the population proportion p because the mean of the sampling distribution of proportion is equal to the population proportion. Symbolically, Example 3. $$\mu_p = P$$ or $E(P) = P$ Statistical Estimation Theory 201 (2) Consistent Estimator: An estimator is said to be consistent if the estimator approaches the (2) Consistent Estimator of the companion is said to be consistent if the estimator approaches the population parameter as the sample size increases. In other words, an estimator 8 is said to be consistent if the estimator of the population parameter 8, if the probability that 8 annuals said to be consistent if the estimator of the population parameter 8, if the probability that 8 annuals said to be consistent if the estimator
approaches as the population parameter 8, if the probability that 8 annuals said to be consistent if the estimator approaches as the population parameter 8. population parameter. In other words, an estimator θ is said to be consistent estimator of the population parameter θ, if the probability that θ approaches θ is 1 as n consistent becomes larger and larger. Symbolically, $P(\hat{\theta} \to \theta) \to 1$ as Note: A consistent estimator need not to be unbiased Note: A consistency of an estimator is that $$(i) E(\hat{\theta}) \rightarrow \theta$$ (ii) $\operatorname{Var}(\hat{\theta}) \to 0 \text{ as } n \to \infty$ Sample mean \overline{X} is a consistent estimator of the population mean μ because the Sample mean a baconsistent estimator of the population mean a because the expected value of the sample mean approaches the population mean and the variance of the sample mean approaches zero as the size of the sample is sufficiently increased. Symbolically, (i) $E(\overline{X}) \to \mu$ (ii) $$\operatorname{Var}(\overline{X}) = \frac{\sigma^2}{n} \to 0 \text{ as } n \to \infty$$ Sample median is also consistent estimator of the population mean because: Example 2: (i) $E(M) \rightarrow \mu$ (ii) $Var(M) \rightarrow 0 as n \rightarrow \infty$ (3) Efficient Estimator: Efficiency is a relative term. Efficiency of an estimator is generally defined by comparing it with another estimator. Let us to take two unbiased estimators θ_1 and θ_2 . The estimator $\hat{\theta}_1$ is called an efficient estimator of θ if the variance of $\hat{\theta}_1$ is less than the variance of $\hat{\theta}_2$. Symbolically, $$Var(\hat{\theta}_1) < Var(\hat{\theta}_2)$$ Then, $\hat{\theta}_1$ is called an efficient estimator. Example: Sample mean \overline{X} is an unbiased and efficient estimator of the population mean (or true mean) than the sample median M because the variance of the sampling distribution of the means is less than the variance of the sampling distribution of the medians. The relative efficiency of the two unbiased estimators is given below: We know that, $$Var(\overline{X}) = \frac{\sigma^2}{n}$$, $Var(M) = \frac{\pi}{2} \cdot \frac{\sigma^2}{n}$ Efficiency = $$\frac{\operatorname{Var}(\overline{X})}{\operatorname{Var}(M)} = \frac{\frac{\sigma^2}{n}}{\frac{\pi\sigma^2}{2n}} = \frac{1}{2n} = \frac{1}{2n} = \frac{7}{11} = 0.64 \left[\because \pi = \frac{22}{7} \right]$$ $$\operatorname{Var}(\overline{X}) = 0.64 \operatorname{Var}(M)$$ Therefore, sample mean is more efficient estimator of the population mean as Hence, the sample median. compared to sample median. (4) Sufficient Estimator: The last property that a good estimator should possess is sufficiency. An estimator θ is said to be a 'sufficient estimator' of a parameter θ if it contains all the informations in the sample regarding the parameter. In other words, a sufficient estimator utilises all informations that the given sample can furnish about the population. Sample means X is said to be a sufficient estimator of the population mean. ## 4. APPLICATION OF POINT ESTIMATION The applications relating to point estimation are studied under two headings : (2) Foint Estimation in case of Kepeated Sampling. (1) Point Estimation in case of Single Sampling: When a single independent random sample is drawn from a unknown population, the point estimate of the population parameter can be illustrated by the following examples: A sample of 10 measurements of the diameter of a sphere gave a mean \overline{X} =4.38 Example 1. A sample of 10 measurements of the diameter of a spiner gave a mean X = 4.38 inches and a standard deviation = .06 inches. Determine the unbiased and efficient estimates of (a) the true mean (i.e., population mean) and (b) the true variance (i.e., population variance). We are given: $n=10, \overline{X}=4\cdot 38, s=06$ Solution. (a) The unbiased and efficient estimate of the true mean μ is given by: (b) The unbiased and efficient estimate of the true variance σ^2 is : $$\hat{s}^2 = \frac{n}{n-1} \cdot s^2$$ Putting the values, we get $$\hat{s}^2 = \frac{10}{10 - 1} \times \cdot 06 = 1 \cdot 11 \times 0 \cdot 06 = \cdot 066$$ Thus, $\mu = 4 \cdot 38$, $\sigma^2 = 0 \cdot 666$ Example 2. Solution. The following five observations constitute a random sample from an unknown population: 6.33, 6.37, 6.36, 6.32 and 6.37 centimeters. 5:35, 5:37, 5:36, 6:32 and 6:37 centimeters. Find out unbiased and efficient estimates of (a) true mean, and (b) true variance. (a) The unbiased and efficient estimate of the true mean (i.e., population mean) is given by the value of given by the value of when value of $$\overline{X} = \frac{\sum X}{n} = \frac{6 \cdot 33 + 6 \cdot 37 + 6 \cdot 36 + 6 \cdot 32 + 6 \cdot 37}{5} = \frac{31 \cdot 75}{5} = 6 \cdot 35$$ (b) The unbiased and efficient estimate of the true variance (i.e., population variance) is : Statistical Estimation Theory $$\hat{s}^2 = \frac{\Sigma (X - \overline{X})^2}{n - 1}$$ where, $\hat{s}^2 = \text{modified sample variance.}$ $$= \frac{(6 \cdot 33 - 6 \cdot 35)^2 + (6 \cdot 37 - 6 \cdot 35)^2 + (6 \cdot 36 - 6 \cdot 35)^2 + (6 \cdot 32 - 6 \cdot 35)^2 + (6 \cdot 37 - 6 \cdot 35)^2}{5 - 1}$$ $$= \frac{-00222}{4} = \cdot 00055 \text{ cm}^2$$ The following data relate to a random sample of 100 students Example 3. | Weight (kg) : | 60-62 | cigits (kg): | 7 . 7 | requents in 1 | Kurukshetra | |-------------------|-------------|--------------|-------|---------------|-------------| | No. of Students : | 5 | 63–65
18 | 66-68 | 69-71 | 72-74 | | Determine unbiase | d and effic | ient esti- | 42 | 27 | 8 | ates of (a) population mean and (b) population variance. Calculation of Mean and Variance | Weight | No. of Students | M.V. (m) | A = 67 $d = m - A$ | d'=d/3 | fď' | fd' ² | |--------|-----------------|----------|--------------------|--------|-----------|------------------------| | 60-62 | 5 | 61 | -6 | -2 | -10 | 20 | | 63-65 | 18 | 64 | - 3 | -1 | - 18 | 20
18 | | 66-68 | 42 | 67 | 0 | 0 | 0 | 0 | | 69-71 | 27 | 70 | + 3 | +1 | + 27 | 27 | | 72-74 | 8 | 73 | +6 | + 2 | + 16 | 32 | | -13+50 | n = 100 | | | | Σfd' = 15 | Σfd' ² = 97 | (a) The unbiased and efficient estimate of the population mean is given by the $$\overline{X} = A + \frac{\sum fd'}{n} \times i$$ $$= 67 + \frac{15}{100} \times 3 = 67 + (0.45) = 67.45$$ Like partial (b) The unbiased and efficient estimate of the population variance is: $$\hat{s}^{2} = \frac{n}{n-1} \cdot s^{2}$$ ere, $$s^{2} = \frac{\Sigma f d^{2}}{n} - \left(\frac{\Sigma f d^{2}}{n}\right)^{2} \times i^{2}$$ $$= \left[\frac{97}{100} - \left(\frac{15}{100}\right)^{2}\right] \times 3^{2}$$ $$= [0.97 - 0.025] \times 9 = 8.5275$$ Now, $$\hat{s}^2 = \frac{n}{n-1} s^2 = \frac{100}{99} \times 8.5275 = 8.6136$$ Thus, $\mu = 67 \cdot 45$, $\sigma^2 = 8 \cdot 6136$ Thus, μ =0.43,0 = 0.030 (2) Point Estimation in Case of Repeated Sampling: When large number of random samples of same size are drawn from the population with or without replacement, then the point estimates of the population parameter can be illustrated by the following examples: A population consists of five values: 3, 4, 5, 6 and 7. List all possible samples of size 3 without replacement from this population and calculate the mean \overline{X} of each sample. Verify that sample mean \overline{X} is an unbiased estimate of the population mean. Example 4. The population consists of the five values: 3, 4, 5, 6, 7. The total number of possible samples of size 3 without replacement are $5_{c_3} = 10$ which are shown in the following table: Solution. | Sample No. | Sample Values (2) | Sample Mean (\overline{X}) (3) | |------------|-------------------|--| | 1 | (3, 4, 5) | $\frac{1}{3}(3+4+5) = \frac{12}{3} = 4$ | | 2 | (3, 4, 6) | $\frac{1}{3}(3+4+6) = \frac{13}{3} = 4.33$ | | 3 | (3, 4, 7) | $\frac{1}{3}(3+4+7) = \frac{14}{3} = 4.67$ | | 4 | (3, 5, 6) | $\frac{1}{3}(3+5+6) = \frac{14}{3} = 4.67$ | | 5 | (3, 5, 7) | $\frac{1}{3}(3+5+7) = \frac{15}{3} = 5.0$ | | 6 | (3, 6, 7) | $\frac{1}{3}(3+6+7) = \frac{16}{3} = 5 \cdot 33$ | | 7 | (4, 5, 6) | $\frac{1}{3}(4+5+6) = \frac{15}{3} = 5.00$ | | 8 . | (4, 5, 7) | $\frac{1}{3}(4+5+7) = \frac{16}{3} = 5 \cdot 33$ | | 9 | (4, 6, 7) | $\frac{1}{2}(4+6+7) = \frac{17}{3} = 5.67$ | | 10 | (5, 6, 7) | $\frac{1}{3}(5+6+7) = \frac{18}{3} = 6.00$ | | Total | k = 10 | $\Sigma \overline{X} = 50$ | Mean of Sampling Distribution of Means = $\mu_{\overline{X}} = \frac{\Sigma \overline{X}}{k} = \frac{50}{10} = 5$. Population Mean = $\mu = \frac{3+4+5+6+7}{5} = 5$ Since, $\mu_{\overline{X}} = \mu$, sample mean \overline{X} is an unbiased estimate of the population mean μ Consider a hypothetical population comprising three values : 1, 2, 3. Draw all possible samples of size 2 with replacement. Calculate the mean \overline{X} and variance Statistical Estimation Theory Solution. The population consists of three values: 1, 2 and 3. The total samples of size 2 with replacement are $N'' = 3^2$. | Sample
No. | Sample
Values | Sample Mean (\overline{X}) | Sample Variance | nber of possil
n by | |---------------|------------------|------------------------------|---|--| | | | PHIL | $s^{2} = \frac{1}{2} [(x_{1} - \bar{x})^{2} + (x_{2} - \bar{x})^{2}]$ | Modified
Sample Varian | | 1. | (1, 1) | $\frac{1}{2}(1+1)=1\cdot 0$ | | $\left(\hat{s}^2 = \frac{n}{n-1} s^2\right)$ | | 2. | (1, 2) | $\frac{1}{2}(1+2)=1.5$ | $\frac{1}{2} \cdot [(1-1)^2 + (1-1)^2] = 0.00$ | 0.00 | | 3. | (1,.3) | $\frac{1}{2}(1+3)=2\cdot 0$ | $\frac{1}{2} \cdot [(1-1.5)^2 + (2-1.5)^2] = 0.25$ $\frac{1}{2} \cdot [(1-1.5)^2 + (2-1.5)^2] = 0.25$ | 0.50 | | 4. | (2, 1) | $\frac{1}{2}(2+1)=1.5$ | $\frac{1}{2} \cdot [(1-2)^2 + (3-2)^2] = 1 \cdot 00$ | 2.00 | | 5. | (2, 2) |
$\frac{1}{2}(2+2)=2\cdot0$ | $\frac{1}{2} \cdot [(2-1.5)^2 + (1-1.5)^2] = 0.25$ | 0-5 | | 6. | (2, 3) | $\frac{1}{2}(2+2)=2.5$ | $\frac{1}{2} \cdot [(2-2)^2 + (2-2)^2] = 0.00$ | 000 | | 7 | (3; 1) | $\frac{1}{2}(3+1)=2\cdot0$ | $\frac{1}{2} \cdot [(2-2\cdot5)^2 + (3-2\cdot5)^2] = 0.25$ | 0.50 | | 8. | (3, 2) | $\frac{1}{2}(3+2)=2.5$ | $\frac{1}{2} \cdot [(3-2)^2 + (1-2)^2] = 1 \cdot 00$ $\frac{1}{2} \cdot [(3-2)^2 + (1-2)^2] = 1 \cdot 00$ | 2.00 | | 9. | (3, 3) | $\frac{1}{2}(3+3)=3\cdot0$ | $\frac{1}{2}[(3-2.5)^2+(2-2.5)^2]=0.25$ $\frac{1}{2}[(3-3)^2+(3-3)^2]=0.00$ | 0.50 | | Total | k=9 | $\Sigma \overline{X} = 18$ | 211- 07 1(0-3) 1=0-00 | 000 | (a) Mean of Sampling Distribution of Means = $\mu_{\overline{x}} = \frac{\Sigma \overline{X}}{k} = \frac{18}{9} = 2$. Here, K=No. of Population Mean $\mu = \frac{1+2+3}{3} = 2$. Since, $\mu_{\overline{X}} = \mu$, sample mean \overline{X} is an unbiased estimate of the population mean μ . (b) Mean of the Sampling Distribution of Variance= $\mu_{S^2} = \frac{\Sigma^2}{k} = \frac{3}{9} = \frac{1}{3}$ Population Variance $\sigma^2 = \frac{(1-2)^2 + (2-2)^2 (3-2)^2}{3} = \frac{2}{3}$ Since, $\mu_{s^2} \neq \sigma^2$, sample variance s^2 is not an unbiased estimate of the population variance (σ^2). But the modified sample variance defined as $\hat{s}^2 = \frac{n}{n-1} s^2$ will be unbiased estimate of the population variance o² because: $$\mu_{\hat{s}^2} = \frac{\Sigma \hat{s}^2}{k} = \frac{6}{9} = \frac{2}{3}$$ $$\sigma^2 = \frac{2}{3}$$ $$\mu_{\hat{s}^2} = \sigma^2$$ Since, $\mu_{c^2} = \sigma^2$, the modified sample variation is an unbiased estimate of the Example 6. Show that the sample mean (\overline{X}) is an unbiased estimate of the population mean or An independent random sample $x_1, x_2, x_3, \dots, x_n$ is drawn from a population with mean μ . Prove that the expected value of the sample mean \overline{X} equals the population mean µ. Solution. A random sampling is one where each sample has an equal chance of being selected. We draw a random sample of size n'. $$E(\overline{x}) = E\left[\frac{x_1 + x_2 + \dots + x_n}{n}\right] \text{ Where } x_1 \text{ is the sample observation.}$$ $$= \frac{1}{n} \cdot [E(x_1) + E(x_2) + \dots + E(x_n)]$$ Now the expected values of x_i (a member of the population) is population mean μ $$\begin{split} E(\overline{x}) &= \frac{1}{n} [\mu + \mu + \dots + \mu] & [\because E(x_1) = E(x_2) = \dots E(x_n) = \mu] \\ &= \frac{1}{n} \cdot [n \ \mu] = \mu & [\because \Sigma C = C_1 + C_2 + \dots C_n = nC] \end{split}$$ Thus, sample mean \overline{X} is an unbiased estimate of population mean. ### EXERCISE - 1 - Measurements of a sample of masses were determined to be 8·3, 10·6, 9·7, 8·8, 10·2 and 9·4 kilograms (kg) respectively. Determine unbiased and efficient estimates of (a) the population mean and (b) the population variance, and (c) compare the sample standard deviation and estimated population S.D. [Ans. (a) 9·5 (b) 736 (c) \$s=σ=0.86, s=r3| 47.49, 53 and 51. Find the unbiased and efficient estimate of (a) true mean. (b) true 47, 49, 53 and 51. Find the unbiased and efficient estimate of (a) true mean. (b) true for the comparison of t - 3. A population consists of four numbers: 3, 4, 2, 5. List all possible distinct samples of size two which can be drawn without replacement and verify that the population mean is equal to the mean of sample means. - A population consists of three numbers : 2, 5 and 8. List all possible distinct samples of size two which can be drawn without replacement from this population. Calculate the mean \overline{x} for each sample. Verify that sample mean \overline{x} is an unbiased estimate of the population mean. Statistical Estimation Theory A population consists of five numbers : 2, 3, 6, 8, 11. List all possible samples of size 2 variance $s^2 = \frac{1}{2} \left[(X_1 - \overline{X})^2 + (X_2 - \overline{X})^2 \right]$ for each sample. Examine whether the two statistics of the corresponding population parameters. What is the name \overline{x} and the contraction of the corresponding population parameters. What is the name \overline{x} and the contraction of the corresponding population parameters. What is the name \overline{x} and \overline{x} and \overline{x} are the contraction of the corresponding population parameters. What is the name \overline{x} and \overline{x} are the contraction of the corresponding population parameters. What is the name \overline{x} and \overline{x} are the contraction of the corresponding population parameters. variance s=2 10.1 Figure 2.1 Figure 2.2 F are unblasses of \overline{X} ? A sample of 10 television tubes produced by a company showed a mean life of 1200 hr. and efficient estimates of the (a) population mean and (b) population variance. [Ans. μ =1200 h. g^2 = 111-11] INTERVAL ESTIMATION (OR CONFIDENCE INTERVAL) INTERVAL ESTIMATION (OR CONFIDENCE INTERVAL) A point estimator, however, good it may be, cannot be expected to coincide with the true value of the parameter and in some cases may differ widely from it. In the theory of interval estimation, we find an interval or two numbers within which the value of unknown pointerval estimation, espected to lie with a specified probability. The method of interval estimation constant t_1 and t_2 such that $P[t_1, d_2]$ for given value of $|t_1| = 1$, where in the level of significance. The interval $|t_1, t_2|$ within which the unknown value of parameter 0 is expected to lie is known as confidence interval and the limits t_1 and t_2 so determined are known as precision of the estimate. For example, $\alpha = 0.05$ (or 0.01) gives 93% (or 99%) confidence limits. Procedure for Setting up Confidence Interval (or Interval Estimation) or Limits for a Procedure for Setting up Confidence Interval (or Interval Estimation) or Limits for a Population Parameter The following steps enable us to compute the confidence interval or confidence limits for the population parameter θ in terms of the sample statistic t: (1) Compute or take the appropriate sample statistic t. (2) Obtain the S.E. (f), the standard error of the sample statistic t. (3) Select the confidence level and corresponding to that specified level of confidence, we note down the critical value of the statistic t. Applications of Interval Estimation (or Confidence Interval) The applications relating to interval estimation (or confidence interval) are studied under the following heads: (A) Interval Estimation for Large Samples (n>30) (B) Inteval Estimation for Small Samples (n ≤30) Let us discuss them: (A) Interval Estimation (or Confidence Interval) for Large Samples (n>30): In large sample 30), the interval (a) 30), the interval estimation (or Confidence Interval) for Large Samples 30), the interval estimation is further studied under the following heads: (1) Confidence Interval or Limits for Population Mean (2) Confidence Interval or Limits for Population Proportion (3) Confidence Interval or Limits for Population Proportion (3) Confidence Interval or Limits for Population Proportion (4) Determine unit Proportion (5) Determine unit Proportion (6) De (a) Determination of a Proper Sample Size for Estimating µ or P. (b) Confidence Interval or Proper Sample Size for Estimating µ or P. octermination of a Proper Sample Size for Estimating μ or P. (i) Confidence Interval or Limits for Population Mean μ (when n > 30): The determination of Confidence Interval or Limits for Population Mean μ (mean μ) or gase of large sample (n > 30) requires e confidence Interval or Limits for Population Mean μ (when n > 30): The determines of large sample (n > 30) requires the use of normal distance. the use of normal distribution. ## Statistical Estimation Theory 8 (i) $$(1-\alpha)$$ 100% Confidence limits for μ are given by : $$\overline{X} \pm Z_{\alpha/2} \cdot S \to \overline{X}$$) 100% Confidence in $$\overline{X} \pm Z_{\alpha/2} \cdot S \cdot E_{\overline{X}}$$ $$\overline{X} \pm Z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$ where, σ is known. or $$\overline{X} \pm Z_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$$ when σ is not known. [For large sample, $\sigma = s$] or $$X \pm Z_{\alpha/2} \cdot \sqrt{n}$$ (ii) $(1-\alpha)$ 100% confidence interval for μ is given by: $$\overline{X} - Z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + Z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$ $$\overline{X} - Z_{\alpha/2} \frac{s}{\sqrt{n}} < \mu < \overline{X} + Z_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$$ where, σ is not known. In particular, 95% confidence limits for μ are : $$\overline{X} \pm 1.96 \frac{\sigma}{\sqrt{n}}$$ [For large sample, $\sigma = s$] Similary, 99% confidence limits for μ are $$\overline{X} \pm 2.58 \frac{\sigma}{\sqrt{n}}$$ Procedure: The construction of confidence interval for population mean $\boldsymbol{\mu}$ involves the following steps: (i) Compute \overline{X} or take \overline{X} (ii) Compute the $S.E_{\overline{X}}$ by using the following formula: (a) S.E_{$$\overline{X}$$} = $\frac{\sigma}{\sqrt{n}}$, when σ is known. (b) $$S.E_{\overline{X}} = \frac{s}{\sqrt{n}}$$, when σ is not known. - (iii) Select the desired confidence level and corresponding to that level of confidence, we find that value of Z_{\alpha/2}. (iv) Substituting the value of \overline{X}, S.E_{\overline{x}} and Z_{\alpha/2} in the above stated formula. ### Note: 1. If the population S.D. is not known, the sample S.D. (s) is used for large samples. The values of $Z_{\alpha/2}$ (for large samples) corresponding to various level of confidence are given below. | given below : | | | | | | Without any reference to | |----------------------------------|-------|-------|--------|--------|--------|--------------------------| | Confidence Level
(1 – a) 100% | 90% | 95% | 96% | 98% | 99% | the confidence level | | Z-Value | ±1.64 | ±1.96 | ± 2.06 | ± 2·33
 ± 2.58 | ± 3 | For other confidence level, the values of $Z_{\alpha/2}$ can be found from the tables of area under the normal curve given at the end of the book. Note: Where no reference to the confidence interval is given, then we always $Z_{\alpha/2}=3$. This use corresponds to 99.73% land z=0. value corresponds to 99.73% level of confidence. Statistical Estimation Theory Estimated Estimated Estimated the procedure for setting up confidence limits for \(\pm \) The following example of 100 observations yields sample \(\pm \) A random sample of 100 observations yields sample \(\pm \) ing examples an example of 100 observations yields sample mean $\overline{\chi}$ = 150 and sample variance s² = 400. Compute 95% and 99% confidence interval for the population We are given: $n = 100, \overline{X} = 150, s^2 = 400 \Rightarrow s = 20$ $$S.E_{\overline{X}} = \frac{s}{\sqrt{n}}$$ $$= \frac{20}{\sqrt{100}} = 2$$ [For large sample, $\sigma = s$] At 95% confidence level, the value of $Z_{\alpha/2} = 1.96$ At 99% confidence level, the value of $Z_{\alpha/2} = 1.96$ At 99% confidence level, the value of $Z_{\alpha/2} = 2.58$ (a) 95% confidence Interval or Limits for μ are: X ±1.96 S.E x Putting the values, we get 150 $$\pm$$ 1.96 \times 2 = 150 \pm 3.92 = 153.92 or 146.08 Thus, 146.08 < \mu < 153.92 (b) 99% confidence interval or Limits for µ are: $$\overline{x} \pm 258.S.E._{\overline{X}}$$ = 150 ± 2.58 × 2 = 150 ± 5.16 = 155.16 or 144.84 $144 \cdot 84 < \mu < 155 \cdot 16$ A random sample of 900 workers in a steel plant showed an average height of 67 inches with a standard deviation of 5 inches. (a) Establish a 95% confidence interval estimate of the mean height of all the workers at the steel plant. (b) Establish a 99% confidence interval estimate of the mean height of all the workers at the steel plant. Solution. We are given: $$n = 900$$, $\overline{X} = 67$, $s = 5$ S. E. $(\overline{X}) = \frac{s}{\sqrt{n}} = \frac{5}{\sqrt{900}} = 0.167$ [For large sample, $s = \sigma$] At 95% confidence level, the value of $Z_{n/2} = 1.96$ At 95% confidence level, the value of $Z_{\alpha/2} = 1.96$ At 99% confidence level, the value of $Z_{\alpha/2} = 2.58$ (a) 95% confidence interval for μ is: X ±1.96, S.EX Putting the values, we get get $$67 \pm 1.96 \times (0.167)$$ $= 67 \pm 0.327 = 67.327$ to 66.673 $66.673 < \mu < 67.327$ Thus, Thus. Putting the values, we get $=67\pm2.58\cdot(0.167)$ $= 67 \pm 0.43$ = 67.43 to 66.57 $66.57 < \mu < 67.43$ Upon collecting a sample of 100 from a population with known standard deviation of Rs. 50, the mean is found to be Rs. 500. Example 9. (i) Find 90% confidence interval for the population mean. (ii) Find 98% confidence interval for the population mean. Solution. We are given : $n = 100, \overline{X} = 500, \sigma = 50$ S. E. $$\frac{\sigma}{X} = \frac{50}{\sqrt{n}} = \frac{50}{\sqrt{100}} = 5$$ [Here, σ is known] At 90% confidence level, the value of $Z_{\alpha/2}$ = 1.64 At 98% confidence level, the value of $Z_{\alpha/2}$ = 2.33. (a) 90% confidence interval for μ is : $\overline{X} \pm 1.64. S. E_{\overline{X}}$ Putting the values, we get $=500 \pm 1.64 \cdot (5)$ $=500 \pm 8.2$ =508 · 2 to 491 · 8 $491.8 < \mu < 508.2$ Thus, (b) 98% confidence interval for μ is $\overline{X} \pm 2.33.$ S. E. \overline{X} Putting the values, we get $=500 \pm 2 \cdot 33 \cdot (5)$ $=500 \pm 11.65$ =511 · 65 to 488 · 35 $488 \cdot 35 < \mu < 511 \cdot 65$ Confidence Interval or Limits for population mean when sample is drawn without replacement from a finite population. In this case $(1-\alpha)$ 100% confidence interval or limits are given by: or limits are given by: $\overline{X} \pm Z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \cdot \sqrt{\frac{N-n}{N-1}}$ when o is known $\overline{X} \pm Z_{\alpha/2} \cdot \frac{s}{\sqrt{n}} \cdot \sqrt{\frac{N-n}{N-1}}$ when σ is not known. Where, $\sqrt{\frac{N-n}{N-1}}$ = Finite Population Correction Factor gatistical Estimation Theory A random sample of 100 articles selected from a batch of 2000 articles shows that the average diameter of the articles = 0.354 with a standard deviation = 0.048. Z value with 95% confidence is 1-96. Z value with 95% confidence is 1-96. We are given: N = 2000, n = 100, $\overline{X} = 0.354$, and s = 0.048Solution. S. E_{$$\overline{X}$$} = $\frac{s}{\sqrt{n}} \cdot \sqrt{\frac{N-n}{N-1}}$ = $\frac{0.048}{\sqrt{n}} = \frac{0.048}{\sqrt{n}} \frac{0.048$ $\frac{0.048}{\sqrt{100}} \times \sqrt{\frac{2000 - 100}{2000 - 1}}$ $$=\frac{0.048}{10} \times \sqrt{\frac{1900}{1999}}$$ $= 0.0048 \times \sqrt{0.95048} = 0.0048 \times 0.97493$ =0.00468 At 95% confidence level, the value of $Z_{\alpha/2} = 1.96$. 95% confidence limits for μ are: $\overline{X} \pm 1.96 \cdot \text{S.E.}_{\overline{X}}$ Putting the values, we get $=0.354\pm1.96\times(0.00468)$ $=0.354\pm0.009173$ = 0.3448 to 0.3632 A manager wants an estimate of average sales of salesmen in his company. A random sample of 121 out of 600 salesmen is selected and average sales is found to be Rs. 760. If the population standard deviation is Rs. 150, manager specifies a 99% level of confidence. What is the interval estimate for population mean μ ? Example 11. We are given: $N = 600, n = 121, \overline{X} = 760, \sigma = 150$ $$0, n = 121, \overline{X} = 760, \sigma = 150$$ [Here, σ is given] $$=\frac{150}{\sqrt{121}} \times \sqrt{\frac{600-121}{600-1}}$$ At 99% confidence level, $Z_{\alpha/2} = 2.58$ 99% confidence limits for μ are given by: $\overline{X} \pm 2.58 \cdot \text{S.E}_{\overline{X}}$ [Here, σ is given] Putting the values, we get $=760 \pm 2.58 \times 12.2$ =760 ± 31 · 48 =728 · 52 to 791 · 48 Thus, 728.52 < µ < 791.48. ### EXERCISE - 2 1. A random sample of 144 observations yields sample mean \overline{X} =160 and sample variance s^2 =100. Compute a 95% confidence interval for population mean. s² =100. Compute a 95% confidence interval for population linear. [Ans. 158·37 < µ<161·03] From a random sample of 64 farms are found to have a mean area of 45 hectares with a standard deviation of 12. What are the 95% and 99% confidence limits for the mean area, a standard deviation of 12. What are the 95% and 19% confidence limits for the mean area area of 250 hectares with a standard deviation of 50. Compute 99% confidence interval of the mean area. How does the width of the confidence interval change if the size of the sample were increased to 40.7 [Ans. (a) 237·1</p> Ine width of the continuence interval change if the size of the sample were increased to 400? [Ans. (a) 237·1< µ <262.9 (b) reduced to half [Hint: The width of the confidence interval is inversely related with the size of the sample] 4. Upon collecting a sample of 200 from a population with known standard deviation of 5·23, the mean is found to be 76·3. (i) Find 90% confidence interval for the mean. (ii) Find 98% confidence interval for the mean. [Ans. (i) 75-695 < μ < 76-905 (ii) 75-441 < μ < 77-159] A simple random sample of size 100 has mean 15, the population variance being 25. Find an interval estimate of the population mean with confidence level of (i) 99% and (ii) 95%, if the population variance is not given, then what should be done to find out the required interval estimates. [Ans. (i) $$14.02 < \mu < 15.98$$, (ii) $13.71 < \mu < 16.29$; $\sigma^2 = \hat{s}^2 = \frac{n}{n-1} \cdot s^2$] 6. A sample of size 64 was drawn from a population consisting of 128 units. The sample mean of the measurements of a certain characteristics was found to be 28. Set up a 96% confidence limits for the population mean, if it is known that the population. S.D. for the characteristic is 4. [Hints: S.E. $= \frac{\sigma}{\sqrt{N}} \cdot \sqrt{\frac{N-n}{N-1}}$ For 96%, Z = 2.05] [Ans. 28-7267 and 27-272] (2) Confidence Interval or Limits for Population Proportion P: Though the sampling distribution associated with proportions is the binomial distribution, the normal distribution can be used as an approximation provided the sample is large (i.e., n > 30) and both np and $nq \ge 5$ (when n is the size of the sample, p is the proportion of success and q = 1 - p). (1) (1-a) 100% Confidence limits for P are given by : or $$p\pm Z_{\alpha/2}$$. S.E. (p) $p\pm Z_{\alpha/2} \cdot \sqrt{\frac{PQ}{n}}$ when P is known. $p\pm Z_{\alpha/2} \cdot \sqrt{\frac{Pq}{n}}$ when P is not known. Slatistical Estimation Theory (ii) $$(1-\alpha)$$ 100% confidence interval for P is given by $$P - Z_{\alpha/2} \cdot \sqrt{\frac{p\eta}{n}} < P < p + Z_{\alpha/2} \cdot \sqrt{\frac{p\eta}{n}}$$ In particular, 95% confidence limits for P are: $$p \pm 1 \cdot 96 \cdot \sqrt{\frac{p\eta}{n}}$$ Similarly, 99% confidence limits for P are: $$p \pm 2.58 \cdot \sqrt{\frac{pq}{n}}$$ involves the following steps : (i) Compute p or take p. (ii) Compute the S.E. (p) by using the following formula: S.E. $$(p) = \sqrt{\frac{PQ}{n}}$$ when P is known. S.E. $(p) = \sqrt{\frac{pq}{n}}$ when P is not known. 213 (iii) Select the desired confidence level and corresponding to that level, we find the value of $Z_{\alpha/2}$. (iv) Substituting the values of p, S.E. (p) and $Z_{\alpha/2}$, in the above stated formula. ote: 1. If the population proportion (P) is not known, then sample proportion (p) is used for large When no reference to the confidence level is given, then always take $Z_{\alpha/2}=3$ for 99-73% confidence level. Example 12. Out of 1,200 tosses of a coin, it gave 480 heads and 720 tails. Find the 95 percent confidence interval for the heads. Solution. We are given: n = 1200, X = Total heads (np) = 480 $p = \text{Sample proportion heads} = \frac{480}{1200}$ Also, the population proportion of heads = P = 0.50 $$Q = 1 - P = 1 - 0.50 = 0.50$$ S. E_(p) = $\sqrt{\frac{PQ}{n}}$ [For large sample, $p = P$] $$= \sqrt{\frac{0.5 \times 0.5}{1200}} = 0.0144$$ For 95% confidence level, the value of $Z_{\alpha/2} = 1.96$ 95% confidence interval for P is given by p±1.96 S.E. Putting the
values, we get A random sample of 1000 households in a city revealed that 500 of these had Gita. Find 95% and 99% confidence limits for the proportion of households in the city with Gita. Example 13. Solution. We are given: n = 1000, x = No. of households having Gita = 500 $$p = \frac{500}{1000} = 0.50$$ $$q = 1 - p = 1 - 0.50 = 0.50$$ S.E. $(p) = \sqrt{\frac{pq}{n}} = \sqrt{\frac{0.50 \times 0.50}{1000}} = 0.0158$ For 95% confidence level, the value of $Z_{\alpha/2} = 1.96$ For 99% confidence level, the value of $Z_{\alpha/2} = 2.58$ (a) 95% confidence limits for P are given by : p±1.96 S.E.X Putting the values, we get $=0.50\pm1.96\times0.0158$ $=0.50\pm0.031$ =0.531 to 0.469 (b) 99% confidence limits for P are given by: $p \pm 2.58 \times S.E._{\overline{X}}$ Putting the values, we get $=0.50\pm2.58\times0.0158$ $=0.50\pm0.040$ = 0.054 to 0.46 A random sample of 600 pineapples was taken from a large consignment and 75 of them were found to be bad. Estimate the proportion of bad apples in the consignment and obtain the standard error of the estimate. Assign the limits within which the percentage of bad pineapples in the consignment lies. We are given: n = 600 x = No. of bad pineapples = 75Sample proportion, $p = \frac{75}{600} = 0.125 = 12.5\%$ strictly, $$p = \frac{1}{600} - 0.123 = 12.5 = 0.000$$ $q = 1 - 0.125 = 0.875$ S.E. $(p) = \sqrt{\frac{pq}{n}} = \sqrt{\frac{0.125 \times 0.875}{600}} = 0.013$ Since, the level of confidence is not specified, we assume it as 99.73%. For, 99.73% confidence level, the value of $Z_{\alpha/2} = 3$. 99.73% confidence limits for P are given by Statistical Estimation Theory $p \pm 3 \times S.E_{\widetilde{X}}$ Putting the values, we get $=0.125\pm3\times0.013$ $=0.125\pm0.039$ $=0.164\pm0.086$ Hence, the required percentage lies between 16-4% and 8-6%. Hence, the required percentage lies between 16.4% and 8.6%. Confidence Interval or Limits for Population Proportion P when the sample is confidence interval or limits are given by : $p \pm Z_{\alpha/2} \cdot \sqrt{\frac{pq}{n}} \cdot \sqrt{\frac{N-n}{N-1}}$ $$p \pm Z_{\alpha/2} \cdot \sqrt{\frac{pq}{n}} \cdot \sqrt{\frac{N-n}{N-1}}$$ where , $\sqrt{\frac{N-n}{N-1}}$ = Finite Population Correction Factor Note: If N is sufficiently large as compared to the sample size n, the finite population correction factor may be ignored. Solution. Out of 20,000 customers ledger accounts, a sample of 600 accounts was taken to test the accuracy of posting and balancing where in 45 mistakes were found. Assign limits within which the number of defective cases can be expected at 95% level. We are given: n = 600, N = 20,000, x = No. of mistakes in the sample ledger accounts = Sample proportion $$p = \frac{x}{n} = \frac{45}{600} = 0.075$$ q=1-p=1-0.075-0.925Since, N is sufficiently large as compared to the sample size n, the finite population correction factor $\sqrt{\frac{N-n}{N-1}}$ may be ignored. Hence, assuming it as a sample from finite (large) population, the standard error of p is given by S.E. $$(p) = \sqrt{\frac{pq}{n}}$$ = $\sqrt{\frac{0.075 \times 0.925}{600}} = \sqrt{0.0001156}$ = 0.011 (approx) For 95% confidence level, the value of $Z_{\alpha/2} = 1.96$. 95% confidence limits for population P are given by: p±1.96 S.E.X Putting the values, we get $=0.075\pm1.96\times0.011$ $=0.075\pm0.022=(0.053, 0.097)$ Example 14. Solution. 216 Hence, the number of defective cases in a lot of 20,000 are expected to lie between: $20,000 \times 0.053$ and $20,000 \times 0.097$ i.e., 1060 and 1940. Note: If the finite population correction factor is not ignored then; 95% confidence limits for P are: $p \pm 1.96 \cdot \sqrt{\frac{pq}{n}} \cdot \sqrt{\frac{N-n}{N-1}}$ $$= 0.075 \pm 1.96 \sqrt{\frac{0.075 \times 0.925}{600}} \times \sqrt{\frac{20,000 - 600}{20,000 - 1}}$$ $=0.075\pm1.96\times0.0108$ $=0.075\pm0.021168$ =(0.0538, 0.096168) Hence, the required number of defective cases in the lot lies between 20,000 (0.0538, 0.096168) i.e., 1076 and 1924. ### EXERCISE - 3 A random sample 300 households in a city revealed that 123 of these houses had Gita. Find a 95 percent confidence interval for the proportion of hoseholds in the city with Gita. 2. A random sample of 500 houses in a city disclosed that 125 of these houses had colour T.V. sets. Find a 98 percent confidence interval for the proportion of houses in the city with colour T.V. sets. (Table value of Z for 98% confidence level is 2 · 33). In a market survey for the introduction of a new product given in a town, a sample of 400 persons was drawn. When they were approached for sale, 80 of them purchased the product. Find a 95% confidence limits for the purchase of persons who would buy product in the town. [Ans. 0-1608, 0-2392] Statistical Estimation Theory confidence Interval or Limits for Population Standard Deviation: The determination of formal distribution. (3) Confidence interval or limits for population S.D. α in case of large sample (n > 30) requires the α of α are given by $$s \pm Z_{\alpha/2} \cdot S \cdot E_s$$ $s \pm Z_{\alpha/2} \cdot S \cdot E_s$ $$s \pm Z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{2n}}$$ $$s \pm Z_{\alpha/2} \cdot \frac{s}{\sqrt{2n}}$$ when σ is known. (ii) (1-α) 100% confidence interval for σ is given by: interval for $$\sigma$$ is given by: $s - Z_{\alpha/2} \cdot \frac{s}{\sqrt{2n}} < \sigma < s + Z_{\alpha/2} \cdot \frac{s}{\sqrt{2n}}$ ce limits for σ are. In particular, 95% confidence limits for gare: $$s \pm 1.96 \cdot \frac{s}{\sqrt{2n}}$$ [For large sample, $s = \sigma$] Similarly, 99% confidence limits for gare: $$s \pm 2.5 \pm \frac{s}{\sqrt{2n}}$$ Procedure: The construction of confidence limits for a involves the following steps: (ii) Compute S.E. (s) by using the following formula: S.E. (s) = $$\frac{\sigma}{\sqrt{2n}}$$ S.E. (s) = $$\frac{s}{\sqrt{2n}}$$ (iii) Select the desired confidence level and corresponding to that confidence level, the value of $Z_{\alpha/2}$. (iv) Substituting the values of s, $Z_{\alpha/2}$ and n in the above stated formula. A random sample of 50 observations gave a value of its standard deviation equal to 24.5. Construct a 95% confidence interval for population standard deviation σ. Solution. We are given: n = 50, s = 24.5 S.E. $$(s) = \frac{s}{\sqrt{2n}} = \frac{24.5}{\sqrt{100}} = 2.45$$ For 95% confidence level, the values of $Z_{\alpha/2} = 1.96$. 95% confidence interval for o is given by: Putting the values we get Thus, $$=24.5\pm1.96\times2.45$$ $=24.5\pm4.802$ $$= 29.032 \text{ to } 19.698$$ 19.698 < \sigma < 29.302 ### EXERCISE - 4 A sample of 100 items gives a standard deviation of 25. Set up the limits for the population standard deviation at 95% level of confidence. [Ans. 21.55, 28.46] A sample of 100 items gives a standard deviation of 4700. Set up the limits for the population standard deviation at 99% confidence level of confidence. [Ans. 5032·4, 4367·60] (4) Determination of a Proper Sample Size for Estimating μ or P: (4) Determination of a Proper Sample Size for Estimating μ or P: So far we have calculated the confidence intervals based on the assumption that the sample size n is known. In most of the practical situation, generally, sample size is not known. The method of determining a proper sample size is studied under two headings: (a) Sample Size for Estimating a Population Mean (a) Sample Size for Estimating a Population Mean (b) Sample Size for Estimating a Population Proportion (a) Sample Size for Estimating a Population Mean: In order to determine the sample size for estimating a population mean, the following three factors must be known: (i) the desired confidence level and the corresponding values of Z. (ii) the permissible sampling error E. (iii) the standard deviation σ or an estimate of σ (i.e., \overline{s}) After having known the above mentioned factors, the sample size n is given by : $$n = \left(\frac{Z \cdot \sigma}{E}\right)^2$$ The values of Z and E are predetermined. 2. The population S.D. (o) may be actual or estimated. A cigarette manufacturer wishes to use a random sample to estimate the average nicotin content. The sampling error should not be more than one milligram above or below the true mean, with 99 percent confidence level. The population standard deviation is 4 milligram. What sample size should the company use in order to safety these requirements? Example 17. order to satisfy these requirements? We are given: E=1, $Z_{\alpha/2}=2.58$ for 99% confidence level and $\sigma=4$. Solution. Sample size formula is: $$n = \frac{Z^2 \cdot \sigma^2}{r^2}$$ Substituting the values, we get $$n = \frac{(2.58)^2 (4)^2}{1^2} = 106.50 \text{ or } 107$$ Hence, the required sample size n=107 which the company should use for their requirements to be 6.16%. requirements to be fulfilled. Slatistical Estimation Theory (b) Sample size for Estimating a Population Proportion: In order to determine must be known: As the desired level of confidence and the corresponding three factors must be known: (i) the desired level of confidence and the corresponding value of Z. the permissible sampling error E. (i) the desired level of confidence and the corresponding (ii) the permissible sampling error E. (iii) the actual or estimated true proportion of success p. compile size n is given by: $$n = \frac{Z^2 \times PQ}{E^2}$$ where, $Q = 1 - p$ Note: 1. The values of Z and E are predetermined. The value of the population proportion P may be actual or estimated. A firm wishes to determine with a maximum allowable error of 0-05 and a 98 A firm wisnes to determine with a maximum allowable error of 0-05 and a 98 percent level of confidence the proportion of consumer who prefer its product. How large a sample will be required in order to make such an estimate if the preliminary sales reports indicate that 25 percent of all the consumers prefer the Solution We are given : E = 0.05, P = 0.25, Q = 1 - 0.25 = 0.75, Z = 2.33 for 98% confidence Sample size
formula is $$n = \frac{Z^2 \times PQ}{E^2}$$ Substituting the values, we get get $$n = \frac{(2 \cdot 33)^2}{(0 \cdot 05)^2} (0 \cdot 25) (0 \cdot 75)$$ $$= \frac{5 \cdot 4289}{0 \cdot 0025} (0 \cdot 1875) = \frac{1 \cdot 0179}{0 \cdot 0025} = 407 \cdot 16 \text{ or } 408$$ Hence, the required sample size n = 408. ### **EXERCISE - 5** 1. A firm wishes to estimate with an error of not more than 0-03 and a level of confidence of 98%, the proportion of consumers that prefers its brand of household detergent. Sales reports indicate that about 0-20 of all consumers prefer the firm's brand. What is the requisite sample size? 2. Mr. X wants to determine the average time to complete a certain job. The past records when that population standard deviation is 10 days. Determine the sample size so that Mr. X may be 95% confident that the sample average remains ±2 days of the average. [Ans. n=96] In measuring reaction time, a psychologist estimates that the standard deviation is 0.05 seconds. How large a sample of measurements must be taken in order to be 95% confident that the error of his estimate will not be exceeded 0.01 seconds. when s is given. # B. INTERVAL ESTIMATION (OR CONFIDENCE INTERVAL) FOR SMALL SAMPLES (# < 30) The determination of confidence intervals in case of small sized sample ($n \le 30$) is studied under two headings: - der two neadings: (1) Confidence Interval or Limits for Population Mean μ - (2) Confidence Interval or Limits for Population Variance σ^2 - (2) Confidence Interval or Limits for Population Mean (n≤30): When the samples size is (1) Confidence Interval or Limits for Population Mean (n≤30): When the samples size is small (i.e., n≤30) and of (the population S.D.) is unknown the desired confidence interval or limits for population mean µ can be found by making use of t-distribution. In case of small samples, the samples are used in place of Z-values. t-values are used in place of Z-values. alues are used in place of \mathcal{L} -values. (i) (1 – α) 100% confidence limits for population Mean μ are given by 100% confidence limits for population wheat $$\hat{x}$$ are given by: $$\overline{X} \pm t_{\alpha/2} \cdot \frac{\hat{s}}{\sqrt{n}} \quad \text{where, } \hat{s} = \text{modified sample S.D.} = \sqrt{\frac{\sum (X - \overline{X})^2}{n - 1}} \text{ or } \hat{s} = \sqrt{\frac{n}{n - 1}} s$$ (ii) (1 – α) 100% confidence interval for μ is given by : $$\overline{X} \pm t_{\alpha/2} \cdot \frac{\hat{s}}{\sqrt{n}} < \mu < \overline{X} \pm t_{\alpha/2} \cdot \frac{\hat{s}}{\sqrt{n}}$$ In particular, 95% confidence limits for μ are given by $$\overline{X} \pm t_{0.025} \cdot \frac{\tilde{s}}{\sqrt{n}}$$ Similarly, 99% confidence limits for μ are given by $$\overline{X} \pm t_{0.005} \cdot \frac{s}{\sqrt{n}}$$ Procedure : The construction of the confidence interval or limits in case of small sample ($n \le 30$) - involves the following steps : (i) Compute \overline{X} or take \overline{X} . - (ii) Compute modified sample S.D. using the following formula. $$\hat{s} = \sqrt{\frac{\sum (X - \overline{X})^2}{n - 1}}$$ $$\hat{s} = \sqrt{\frac{n}{n - 1} \cdot s^2}$$ (iii) Compute the degree of freedom (d.f.) using the formula : d.f. = v = n - 1 - df: =v=n-1 (iv) Select the desired confidence level and corresponding to that specified level of confidence and for given degrees of freedom, we note the value of the $t_{\alpha/2}$ from the t-table. (v) Substituting the values of \overline{X} , \hat{s} and $t_{\alpha/2}$ in the above stated formula. A random sample of size 16 has 50 as mean with standard deviation of 3. Obtain 98 percent confidence limits of the mean of the population. Example 19. Solution. or We are given: n=16, $\overline{X}=50$, $s=3 \Rightarrow s^2=9$ Statistical Estimation Theory $$s = \sqrt{\frac{n}{n-1}} \cdot s^2 = \sqrt{\frac{16}{16-1}} \times 9 = 3.098$$ Degrees of freedom = $v = n = 16 - 1 = 15$ Using 1-table the value of \cdot 01 for 13 d.f. = 2 98% confidence limits for μ are given by $$\overline{X} \pm t_{01} \cdot \frac{\hat{s}}{\sqrt{n}}$$ Putting the values, we get $$=50 \pm 2.602 \times \frac{3.098}{\sqrt{16}}$$ $$=50 \pm 2.015$$ $$=52.015 \text{ to } 47.985$$ 221 Example 20. A random sample of 16 items from a normal population showed a mean of 53 and the sum of squares of deviations from this mean is equal to 150. Obtain 95% and 99% confidence limits for the mean of the population. We are given: $$n=16, \overline{X}=53, \Sigma(X-\overline{X})^2=150$$ $$\hat{s} = \sqrt{\frac{\sum (X - \overline{X})^2}{n - 1}}$$ $$= \sqrt{\frac{150}{16 - 1}} = \sqrt{\frac{150}{15}} = \sqrt{10} = 3.162$$ Degrees of freedom = v = n - 1 = 16 - 1 = 15 For a 95% confidence level, $\alpha = 0.05$ so that $\frac{\alpha}{2} = \frac{0.05}{2} = 0.025$ For a 99% confidence level, $\alpha = 0.01$ so that $\frac{\alpha}{2} = \frac{0.01}{2} = 0.005$ The table value of $t_{.025}$ for 15 d.f. = 2.131 The table vale of $t_{.005}$ for 15 d.f. = 2.947 (a) 95% confidence limits for population mean μ are: $$\overline{X} \pm t_{0.025} \cdot \frac{\hat{s}}{\sqrt{n}}$$ Putting the values, we get $$=53 \pm 2 \cdot 131 \times \frac{3 \cdot 162}{\sqrt{16}}$$ $$=53 \pm 2 \cdot 131 \times \frac{3 \cdot 162}{4}$$ $$=53 \pm 2.131 \times -$$ $$=53\pm1.684$$ =51.316 to 54.684 51 · 316 < µ < 54 · 684 (b) 99% confidence limits for population mean μ are $$\overline{X} \pm t_{0.005} \cdot \frac{\hat{s}}{\sqrt{n}}$$ Putting the values, we get $$=53\pm2.947 \times \frac{3.162}{\sqrt{16}}$$ $$=53\pm2.947 \times \frac{3.162}{4}$$ $$=53\pm2.947 \times 0.7905$$ $$=53\pm2.33$$ $$=50.67 \text{ and } 55.33$$ $$50.67 < \mu < 55.33$$ A sample of 5 individuals had the following heights in centimeters: 6·33, 6·37, 6·36, 6·32 and 6·37. Find out the unbiased and efficient estimates of (a) true mean and (b) the variance. Also find 95% confidence interval for true mean (i.e., Solution. Example 22. (a) Unbiased and efficient estimate of the true mean (i.e., population mean) is $$\overline{X} = \frac{\Sigma X}{n} = \frac{6 \cdot 33 + 6 \cdot 37 + 6 \cdot 36 + 6 \cdot 32 + 6 \cdot 37}{5} = 6 \cdot 35 \text{ cm}$$ (b) Unbiased and efficient estimate of the true variance (i.e., population variance is $$\hat{s}^2 = \frac{n}{n-1} \cdot s^2 = \frac{\sum (X - \overline{X})^2}{n-1}$$ $$=\frac{(6\cdot33-6\cdot35)^2+(6\cdot37-6\cdot35)^2+(6\cdot36-6\cdot35)^2+(6\cdot32-6\cdot35)^2+(6\cdot37-6\cdot35)^2}{5-1}$$ $=0.00055 \text{ cm}^2$ $\hat{s} = \sqrt{0.00055} = 0.023 \text{ cm}.$ Part B: We are given: $n=5, \overline{X}=6.35, \hat{s}=0.023$ Degrees of freedom = v = n - 1 = 5 - 1 = 4 For a 95% confidence level $\alpha = 0.05$, so that $\frac{\alpha}{2} = \frac{0.05}{2} = 0.025$. The table value of 0.025 for 4 d.f. = 2.776. 95% confidence limits for population mean μ are given by $$\overline{X} \pm t_{0.05} \cdot \frac{\hat{s}}{\sqrt{n}}$$ Putting the values, we get Slatistical Estimation Theory Thus $$=6 \cdot 35 \pm 2 \cdot 776 \times \frac{0.023}{\sqrt{5}}$$ $$=6 \cdot 35 \pm 2 \cdot 776 \times \frac{0.023}{2 \cdot 236}$$ $$=6 \cdot 35 \pm 0 \cdot 0285$$ $$=6 \cdot 3785 \text{ to } 6 \cdot 3215$$ $$6 \cdot 3215 < \mu < 6 \cdot 3785$$ ## EXERCISE - 6 EXERCISE — 6 1. A sample of 9 cigarettes of a certain brand was observed for nicotine content. It showed an 99 percent confidence interval for the true average nicotine content. It showed an 97 of cigarettes. 2. A random sample of 15 ladies from a colony in Chantigarh with particular brand expenditure on cosemetics is Rs. 120 with a standard deviation of 18. 40. Construct 3 percent confidence interval for the true monthly average expenditure on cosemetics is Rs. 120 with a standard deviation of Rs. 40. Construct 39 percent confidence interval for the true monthly average expenditure on cosemetics by all fas. 97.01 < µ < 142.99 mean is 52. Obtain 95% and 99% confidence limits for the mean. 4. A sample of 10 measurements of the diameter of a sphere gave a mean X = 4.38 and standard deviation s = 0.06 inches. Find (a) 95% and (b) 9% confidence limits for the mean. 5. A random sample of 10 families had the following percentage expenses on foot: 68, 0.70, 70, 79, 59, 50, 49 and 44. Obtain 95% and 99% confidence limits for the population mean foot: 50, 0.70, 70, 70, 59, 50, 49 and 44. Obtain 95% and 99% confidence limits for the population of Rs. 8. Find out the limits of mean weekly wages in the population with a confidence of 95%. (Given t = 2.131 for 16 db). A sample of 6 persons in an office revealed an average daily smoking of 10, 12, 8, 9, 16, 5 cigarettes. Determine unbiased and efficient estimates of (a) the true mean. [Ans. (a) X̄ = 10 (b) 5² = 14 (c) 6.92 < µ < 13.08 [Ans. (a) $\overline{X} = 10$ (b) $\hat{s}^2 = 14$ (c) $6.92 < \mu < 13.08$] (2) Confidence Interval or Limits for Population Variance (When n < 30). The determination Confidence in the use of τ^2 (Chisquare). confidence Interval or Limits for Population Variance (When n < 500). The uncommunication of confidence interval or limits for population variance σ^2 requires the use of χ^2 (Chi-square) distribution. distribution. Here χ^2 -values are used in place t-values. (1-a) 100% confidence interval for population variance o² is given by: $$\frac{(n-1)\hat{s}^2}{\chi_{\alpha/2}^2} < \sigma^2 < \frac{(n-1)\hat{s}^2}{\chi_{1-\alpha/2}^2}$$ In particular, 95% confidence interval for the population variance σ^2 is val for the population val. $$\frac{(n-1)\hat{s}^2}{\chi^2_{0.025}} < \sigma^2 < \frac{(n-1)\hat{s}^2}{\chi^2_{0.975}}$$ ence interval for the population variance $$\frac{(n-1)\hat{s}^2}{\chi_{0.005}^2} < \sigma^2 < \frac{(n-1)\hat{s}^2}{\chi_{0.995}^2}$$ Procedure : The construction of the confidence interval for the variance σ^2 involves the lowing steps: (i) Calculate modified sample variance $(\hat{s})^2$ by using the formula $$\hat{s}^2 = \frac{n}{n-1} s^2 = \frac{\sum (X - \overline{X})^2}{n-1}$$ (ii) Select the desired
confidence level and corresponding to that specified level of confidence, we note the value of the confidence coefficient $\chi^2_{\alpha/2}$ and $\chi^2_{1-\alpha/2}$ from the χ^2 -table for certain degrees of freedom (iii) Construct the confidence interval for σ^2 by putting the values of \hat{s}^2 , $\chi^2_{\alpha/2}$ and $\chi^2_{1-\alpha/2}$ in the A random sample of size 15 selected from a normal population has a standard A random sample of the deviation s=2.5. Construct a 95 percent confidence interval for variance σ^2 and standard deviation o. Solution. We are given: n = 15, $s = 2.5 \Rightarrow s^2 = 6.25$ $$=\frac{15}{100} \times 6.25 = 6.696$$ For a 95% confidence level, $\alpha = 0.05$ so that $\frac{\alpha}{2} = 0.025$ and $1 - \alpha = 1 - 0.025 = 0.975$. Degrees of freedom (v) = n-1=15-1=14 The table value of $\chi^2_{.025}$ for 14 d.f. = 26·1 The table value of $\chi^2_{0.0975}$ for 14 d.f. = 5 · 63 (a) 95% confidence interval for σ^2 is $$\frac{(n-1)\,\hat{s}^2}{\chi^2_{.025}} < \sigma^2 < \frac{(n-1)\,\hat{s}^2}{\chi^2_{.975}}$$ Putting the values, we get $$\frac{(15-1) \times 6 \cdot 696}{26 \cdot 1} < \sigma^2 < \frac{(15-1) \times 6 \cdot 696}{5 \cdot 63}$$ $3.59 < \sigma^2 < 16.65$ (b) 95% confidence interval for σ is : $\sqrt{3.59} < \sigma < \sqrt{16.65}$ $1.89 < \sigma < 4.08$ Satistical Estimation Theory A sample of 5 individuals had the following heights in inches 63 .6, 63 .2 and 3.8. Construct 95% confidence interval for population variance. $$\hat{s}^2 = \frac{\sum (X - \overline{X})^2}{n - 1}$$ $$\frac{n-1}{(63\cdot 3-63\cdot 52)^2 + (63\cdot 7+63\cdot 52)^2 + (63\cdot 6-63\cdot 52)^2 + (63\cdot 2-63\cdot 52)^2 + (63\cdot 2-63\cdot 52)^2 + (63\cdot 8-63\cdot 52)^2}{5-1}$$ $$= \frac{0484 + 0.0324 + 0.0064 + 0.1024 + 0.0784}{4}$$ 95% confidence interval for σ^2 is $$\frac{(n-1)\hat{s}^2}{\chi_{0.025}^2} < \sigma^2 < \frac{(n-1)\hat{s}^2}{\chi_{0.975}^2}$$ Degrees of freedom (v) = n-1=5-1=4 The table value of $\chi^2_{0.025}$ for 4 d.f. = 11.14 The table value of $\chi^2_{0.0975}$ for 4 d.f. = -484 95% confidence interval for σ² is referred for $$\sigma^+$$ is $$\frac{(5-1) \times (067)}{11 \cdot 14} < \sigma^2 < \frac{(5-1)(067)}{484}$$ $$\frac{0 \cdot 268}{11 \cdot 14} < \sigma^2 < \frac{0 \cdot 268}{484}$$ $$0 \cdot 0240 < \sigma^2 < 0 \cdot 5537$$ ### **EXERCISE - 7** 1. A random sample of size 12 selected from a normal population has a standard deviation $s = 2 \cdot 4$. Construct 95 percent confidence interval for (a) variance σ^2 and (b) standard deviation $\sigma^2 = 2 \cdot 10^{-6} \, \text{Col} \cdot 177.07 \, \text{GeV} 177.$ [Ans. (a) $3.15 < \sigma^2 < 18.08$ (b) $1.77 < \sigma < 4.25$] 2. A random sample of size 25 selected from normal population has a standard deviation s = 7. Construct 95% confidence interval for (a) variance 0², (b) standard deviation of the construct 95% confidence interval for (a) variance 0², (b) standard deviation of the construct 95% confidence interval for (a) variance 0², (b) standard deviation of the construct 95% confidence interval for (a) variance 0², (b) standard deviation of the construction cons [Ans. (a) $31.12 < \sigma^2 < 98.79$ (b) $5.578 < \sigma < 9.939$] [Ans. (a) $31.12 < \sigma^2 < 98.79$ (b) 55.98 < 6.9397 (c) 55.98 < 6.9397 (b) 55.98 < 6.9397 (c) 6.939[Ans. (a) $766.8 < \sigma^2 < 5896.8$ (b) $27.7 < \sigma^2 < 76.7$] ### QUESTIONS - What is statistical estimation? Distinguish between point estimation and interval estimation. Describe the desirable properties of a good estimator. What is an estimator? Discuss the important properties of a good estimator. Show that the sample mean is a good estimate of population mean. - Differentiate between : - (a) Estimator and Estimate - (b) Statistic and Parameter - (c) Point Estimator and Interval Estimate. - Explain the (i) consistency (ii) Unbiasedness (iii) Efficiency and (iv) Sufficiency properties of an estimator. - Define unbiased and efficient estimates of (a) true mean and (b) true variance. OR Define efficiency and unbiasedness of an estimator. - Define unbiased and consistency properties of an estimator. - Explain the concept of confidence interval or interval estimation. Outline the procedure for setting up a confidence interval for the population parameter. - setting up a confidence interval for (a) population mean (b) population proportions and (c) population variance. Define the following terms and given an example of each: - - (i) Unbiased statistic - (ii) Consistent statistic (iv) Sufficient statistic - (iii) Efficient statistic 10. Show that the sample mean (\overline{X}) is an unbiased estimate of the population mean (μ) . - 11. Explain why a random sample of size 25 is to be preferred to a random sample of 20 to estimate population mean. A random sample or size 15 mi A random sample of 15 ladies of a grad of cosmetics is 8s. 120 with a shoulded lex n (n) ben ¹ n sommer (s) tol levelell # Non-Parametric Tests ## INTRODUCTION RODUCTION Sampling tests, discussed so far, are known as parametric tests because these are based on the Sampling tests, discussed so far, are known as parametric tests because these are based on the assumptions that the concerned sample has been obtained from a population with known values of intest to test the H_0 : $\mu_1 = \mu_2$ requires that the concerned samples are drawn from normal population with equal variance for $\frac{1}{2} = \frac{1}{2} \frac$ is one or more parameters on normal population with equal variance $(e_1^2 = e_2^2)$. Similarly, the use of prosamples are used to test $H_0: \sigma_1^2 = \sigma_2^2$ assumes that various samples are obtained from normal variance etc. The validity of the results res rest requires to the state of the results of a parametric test depends upon population with equal variance etc. The validity of the results of a parametric test depends upon accomplishments of these assumptions. Thus, when these assumptions are resulting to the results of population with equal properties of these assumptions. Thus, when these assumptions are not met, the be appropriateness of these assumptions. Thus, when these assumptions are not met, the parametric tests are no longer applicable. In such cases, it is essential to study non-Parametric tests. ### MEANING OF NON-PARAMETRIC TESTS MEANING OF NON-PARAMETRIC TESTS Non-parametric tests do not require any assumptions about the parameters or about the nature of population. By non-parametric tests we mean those statistial tests which dd not depend either upon the shape of the distribution or upon the parameters of the population mean, standard deviation, variance, etc. The assumption as to the normality or symmetricity of the population distribution from which the samples have been drawn is not required for these non-parametric tests. Non-parametric tests are sometimes referred to as distribution free tests. In addition to this, these non-parametric tests do not require measurements so strong as that requires by parametric. these non-parametric test do not require measurements so strong as that requires by parametric ## DIFFERENCE BETWEEN PARAMETRIC AND NON-PARAMETRIC TESTS - (1) In parametric tests, assumptions of normal population is taken whereas in non-parametric tests/no. such assumption is taken about the population. It is because of this that non-parametric tests are known as "distribution free tests". Parametric tests comprise of t-test, Z-test and F-test whereas non-parametric, tests comprise Cth-square test, Sign test, Median test, Wilcoxon signed rank test, etc. In case of a narametric test and broadbasis is set up and the variable is tested for - Comprise Chi-square test, Sign test, Median test, Wilcoxon signed rank test, erc. 3) In case of a parametric test a normal hypothesis is set up and the variable is tested for drawing inferences. In case of non-parametric tests, inverse (opposite hypothesis) is set up. # ADVANTAGES OR USES OF NON-PARAMETRIC TESTS - Some advantages (or uses) of non-parametric tests are mentioned below: Non-parametric tests are mentioned below: - advantages (or uses) of non-parametric tests are mentioned below: (Non-parametric tests are distribution free i.e., they do not require any assumption to be made about population following normal or any other distribution. (S) Generally, they - (2) Generally, they are simple to understand and easy to apply when the sample sizes are small. (3) Most non-parametric tests do not require lengthy and laboroius arithmetical computations and hence are less time-consuming, and hence are less time-consuming. (4) Non-parametric tests make fewer and less restative assumptions than do the parametric less make fewer and less restative assumptions. - tests. (5) There is no alternative to using a non-parametric test if the data are available in ordinal or - nominal scale. (6) Non-parametric tests are useful to handle data made up of samples from several populations without making assumptions. ## TYPES OF NON-PARAMETRIC TESTS There are many types of non-parametric tests. The important among them are: - (1) Chi-square Test (discussed earlier in χ² Chapter) - (2) Sign Test - (3) Wilcoxon Signed Rank Test - (4) Mann-whitney U-Test - (5) Kruskal-Wallis Test - (6) Wald-Wolfowitz Runs Test - (b) Wain-Wolfowitz Ratio Section (Rank Correlation, Median and Kolmogorov-Smirnov tests) (7) Other Non-parametric Tests (Rank Correlation, Median and Kolmogorov-Smirnov tests) Let us discuss them in detail (1) Sign Test: The sign test is the simplest type of all the non-parametric tests. Its name comes from the fact that it is based on the direction or the plus or minus signs of observations in a sample and not on their numerical magnitudes. ### Types of Sign Test The sign test can be of two types: - (a) One-sample sign test, and - DIFFERENCE SETTYFEN PAICAL CITAL (b) Paired-sample sign test (a) One-sample sign test, we set up the null hypothesis that + and signs are
the values of a random variables having the binomial distribution with $p = \frac{1}{2}i.e.$, $$H_0: p = \frac{1}{2}$$ or that $\mu = \mu_0$ Procedure: This test involves the following steps: - (i) Find the + and sign for the given distribution. Put a plus (+) sign for a value greater than the mean value (µ 0), a minus (-) sign for a value smaller than the mean value and a zero (0) for a value equal to the mean value. - (ii) Denote the total number of signs (ignoring zeros) by n and the number of less frequent signs by 'S'. - (iii) Obtain the critical value (K) of less frequent signs (5) preferably at 5% level of significance by using the following formula: Nor Parametric Tests $$K = \frac{n-1}{2} - 0.98 \sqrt{n}$$ 2 - 1.98 /n Compare the value of 'S' with the critical value (K). If the value of S is greater than the value of K (i.e., S > K) then the null hypothesis is accepted. If S \(\subseteq \text{K}, \text{ the null hypothesis is} \) The problem relating to one sample test can also t. rejected. From the sample size is fairly small (t_c , $n_s > t_s$), we find probability Distribution. When the sample size is fairly small (t_c , $n_s > t_s$), we find probability of the probability of so of fewer S using the binomial distribution of the probability of the sample size is $t_s > t_s > t_s$. Then, we compare the above calculated value of $t_s > t_s > t_s$. probability p signs p(S) by the Sain of the probability of S of fewer S using the binomial distribution p(S) and p(S) with $p=\frac{1}{2}$. Then, we compare the above calculated value of probability with p(S) and p(S) and p(S) and p(S) and p(S) and p(S) are p(S) and p(S) and p(S) are p(S) and p(S) and p(S) are are p(S) and p(S) are p(S) and p(S) are p(S) and p(S) are p(S) are p(S) and p(S) are p(S) are p(S) and p(S) are p(S) and p(S) are p(S) and p(S) are p(S) and p(S) are p(S) and p(S) are p(S) and p(S) are p(S) and p(S) are p(S) are p(S) and p(S) are p(S) and p(S) are p(S) and p(S) are p(S) are p(S) and p(S) are p(S) and p(S) are p(S) are p(S) and p(S) are p(S) and p(S) are formula, ${}^{n}C_{x}q^{n}$, n , ${}^{n}C_{x}q^{n}$ n The production manager of a large undertaking randomly paid 10 visits to the Example 1. The production manager or a large undertaking randomly paid 10 visits to the worksite in a month. The number of workers who reported late for duty was claim of the production supervisor that on an average, not more than 3 workers report late for duty. Use 5% level of significance. Let $H_0: \mu \le 3$ against $H_1: \mu > 3$ at 5% level of significance. Solution: Determination of Signs w.r.t. μ=3 | X | Signs (X -3) | | |-------------------------------|--|--| | ses - 32 see se | | | | 4 | | No. of Plus Signs = 5 | | 5 | + | | | -1 -1 | Law on | No. of Minus Signs = 4 | | 1 = 0 6 10 .0 1.0 | + | No. of Zero = 1 | | 3 | 0 | Total No. of Co. | | 2 | Maria de la compansión de | Total No. of Signs = $n = 9$
(ignoring 0's) | | no chi di Stech pred se given | | 100 | | MAYE -ENTER SEE | | The second | | 8 | 4 | | From the above table, we get Total no. of signs (ignoring zeros) = n = 9 Number of less frequent signs = S = 4 The critical value (*K*) of less frequent signs (s) at 5% level is given by: $$K = \frac{n-1}{2} - 0.98 \sqrt{n} = \frac{9-1}{2} - 0.98 \sqrt{9} = 4 - 2.94 = 1.06$$ Since number of less frequent signs 5(4) is more than the critical value of K(1-06) i.e. S. K. V. i.e., S > K, the null hypothesis is accepted. It means that the sample data support the claim of the production supervisor. Aliter: We can solve the above problem using ${\tt Binomial\ Probability\ Distribution}.$ We are given, n = 9, $p = \frac{1}{2}$, $\alpha = 0.05$, S = 4 We are given, $$N = 9, P - 2$$. The probability of 4 or fewer success is given by: $$P[S \le 4] = {}^{9}C_{4} \left(\frac{1}{2}\right)^{5} \left(\frac{1}{2}\right)^{4} + {}^{9}C_{3} \left(\frac{1}{2}\right)^{6} \left(\frac{1}{2}\right)^{3} + {}^{9}C_{2} \left(\frac{1}{2}\right)^{7} \left(\frac{1}{2}\right)^{2} + {}^{9}C_{1} \left(\frac{1}{2}\right)^{8} \left(\frac{1}{2}\right)^{1} + {}^{9}C_{0} \left(\frac{1}{2}\right)^{0} \left(\frac{1}{2}\right)^{9}$$ $$= 126 \left(\frac{1}{2}\right)^9 + 84 \left(\frac{1}{2}\right)^9 + 36 \left(\frac{1}{2}\right)^9 + 9 \left(\frac{1}{2}\right)^9 + \left(\frac{1}{2}\right)^9$$ $$= \frac{1}{512} \cdot [126 + 84 + 36 + 9 + 1] = \frac{256}{512} = \frac{1}{2} = 0.5$$ From the above, it is found that $P(S) \propto \alpha (\alpha = 0.5]$ This suggests that the null hypothesis is accepted. It means that the sample data support the claim of the production manager. Suppose playing four rounds of golf at the city club 11 professionals totalled 280, 282, 290, 273, 283, 283, 275, 284, 282, 279 and 281. Use the sign test at 5% level of significance to test the null hypothesis that professional golfers average μ = 284 for four rounds against the alternative μ < 284. Solution: Let $H_0: \mu=284$ against $H_1: \mu<284$ at 5% level of significance. Determination of signs w.r.t. $\mu=284$ | Determination of | | | | | | _ | - | _ | - | _ | | |------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | X: | 280 | 282 | 290 | 273 | 283 | 283 | 275 | 284 | 282 | 279 | 281 | | Signs (X - 284) | | - | + | - | | - | · - | 0 | - | - | - | From the above table, we get No. of Plus signs = 1; No. of Minus signs = 9, No. of Zero = 1 Total no. of signs (ignoring zero) = n = 10 From the critical value (*K*) of less frequent signs ($$\varphi$$) = $S=1$ The critical value (*K*) of less frequent signs (φ) at 5% level is given by $$K = \frac{n-1}{2} - 0.98 \sqrt{n} = \frac{10-1}{2} - 0.98 \sqrt{10} = 45 - 3.099 = 1.40$$ Since S is less than critical value of K(1-40) i.e., S < K, the null hypothesis is rejected. It means that professional golfers average is less than 284 for four rounds of golf. Aliter: We can solve the problem by using Binomial Probability Distribution. We have, $$n=10$$, $p=\frac{1}{2}$, $\alpha=0.05$, $S=1$ The probability of one or fewer successes with n=10 and $p=\frac{1}{2}$ is given by $$\begin{split} {}^{p}\left[S \! \leq \! 1\right] &= {}^{10}C_{1}\left(\frac{1}{2}\right)^{9}\left(\frac{1}{2}\right)^{1} + {}^{10}C_{0}\left(\frac{1}{2}\right)^{10}\left(\frac{1}{2}\right)^{0} \\ &= \! 10 \times \! \frac{1}{1024} + \! \frac{1}{1024} \! = \! \frac{11}{1024} \! = \! 0 \cdot \! 0107 \text{ app.} \end{split}$$ Non-parametric Tests From the above, it is found that $P(S) < \alpha$, From the above, it is found that $f'(0) < \alpha$. The null hypothesis is rejected. It means that the professional golfers' average is less than 284 tour for rounds of golf. (b) Paired Sample Sign Test: The sign test has very important applications in problems paired data such as data relating to the collection of an account receivable before and new collection policy, responses of mother and daughter towards ideal raming suffer a new collection policy are some soft mother and daughter towards ideal raming specific and pulsaging if the first value is smaller a plus sign if the first value is graph the second, a minus sign if the first value is smaller and the second or a zero if the two values are qual. Then we proceed in the same manner as in one-sample test. Use the sign test of see if there is a difference. Example 3. Use the sign test of see if there is a difference between the number of days until Use the 0.05 significance level. | 7 | Before: | 30 | 28 | 34 | 35 | 40 | 40 | | -cetton policy | |---|-------------|-------|------|------|-------|----|--------------------------|-------------|----------------| | į | After : | 32 | 29 | 33 | 32 | 37 | 42 33 38 3 | 34 45 28 2 | 7 707 | | | Let us take | e the | hvno | thec | io st | | 42 33 38 3
43 40 41 3 | 37 44 27 33 | 30 30 36 | at there is no significant difference before and after the new collection policy in the accounts receives. | | | | E | eter | mina | ation | of | the c | io- | | 1 | | | | | | |-----------------|----------|-----|----|------|------|-------|----|-------|-----|----|----|----|----|----|----|---| | Before (X) | 30
32 | 28 | 34 | 25 | 40 | | | | | | | | _ | | | | | After (Y) | 32 | 29 | 33 | 32 | 37 | 43 | 40 | 41 | 34 | 45 | 28 | 27 | 25 | 41 | 36 | l | | Signs $(X - Y)$ | 5-2 | - N | + | + | + | - | 10 | 41 | 3/ | 44 | 27 | 33 | 30 | 38 | 36 | | From the above table, we get No. of Plus signs = 6; No. of Minus signs = 8, No. of Zeros = 1 Total no. of signs (ignoring zero) = n=14 The no. of less frequent signs (+) = S = 6 The critical value (*K*) of less frequent signs (5) at 5% level is given by $$K = \frac{n-1}{2} - 0.98 \sqrt{n} = \frac{14-1}{2} - 0.98 \sqrt{14} = 6.5 - 3.666 = 2.83$$ Since C. V. 1911 Since S > K, the null hypothesis is accepted. This means that there is no significant difference before and after the new collection policy in accounts receivable. # AN IMPORTANT TYPICAL EXAMPLE Signs A physical instructor claims that a particular exercise if done continuously for 7 days, reduced weight by 3.5 kg. Five overweight girls did the exercise for 7 days | their weights were observ | ed as und | er: | | | |
--|-----------|-----|----|----|-----| | The second secon | Ι. | 1 | 3 | 4 | - 5 | | Girls : | 71.01 | - 4 | - | 71 | 78 | | Weight before exercise : | 70 | 72 | 75 | /1 | | | | | | 72 | 66 | 72 | | Weight after eversise | 66 | 70 | 1- | | 1 | Making use of the sign test, verify the claim at $\alpha = 0.05$ that the exercise re the weight by at least 3.5 kg. 232 Solution Denoting the mean weight before and after exercise by μ_1 and μ_2 respectively, we have the following. $$H_0: \mu_1 - \mu_2 = 3.5$$ against $H_1: \mu_1 - \mu_2 < 3.5, \alpha = 0.05$ nination of Signs w.r.t. 3.5 | Girls | X | Y | D = (X - Y) | Signs (D-3.5 | |-------|----|----|-------------|---------------| | 1 | 70 | 66 | 4 | 1 1 4 4 th as | | 2 | 72 | 70 | 2 | " all dilipan | | 2 | 75 | 72 | 3 | C elignas | | | 71 | 66 | 5 | + | | - | 78 | 72 | 6 | | From the above table, we get No. of Plus signs = 3; No. of Minus signs = 2 The total no. of signs or n=5 Number of less frequent signs = S = 2 The critical value (K) of less frequent signs (S) $$K = \frac{n-1}{2} - 0.98\sqrt{n} = \frac{5-1}{2} - 0.98\sqrt{5} = 2 - 2.19 = -0.19$$ Since $S>K, H_0$ is accepted. It means that the sample data support the claim that the exercise if continuously done for 7 days reduces the weight by at least 3-5 kg. ### LARGE SAMPLE AND SIGN TEST When the sample size is fairly large (i.e., n > 25), we use the normal approximation to the binomial distribution to carry out the sign test. The value of 'z' can be computed as: $Z = \frac{S - np}{\sqrt{np(1-p)}}$ $$Z = \frac{S - np}{\sqrt{np(1 - p)}}$$ Then we get the critical value of Z at the desired level of significance. If the calculated value of Z happens to be less than the critical value, then we accept the null hypothesis. If the case is reverse, then we reject the null hypothesis. e the data relating to the daily milking from a cow for 30 days; Ciarra bala Example 5. | Given below a | ue me | uniu I | | | | | | 1000 | | 00 6 | |----------------|-------|--------|------|------|--------|------|------|--------|------|------| | | 23 | 20.8 | 18.6 | 16.6 | 23 · 2 | 21 | 19.2 | 24 . 8 | 23.8 | 29.0 | | Mill in Litror | 10 | 22.2 | 20.4 | 22.8 | 24 . 6 | 22.8 | 20.8 | 22.6 | 21.4 | 10 - | | | 10.6 | 17 4 | 10.2 | 20.4 | 22.2 | 24.6 | 20 | 22.4 | 20 | 23 | Using sign test to test the null hypothesis at 5% level of significance that the average daily milking from the cow is 22.4 litres as against the alternative hypothesis has the same of the cow is 22.4 litres as against the alternative hypothesis that it is less than 22.4 litres. We have, $H_0: \mu = 22.4$, $H_1: \mu < 22.4$, n = 0.05 (\Rightarrow left tailed test) Determination of the signs w.r.t. 22 · 4 Non-parametric Tests From the above, we get No. of Plus signs = 11, No. of Minus signs = 18, No. of Zeros = 10 of signs (ignoring zero) = n = 29From the above, we get The no. of less frequent signs (+) = S = 11The no. of less frequent signs (+) = S = 11Since the size of samples is quite large (n i.e., n > 25), the lest which is a dose approximation to the Binomial distribution is used. $Z = \frac{3 - n_r}{\sqrt{np(1-p)}}$ Substituting the value in the above, we get $$Z = \frac{11 - 29\left(\frac{1}{2}\right)}{\sqrt{29 \times \frac{1}{2}\left(1 - \frac{1}{2}\right)}} = \frac{11 - 14 \cdot 5}{\sqrt{14 \cdot 5 \times 0 \cdot 5}} = \frac{3 \cdot 5}{2 \cdot 69} = -1 \cdot 3$$ The critical value of Z at 5% level for left tailed test = -1.645The Critical value of Each of Each of Each of the Critical value of E., we accept H₀. This suggests that the null hypothesis is accepted. It means that the average daily (2) Wilcoxon's Signed-Rank Test (2) Wilcoxon's Organization. This is another non-parametric test which has been developed by Sir Wilcoxon. This test is based on the ranking of the sample of observations. Like sign test, Wilcoxon's signed-rank test can. be of two types: (a) One-sample signed rank test. (b) Paired-sample signed rank test. (a) Wilcoxon's One-Sample Signed-Rank Test: In a one sample signed-rank test, we test the null hypothesis that $\mu = \mu_0$ against an appropriate alternative hypothesis at a desired level of Procedure : This test involves the following steps : (i) Calculate the difference $d=x-\mu$ with algebraic signs. (ii) Assign rainks (ignoring the signs) to the difference in the increasing order of magnitude (i.e., from low to high) ignoring zero differences. In case of ties (i.e., when two or more values are the same), assign ranks to such pairs by averaging their rank positions. (iii) Put-all the content of the same (iii) Put all the ranks against the + ve difference in the + ve rank column(R*) and all the ranks against the – ve differences in the – ve rank column (R^-) (iv) Get the total number of ranks, n (v) If $n \le 25$, then calculate the value of the test statistic given by $T = \Sigma R^+$ or ΣR^- ranks which ever is less. (vi) Then find the critical value of T from the Wilcoxon's T-table given at the end of the book with reference to the values of n and (i.e., significance level). (vii) If the calculated value of T is less than or equal to its critical value, then reject the null hypothesis. In the reverse case, accept the null hypothesis. The production manager of a large undertaking randomly paid 10 visits to the worksite in a month. The number of workers reported late for duty was found to be : 2, 4, 5, 1, 6, 3, 2, 1, 7 and 8 respectively. Using Wilcoxon's signed-rank test verify the claim of the production supervisor that on an average, not more than 3 workers report late for duty. Use 5% level of significance. Solution: by pothesis that $H_0: \mu = 3$ against $H_1: \mu > 3$ | Y | d = X - 3 | [d] | Ranks (± ignored) | Signed | Ranks | |-------|-----------|-------|--------------------------|-------------------|-----------| | | | | | R ⁺ | R- | | 2 | - 1 | 1 | 2 | Nodolt - | 2 | | 4 | 1 | 1 | 2 | 2 | _ | | 5 | 2 | 2 | 5 | 5 | | | 1/ | -2 | 2 | 5 | - | 5 | | 6 | 3 | 3 | 7 | 7 | - | | 3 | 0 | 0 | Land Jack 10 may have | ma pril' | - 1 | | 2 | - 1 | .1 | 0. 1.00 2.01(g) 3.00 | | 2 | | 1 | - 2 | 2 | 5 | R v III | 5 | | 7 | 4 | 4 | 8 | Tal: 8 | 12- | | 8 | 5 | 5 | 9-3 | han 9 , a'e | n Welcone | | Total | 1 | 100 | n = 9 | $\Sigma R^+ = 31$ | ΣR-=14 | From the above table, it must be seen that total number of ranks = n = 9 (i.e., < 25). Since n < 25, the test statistic is given by: T = smaller of the two sums of the signed-ranks = 14 Looking at Wilcoxon's T table at 5% level for one tailed test at n=9, we get the critical value of T or $T_{0.05}=8$. Since the calculated value of T (14) is greater than its critical value (8), the null hypothesis is accepted. It means that the sample data support the claim made by the production manager. (ii) Two Sample Signed Rank Test (or Paired-Sample Signed Rank Test) : The Wilcoxon's signed rank test has important applications in problem involving paired data. Such a test is widely used by the research scholars in their study of two related samples or matches pairs of ordinary used by the research scholars in their study of two related samples or matches pairs or ordinary data viz., outputs of two similar machines, responses gathered before and after a treatment, etc. where we can find both the direction and magnitude of difference between the matched values. In these problems, we find the difference between each pair of values with algebraic signs. Then we proceed in the same manner as in the case of one sample signed rank test. Use Wilcoxon's signed-rank test to see if there is a difference between the number of days until the collection of an account receivable before and after a new collection policy. He there are the collection to the collection policy with the collection of an account receivable before and after a new collection policy. He there are the collection of the collection policy. | new collectio | n po | olicy. | . Use | the | 0.05 | leve | l of | sign | ifica
| nce. | 100 | 11, 12 | 1 | -T | 24 | |---------------|------|--------|-------|-----|------|------|------|------|-------|------|-----|--------|----|----|-----| | Before (X): | 30 | 28 | 34 | 35 | 40 | 42 | 33 | 38 | 34 | 45 | 20 | | | 41 | | | After (Y) : | | 29 | 33 | 32 | 37 | 13 | 40 | 41 | 37 | 44 | 27 | 33 | 30 | 38 | سفو | Non-Parametric Tests Example 8. Let us take hypothesis H_0 : There is no difference between the number of days And H_1 : There is a difference between the humber of days solution: | X | Y | d = X - Y | d | ed Ranks | | | |---------|--------|-----------|--------|---------------|----------------------|-------| | 70.1.42 | 20.767 | | 141 | Ranks (R) R | | | | 30 | 32 | -2 | 2 | (± ignored) | Signed I | Ranks | | 28 | . 29 | -1 | 1 | 6 | R ⁺ | R- | | 34 | 33 | 1 | 1 | 3 | - | 6 | | 35 | 32 | 3 | 3 | 3 | - | 3 | | 40 | 37 | 3 | 3 | 9 | 3 9 | ~ | | 42 | 43 | -1 | 1 | 9 | 9 | - | | 33 | 40 | -7 | 7 | 3 | 1 | - 2 | | 38 | 41 | -3 | 3 | 14 | - | 3 | | 34 | 37 | -3. | 3 | 9 | - 1 | 9 | | 45 | 44 | 1 | 1 | 9 | - | 9 | | 28 | 27 | 1 4 8 | 1 | 3 | 3 | - | | 27 | 33 | - 6 | 6 | 3 | 3 | - | | 25 | 30 | -5 | 5 | 13
12 | | 13 | | 41 | 38- | 3 | 3 | 9 | - T | 12 | | 36 | 36 | F., 2 | 21 -01 | 9 | 9 | - | | Total | | | | n=14 | ΣR ⁺ = 36 | ΣD (| From the above table, it must be seen that the total number of ranks=n=14 ($n\leq25$). Since n < 25, the test statistic is given by T = smaller of two sums of the signed ranked = 36 Looking at Wilcoxon's T table at 5% level for a two tailed test at n=14, we get the critical value of T=21 Since the calculated value of T is greater than its critical value, null hypothesis is accepted. It means that there is no significance difference between the number of days before and after a new collection policy. ### IMPORTANT TYPICAL EXAMPLE A physical instructor claims that a particular exercise if done continuously for 7 days reduces weight by 15 kg. Five overweight girls did the exercise for 7 days and their weight. | and their weights were obse | erved as u | nder: | - T A | 5 | |-----------------------------|------------|-------|-------|----| | Girls: | 1. | -2 | 75 71 | 78 | | Weight before exercise: | 70 | 72 | 72 66 | 72 | | Weight after exercise : | /66 | 70 | 12 | | 234 Making use of Wilcoxon's Signed-rank test verify the claim at α = 0.05 that the exercise reduces weight by at least 3.5 kg. Denoting the mean weight before and after exercise by μ_1 and μ_2 respectively. Denoting the following We have the following 2.5 against $H_1: \mu_1 - \mu_2 < 3.5$, $\alpha = 0.0$. | | H_0 : | µ1-1 | 12 = 3.5 again | TOTAL TITLE | 2 | 1 | ÷ | |-------|---------|------|----------------|---------------------|-----|--------------------------|---| | Girls | X | Y | D = X - Y | $d = D - 3 \cdot 5$ | d | Ranks (R)
(± ignored) | S | | | | | | | 0.5 | 1.5 | - | | | | | | | 0.5 | | | | Girls | X | Y | D=X-Y | $d = D - 3 \cdot 5$ | d | Ranks (R)
(± ignored) | Signed
R ⁺ | Ranks
R | |-------|----|----|-------|---------------------|-----|--------------------------|--------------------------|------------------| | - | 70 | 66 | 4 | 0.5 | 0.5 | 1.5 | 1.5 | | | 1 | 72 | 70 | 2 | -1.5 | 1.5 | 3.5 | | 3.5 | | 2 3 | 75 | 72 | 3 | -0.5 | 0.5 | 1.5 | | 1.5 | | 4 | 71 | 66 | 5 | 1.5 | 1.5 | 3.5 | 3.5 | | | 5 | 78 | 72 | 6 | 2.5 | 2.5 | 5 | - 5 | | | 3 | | | | 45 | | n=5 | $\Sigma R^+ = 10$ | $\Sigma R^- = 5$ | From the above table, it must be seen that the total number of ranks n=5 (i.e., ≤ 25) Since n < 25, the test statistic is given by: T = smaller of the two sums of the signed ranks = 5 Looking at Wilcoxon's table at 5% level of significance for a one tailed test at n=5 we get the critical value of T or $T_{005} = 1$. Since the calculated value of T (5) is greater than its critical value (1), the null hypothesis is accepted. It means that the sample data supports the claim that the exercise if continuously done for 7 days reduces weight by at least $3.5\,\mathrm{kg}$. ### EXERCISE - 1 A teacher claims that by imparting coaching for one month we can make the student worth securing at least 50 marks. A random sample of 10 students reveals the following scores in | the examin | ation. | Test the | hypothe | esis that | the clair | n is acce | ptea. | 0.00 | | 1 | |------------|--------|----------|---------|-----------|-----------|-----------|-------|------|------|----| | Students | 1 | 2 | 3 | 4 | 5 | - 6 | 7 | 8 | 9 | 10 | | Marks | 52 | 54 | 60 | 65 | 45 | 42 | 58 | 64 | - 50 | 48 | [Ans. K=1.06, Hypothesis is accepted] 2. A new car model was put to test course for observing kilometer run per litre of petrol. The 20, 18, 22, 21, 15, 17, 14, 16, 22, 23 20, 18, 22, 21, 15, 17, 14, 16, 22, 23 Use sign test and Wilcoxon signed rank test to test company claim that the new car model on an average runs, 20 km per litre modal. [Ans. K=1·06 Hypothesis accepted; T=12·5 Hypothesis is accepted] 3. Use the sign test to see if there is a difference between the number of days until the collection of an account receivable before and after a new collection policy. Use at 5% level of significance. | 0 | f signifi | cance | | | | | | | | / | 11 12 | 4.1131 | IS SHIR | | - | 10 | |---|-----------|-------|----|----|----|----|----|----|----|----|-------|--------|---------|----|----|----| | | Before | 72 | 82 | 50 | 54 | 56 | 90 | 68 | 76 | 66 | 84 | 80 | . 70 | 68 | 56 | 60 | | L | After | 72 | 76 | 60 | 66 | 54 | 88 | 74 | 82 | 80 | 86 | 74 | 64 | 66 | 58 | | [Ans. K=2.83, Hypothesis is accepted] Non-Parametric Tests The following are the number of patients treated by two doctors in a hospital during a fortnight: By Doctor Y 15 12 15 11 12 8 14 8 9 10 11 15 7 Use the sign test at 1% level of significance, test the null hypothesis that on an average both the doctors treat equal numbers of patients as against alternative hypothesis that Dn. X A labour welfare officer visits 7 times in the product department where the frequent accidents are reported by trade union leaders. The number of accidents were the frequent visits were reported by him as under: 1,5,3,2,4,6,1 visits week 1, 5, 3, 2, 4, 6, 1 Using Wilcoxon signed rank test to verify the daim of the labour that an average not more than 4 workers met the accident. Use α=0.05. (han 4 workers meet to test the efficiency of severe the severe than 4 workers are end to test the efficiency of severe the severe than 4 workers are end to test the efficiency of severe the severe than 4 workers are than 4 workers are the severe wo than 4 Workers and a test the efficiency of a new diet program. Their weights (that) measured before and after the program and are given below. | Sr. No. | 1 | 2 | 3 | 4 | E BIVE | : Molad : | - | | nos) were | |---------|----------|---------|-----|-----|--------|-----------|-----|-------|-----------| | Before | 132 | 139 | 126 | 114 | 122 | 6 | - 7 | 8 | 9 | | After | 134 | 141 | 118 | 116 | 114 | 132 | 142 | - 119 | 126 | | | avon mat | la made | | | 114 | 132 | 145 | 123 | 121 | Use Wilcoxon match paired signed-rank test to test the efficiency of the diet. (3) Mann-Whitney U-Test: This test was developed by Mann and Whitney and it is a rank um test. This test is used to test whether two independent samples have come from the same (identical) population. ### Procedure : This test involves the following steps: Instess involves the following steps: (ii) Arrange the data of both the samples in one column in ascending order. (iii) Assign ranks to them in increasing (from low to high) order of magnitude. In case of the repeated values, assign ranks to them by averaging their rank positions. (iii) Then the ranks of the different samples are separated and summed up as R₁ and R₂. (iv) If both η_1 and h_2 are sufficiently large (i.e., > 8) then find the test statistic *U* by the following two models: $$U_1 = n_1 n_2 + \frac{n_1 (n_1 + 1)}{2} - R_1$$ $$U_2 = n_1 n_2 + \frac{n_2 (n_2 + 1)}{2} - R_2$$ $U_1=n_1n_2+\frac{n_1\left(n_1+1\right)}{2}-R_1$ or $U_2=n_1n_2+\frac{n_2\left(n_2+1\right)}{2}-R_2$ Then get the critical value of U from the U-table, if available, with reference n_1 and n_2 for comparsion, with the above calculated value. (v) If the U-table is not available, then get the transformed form of the U-statistic which is given by : $$Z = \frac{U - (n_1 \cdot n_2) / 2}{\sqrt{n_1 n_2 (n_1 + n_2 + 1) / 12}}$$ (vi) Then find the critical value of Z at 5% or 1% level of significance. The critical value of Z at 5% is 1.96 and at 1% is 2.58. (vii) If the calculated value of Z is less than or equal to its critical value, then accept the null hypothesis or reject the same if the result appears to the reverse. hypothesis or reject the same if the reverse that the value of U that we use for the U' test is the smaller of U_1 and U_2 . Given below are the relating to production of rice in quintals per acre collected Example 9. through two samples : through two samples: Sample A 16 20 18 26 28 24 20 22 28 Sample B 22 20 18 22 24 12 16 08 18 28 26 18 18 22 14 Using the Mann-Whitney U-Test (a Rank Sum Test) at 5% level, verify the assertion Using the Maint-Violatey of Test at Annual State and the State of Solution: Determination of the Ranks and their sums | Values of both the samples in ascending order | Rank in or | Increasing
der | Ranks of the Sample A | Ranks of the
Sample B | |---|------------|-------------------|------------------------|-------------------------------| | 8–B | 10 1 10 | . 1 | F4 10 | alaci - 1 | | 12-B | | 2 | 170 | - 2 | | 14-B | | 3 | Jern divostit | 1 1121 - 3 | | 16-A | 4 | 5 | 5 | - | | 16-A | 5 | 5 | 5 | | | 16-B | 6 | 5 | 1-/ madddid | 5.6 | | 18-A | 7 | 8.5 | 8.5 | ur seat that
femically ran | | 18-A | 8 | 8.5 | 8.5 | | | 18-B | 9 | 8.5 | - | 8.5 | | 18-B | 10 | 8.5 | Anna Carrier | 8.5 | | 20-A | 11) | 12 | 12 | marrie Hit | | 20-A | 12 | 12 | 12 | 1100 | | 20-B | 13 | 12 | oldo alīda vil | 12 | | 22-A | 14 | 15.5 |
15.5 | and TITINE | | 22-B | 15 | 15.5 | -sight | 15.5 | | 22-B, 1/2 | 16 | 15.5 | - | 15.5 | | 22-B | 17 | 15.5 | | 15.5 | | 24–A | 18 1 | 18.5 | 18.5 | 977 | | 24-B | 19 | 18.5 | 1 | 18.5 | | 26-A | 20] | 20.5 | 20.5 | north - P | | 26-A | 21 | 20.5 | 20.5 | H H (9) | | 28-A | 22 | 22.5 | 22.5 | 10VIII - | | 28-A | 23 | 22.5 | 22.5 | 105 | | Total
N = 23 | 23) | of the last of | $R_1 = 171$ $n_1 = 12$ | $R_2 = 105$ $n_2 = 11$ | Non-Parametric Tests We have, $$R_1 + R_2 = \frac{N(N+1)}{2}$$ $$\Rightarrow \qquad 171 + 105 = \frac{23(23+1)}{2} = \frac{276 \text{ verified}}{2}$$ Let us set up the Null Hypothesis, H_0 : Rotter and the population with the same x and x are x . Let us set up the Null Hypothesis, H_0 : Both the samples have come from the population with the same means. And the Alternative Hypothesis, H₁: The two samples are not from the same population. Since, both n_1 and n_2 are > 8, the relevant test statistic U is given by $n_1 (n_1 + 1)$ Since, both $$n_1$$ and n_2 are > 8, the relevant test statistic U is given by $$U_1 = n_1 n_2 + \frac{n_1 (n_1 + 1)}{2} - R_1$$ $$= 12 \times 11 + \frac{12(12 + 1)}{2} - 171$$ $$= 132 + 78 - 171 = 210 - 171 = 39$$ or $$U_2 = n_1 \cdot n_2 + \frac{n_2 (n_2 + 1)}{2} - R_2$$ $$= 132 + \frac{11(11 + 1)}{2} - 105 = 132 + 66 - 105 = 93$$ By transformation of U into Z we have, $$Z = \frac{U - (n_1 \cdot n_2)/2}{\sqrt{n_1 \cdot n_2 (n_1 + n_2 + 1)/12}} = \frac{39 - 66}{16 \cdot 25} = 1 \cdot 66$$ Taking U at 93, we get $$Z = \frac{93 - (12 \times 11)/2}{\sqrt{12 \times 11(12 + 11 + 1)/12}} = \frac{93 - 66}{16 \cdot 25} = 1 \cdot 66$$ The critical value of Z at 5% level as obtained from the Normal Council $$Z = \frac{U - (n_1 \cdot n_2)/2}{\sqrt{n_1 \cdot n_2 \cdot (n_1 + n_2 + 1)/12}} = \frac{39 - 66}{16 \cdot 25} = -1.66$$ Taking *U* at 93, we get $$Z = \frac{93 - (12 \times 11)/2}{\sqrt{12 \times 11 (12 + 11 + 11)/12}} = \frac{93 - 66}{16.38} = 1.6$$ The critical value of Z at 5% level as obtained from the Normal Curve Table is ±1.96. Since the calculated value of Z (± 1.66) is less than its critical value (± 1.96), the null hypothesis is accepted. Hence, we conclude that the two samples have come from the population with the same means. (4) Kruskal-Wallis Test: This test was developed by Kruskal and Wallis jointly and it is an (a) Kruskal-Wallis Test: This test was developed by Kruskal and Wallis jointly and it is an improvement over the sign test and wilcoxon's signed rank test of which ignored the actual magnitude of the paired observations. This test is applied to test whether two or three independent samples have come from the same (identical) population as against the alternative hypothesis that they are from population with different means. **Rocedure*: Procedure : This test involves the following steps: Arrange the data of both the sample in one column in ascending order. Assign raphers to the data of both the sample in one column in ascending order. Arrange the data of both the sample in one column in ascending order. Assign ranks to them in increasing (from low to high) order of magnitude. In case of the repeated values, assign ranks to them by averaging their rank positions. Then the ranks of the different samples are separated and summed up as R₁, R₂, R₃, etc. Then the test statistical triples are supposite the following formula: (iv) Then the ranks of the different samples are separated and summer five the test statistic H is calculated by using the following formula: $$H = \frac{12}{n(n+1)} \left[\frac{R_1^2}{n_1} + \frac{R_2^2}{n_2} + \dots + \frac{R_k^2}{n_k} \right] - 3(n+1)$$ Note: The value of H calculated above should be increased slightly when there are very many ties in the rankings for that H is highly sensitive to ties. (v) If each sample has at least 5 items, then get the value of χ^2 from the χ^2 -table with K-1 degree of freedom at the desired significance. But if any of one sample it has less than 5 items, then χ^2 value should not be used. items, then χ value of H happens to be less than the table value χ^2 , the null hypothesis is accepted otherwise rejected. Example 10. Two sections of an elementary course consisting of 5 and 7 students respectively in Economics were taught by the teachers. The marks obtained on the final test were as under: | | | | Mark | 5 | | | | |--------------|---------|-----------|------------|----------------------------|------------|----------|----------------------------| | Teacher I | 50 | 55 | 60 | 65 | 70 | | | | m | 60 | 63 | 58 | 70 | 55 | 68 | 73 | | Using the Kr | uskal-V | Vallis te | st, verify | at $\alpha = 0$
the two | 0 · 05 lev | el the n | ull hypothesis th
jual. | Solution: Let us take the hypothesis H_0 : There is no difference in the marks awarded by two teachers. It is given that $n_1 = 5$ and $n_2 = 7$, $n = n_1 + n_2 = 5 + 7 = 12$ Determination of Ranks and their Sums | Values of 2 samples arranged in ascending order | Rank (from low to high) | | f different
aples | |---|--------------------------|--|------------------------| | ascending order | | R_1 | R ₂ | | 50-I | 1 | 1 | tus <u>-</u> ket | | 55-I | 2] 2.5 | 2.5 | - | | 55-II | . 3 2.5 | 12 Sept - 15 | 2.5 | | 58-II | contract of the state of | دول این از این | 1 491 | | 60-I | 5 5.5 | 5.5 | ir shelet | | 60-II | 6 5.5 | R SECTION | 5.5 | | 63–II | Tulor | and Tyris | motoray | | 65–I | 8 | 8 | STATE OF | | 68-II | 9 1111 | 9 ₂₂ 2 070 | 9.1 | | 70-I | 10) 10.5 | 10.5 | 10.5 | | 70-II | 11 10.5 | La dine III | 12 | | 73-II | 12 | 11 12 13 | 7 -50.5 | | | n = 12 | $\begin{array}{c} R_1 = 27 \cdot 5 \\ n_1 = 5 \end{array}$ | $R_2 = 50.5$ $n_2 = 7$ | Non-Parametric Tests We now compute H-statistic which is given as: $$H = \frac{12}{n(n+1)} \cdot \left[\frac{R_1^2}{n_1} + \frac{R_2^2}{n_2} \right]_{-3(n+1)} = \frac{12}{12(12+1)} \cdot \left[\frac{(27\cdot5)^2}{5} + \frac{(50\cdot5)^2}{7} \right]_{-3(12+1)} = \frac{12}{156} \cdot [151\cdot25 + 364\cdot32] - 39 = \frac{12}{156} \cdot [515\cdot57] - 39 = 39\cdot6592 - 39 = 0.6592$$ Since there are many ties in the ranking Since there are many ties in the ranking, the value of H is slightly increased to 066 Since there are many the sample has less than 5 items, we get the critical value of χ^2 with 1 A.f. (i.e., K-1=2-1=1) at 5% level from χ^2 -table is 3.84. Since the calculated value of H is less than the table value of χ^2 , we accept H_0 . It Since the calculation of marks awarded by the two teachers do not differ means that the distribution of marks awarded by the two teachers do not differ Given below are the samples relating to number of minutes the patients has to wait in the clinics of three doctors: Example 11. | | | 7 100 00 | erora. | | | | | res mas 10 | |------------|----|----------|--------|----|----|----|----|------------| | Doctor A | 44 | 39 | 38 | 33 | 47 | - | | | | , Doctor B | 34 | 45 | 43 | 39 | 42 | 45 | - | - | | Doctor C | 46 | 34 | 43 | 36 | 30 | 40 | 46 | - | | | | | | | | | | | Using the Kruskal-Wallis test, verify at 5% level to verify the null hypothesis that all the three Doctors are equal in making the patients wait for the average Solution: Let us take the hypothesis ${\cal H}_0$: There is no difference among the Doctors in making the patients wait. It is given that $n_1 = 6$, $n_2 = 7$ and $n_3 = 8$, n = 6 + 7 + 8 = 21. | Values of a | 3-A I | Ranks (fro | m low to high) | Ranks of the different
samples | | | | |--------------|---------------------------------------|------------|----------------|-----------------------------------|----------------|----------------|--| | | THEY WE THEN | | | R ₁ | R ₂ | R ₃ | | | 30-C | | w 5 1 1 | 1 | -, | - | 1 | | | 33-A | | | 2 | 2 | · | | | | 34-B | 17 | 3) | 3.5 | - | 3.5 | 3.5 | | | | in in the second | 4 | 3.5 | - | - | 5.5 | | | 36-C | ve m | 7 | 5 | - | | | | | 38-A | d elegrande to | | 6 | 6 | 1 | - | | | 39-A
39-R | , , , , , , , , , , , , , , , , , , , | 7] | 7.5 | 7.5 | 7.5 | - | | | 39_R | al adr (K. n | | 7.5 | | 10 | 34 | | | | | | 9 | 2 4900 | 9 | 11.77 | |--------------|-------|------|-------------|------------------------------|----------------------|------------------------| | 40-B | п | 1 | 10 | - | i - | 10 | | 41-C | Ш | 11] | 11.5 | - | 11.5 | 10 | | 42-B | Ш | 12 | 11.5 | - 1 | - | 11.5 | | 42-C | II | 13) | 13.5 | - | 13.5 | 11.3 | | 43-B | Ш | 14 | 13.5 | - | - | 13.5 | | 43-C | ,,,, | 15) | 15.5 | 15.5 | - | - | | 44-A | III | 16 | 15.5 | - | | 15.5 | | 44-C
45-A | 1 | 17 | 17.5 | 17.5 | - | | | 45-A
45-B | п | 18 | 17.5 | - | 17.5 | | | 45-B | п | 19 | 19-5 | a 10,0 <u>0</u> 180 | 19.5 | 99 | | 46-C | ш | 20 | 19.5 | a Sant | 100 | 19.5 | | 47-A | 1 | | 21 | 21 | .br = | | | | Total | , n | = 21 | $R_1 = 69 \cdot 5$ $n_1 = 6$ | $R_2 = 82$ $n_2 = 7$ | $R_3 = 79.5$ $n_3 = 8$ | $$\begin{split} H &= \frac{12}{n(n+1)} \cdot \left[\frac{R_1^2}{n_1} + \frac{R_2^2}{n_2} + \frac{R_3^2}{n_3} \right] - 3(n+1) \\ &= \frac{12}{21(21+1)} \cdot \left[\frac{(69 \cdot 5)^2}{6} + \frac{(82)^2}{7} + \frac{(79 \cdot 5)^2}{8} \right] - 3(21+1) \\ &= \frac{12}{462} \cdot \left[\frac{4830 \cdot 25}{6} + \frac{6724}{77} + \frac{6320 \cdot 25}{8} \right] - 66 \\ &= 0 \cdot 0.25974 \left[805 \cdot 0.4167 + 960 \cdot 57143 + 790 \cdot 0.3125 \right] - 66 \\ &= 0 \cdot 0.25974 \left(2555 \cdot 6444 - 666 \cdot 66 \cdot 38 - 666 - 0.38 \right) \end{split}$$ Since there are many ties in the rakings, the value of H is slightly increased to 0.50. As none of the samples has less than 5 items, we get the critical value of χ^2 with 2 .d.f. (i.e., K-1=3-1=2) at 5% level from the χ^2 -table is 5.991. Since the calculated value of H is less than the table value of χ^2 , we accept the null hypothesis. It means that all the three doctors are equal in making the patients wait
for the average time. (5) Wald-Wolfowitz Runs Test: This test was developed by Wald and Wolfowitz. It is called Runs Test: This test is used to test the null hypothesis that the two populations from which the two independent samples are drawn form identical distributions. ### Procedure : This test involves the following steps: (i) Arrange the data of both the samples as one and arrange them in ascending order. (ii) Denote the values of the first sample and second sample by X (f) and Y (fI) respectively. (iii) Determine the number of uninterrupted runs of the sample in this sequence and denote it has been assumed to the control of the sample of the sample in this sequence. by R. (iv) If the combined sample is greater than or equal to 20, the test statistic Z is calculated by using the following formula: Non-Parametric Tests $$Z = \frac{R - \left(\frac{2n_1n_2}{n_1 + n_2} + 1\right)}{\sqrt{\frac{2n_1n_2}{(n_1 + n_2)^2} \times \frac{(2n_1n_2 - n_1 - n_2)}{(n_1 + n_2)^2}}}$$ Set up the null hypothesis H_0 against an appropriate alternative hypothesis at a desired (v) jevel of significance. (vi) Now that the calculated value of Z is compared with the critical value of Z at 5% or 1% for a two tailed test, two tailed test, when the calculated value of Z is more than 1-96 at 5% for two tailed test, the null hypothesis is rejected otherwise accepted. Example 11. A manufacture uses two methods of production with the follow | Method I : | 51 | 27 | 40 | Troduced | results : | |---------------|--------|-------|---------|---|-----------------| | Method II : | 36 | 19 | 21 | 27 41 29 27 23 | 25 00 | | Carry out Wa | ld-W | olfov | vitz te | 27 41 29 27 23
19 25 16 39 25
est to find out whether the | 21 17 37 37 | | the same popu | ulatio | on at | 5% le | vel of -! Whether the | he two examples | level of significance. Let us take the hypothesis that the two samples have come from the same Solution: It is given that $n_1 = 13$, $n_2 = 10$, $\alpha = .05$ To determine runs, the observations of both samples are arranged in an ascending R = The total number of runs in this sequence = 10. We have, $$Z = \frac{R - \left(\frac{2n_1n_2}{n_1 + n_2} + 1\right)}{\sqrt{\frac{2n_1n_2}{(n_1 + n_2)^2} \times \frac{(2n_1n_2 - n_1 - n_2)}{(n_1 + n_2 - 1)}}}$$ $$= \frac{10 - \left(\frac{2 \times 13 \times 10}{13 + 10} + 1\right)}{\sqrt{\frac{2 \times 13 \times 10}{(13 + 10)^2} \times \frac{(2 \times 13 \times 10 - 13 - 10)}{(13 + 10 - 1)}}}$$ $_{\rm YDZ9}$ $_{\rm ZZ}$ Since, the calculated value of Z is less than 1.96 at 5% level for two tailed test, the null hypothesis is accepted. It means that the two samples have come from the same population. Using the Wald-Wolfowitz test, verify at a = 0.05; if the two populations have the same underlying distributions. Let us take up H_0 : The two populations have identical distributions against H_1 : The two populations follow different distributions. $n_1=10,n_2=10$ is given Solution: To determine runs (R), the observations of both samples are arranged in an ascending order: 12 13 14 14 14 15 12 12 13 14 14 18 20 20 21 21 22 18 R = the total number of runs in this sequence = 10 We have, $$|Z| = \frac{R - \left(\frac{2n_1n_2}{n_1 + n_2} + 1\right)}{\sqrt{\frac{2n_1n_2}{(n_1 + n_2)^2} \times \frac{(2n_1n_2 - n_1 - n_2)}{(n_1 + n_2 - 1)}}}$$ $$= \frac{10 - \left(\frac{2 \times 10 \times 10}{10 + 10} + 1\right)}{\sqrt{\frac{2 \times 10 \times 10}{(10 + 10)^2} \times \frac{2 \times 10 \times 10 - 10 - 10}{(10 + 10 - 1)}}}$$ $$= \frac{10 - 11}{2 \cdot 18} = \frac{-1}{2 \cdot 18} = 0.4587$$ Since, the calculated value of Z is less than 1-96 at 5% level of significance for two tailed test, the null hypothesis H_0 is accepted. This means that the sample data support the hypothesis that the two populations have identical distributions. Non-Parametric Tests EXERCISE - 2 Given below are the strengths of cables made from the different alloys 1 & 11 & 3 & 16 · 4 & 22 · 7 & 17 · 8 & 18 · 9 & 25 · 3 & 18 · 9 & Alloy II 120 10.7 15.9 19.6 12.9 14.7 Using Mann-Whitney U test at 5% level of significance state whether or not there is a significant difference in the average of strength of the cable made from V and V and V are a professor has two classes in Economics: a morning class of 9 students and analysis of 12 students. On a final examination scheduled at the same time for all the state time for all the state time for all the state time for all the same times all the same times all the same times times all the same al | 87 | 79 | 75 | 92 | | _ | - 1 | - un stude | ints, the | |----|----|----------------|-------|-------|-------|------------|------------|---------------| | 81 | 84 | 88 | 00 | 66 | 95 75 | 70 | | | | | 81 | 87 79
81 84 | 01 /5 | 75 82 | 02 66 | 02 06 95 - | 02 66 95 - | 75 82 66 95 5 | Using Mann-Whitney *U*-test at 5% level of significance, state whether or not there is a significant difference in the average score of the morning and afternoon classes. [Ans. U=80 z=1.85 Accept H_0] of 22 women was divided into there sub groups and each subgroup followed by one of the plans for a period of two months. The weight reducing this key, were noted as given below: | | I | 4.3 | 3.2 | 2.7 | 6-2 | 5.0 | 20 | | | | |------------|-------|-----|-----|-----|------|-----|-----|-----|------|-----| | Diet Plans | II | 5.3 | 7.4 | 8-3 | | 6.7 | 7.2 | 8-5 | | - | | 5 | · III | 1.4 | 2.1 | 2.7 | -3-1 | | 0.7 | 8.5 | 2001 | | | | | | | | 0.1 | 1.3 | 0.7 | 4.3 | 3.5 | 0.3 | Use Kruskal-Wallis test to test the hypothesis that the effectiveness of three weight reducing diet plans are the same at 5% level of significance. [Ans. H = 15.63, H_0 is rejected $\chi^2 = 5.99$] Given below are the scores obtained by 16 pairs of boys and girls on a campus interview conducted by IBM (International Rusiness Mechines) Company | | T | | | | | | | | | | | | _ | - | - | - | |-------|----|----|----|----|----|----|----|----|-----|----|----|----|----|----|----|----| | Boys | 13 | 26 | 42 | 43 | 41 | 40 | 10 | 12 | 1 | 13 | 46 | 42 | 16 | 38 | 44 | 41 | | Girls | 42 | 47 | 28 | 26 | 45 | 47 | 48 | 36 | -29 | 27 | 23 | 33 | 15 | 39 | 45 | 46 | Using Kruskal Wallis test at 5% l.o.s., state whether or not there is a significant difference in the average I.Q. of the boys and girls. [Ans. H=2.05, H_0 is accepted] Given below are the data relating to time in minute the customer had to stand in a queue for encashing the size. | - icusiu | ng their che | eques from | the three b | anks in Har | vana | | | |----------|--------------|------------|-------------|-------------|------|------|----| | SBI | 180 V | 1 | | | 28 | 36 . | 10 | | PNID | 10 | 25 | 42 | 21 | - | 23 | 15 | | TIDE | 35 | 30 | 25 | 22 | 28 | 10 | 18 | | OBI | 34 | 20 | 26 | 23 | 25 | | | Using Kruskal Wallis test at 5% l.o.s., state if the three banks are equally dilatory payment of chooses. [Ans. $H = 0.75, \chi^2 = 5.99$] payment of cheques. A random sample of 10 students each from Boys and Girls revealed that their monthly | expenditure or | Station | 12 | . 15 . | 20 | 17 | 14 | 11 | 13 | 25 | 18 | |----------------|---------|---------|----------|---------|---------|---------|--------|--------|----------|---------| | Boys (B): | 10 | 12 | 15 | 8 | 18 | 22 | 20 | 18 | 10 | 15 | | Girls (G): | 12 | Couritz | runs tes | t, veri | fy at α | = 0.01, | if the | two po | pulation | ns have | Using the Wald-Wolfowitz runs test, verify at the 50-5, if the Wolfowitz runs test, verify at the 50-5, if the Wolfowitz runs test, verify at the 50-5, if the Wolfowitz runs test, verify at the 50-5, if the Wolfowitz runs test, verify at the 50-5, if the Wolfowitz runs test, verify at the 50-5, if the Wolfowitz runs test, verify at the 50-5, if the Wolfowitz runs test, verify at the 50-5, if the Wolfowitz runs test, verify at the 50-5, if the Wolfowitz runs test, verify at the 50-5, if the Wolfowitz runs test, verify at the 50-5, if the Wolfowitz runs test, verify at the 50-5, if the Wolfowitz runs test, verify at the 50-5, if the
Wolfowitz runs test, verify at the 50-5, if the Wolfowitz runs test, verify at the 50-5, if the Wolfowitz runs test, verify at the 50-5, if 50 | ollows: | | 1 | | | 4.0 | 27 | 61 | 32 | 1 mm | 1 4 | |---------|-----|-----|-----|-----|-----|-----|-----|-----|--------|-----| | | 2.1 | 4.0 | 6.3 | 5.4 | 4.8 | 3./ | 6.1 | 3.3 | mary 6 | 1 | | Brand A | 2.1 | | 3.1 | 2.5 | 4.0 | 6.2 | 1.6 | 22 | 10 | - | Brand B 4.1 | U.6 | 3.1 | 2.5 ## SOME OTHER NON-PARAMETERIC TESTS (1) Rank Correlation Test: This test was developed by Charles Spearman and popularised by Hotelling in 1936. This test is used to test the null hypothesis that there is no correlation between the two populations against the alternative hypothesis that there is a correlation between the two. Procedure: This test involves the following steps: (1) We find the rank correlation coefficient between the two series by using the following (a) $$R = 1 - \frac{6\Sigma D^2}{n^3 - n}$$ (when ranks are not repeated) (b) $R = 1 - \frac{6\left[\Sigma D^2 + \frac{1}{12}(m^3 - m) + ...\right]}{n^3 - n}$ (when ranks are repeated) - (2) Set up the null hypothesis that there is no correlation between the two populations i.e., $H_0 = \rho = 0$. - (3) If the number of pairs is fairly small (n ≤ 30), we find the critical value of R from the Rank Correlation Table (given at the end of the book) with reference to the values of n and α (level of significance). - (4) Compare the calculated value of R with the critical value of R. If the calculated value of R happens to be less than its critical value, then accept H₀. In the reverse case, it is rejected. happens to be less than its critical value, then accept H_0 . In the reverse case, it is specified to the other hand, if n > 30, we compute test statistic Z based on Normal distribution by using $$Z = \frac{R}{\frac{1}{\sqrt{n-1}}} = R \cdot \sqrt{n-1}$$ Then we get the critical value of Z from the Normal Curve Table with reference to significance $\mathbb{I}(a)$. n-Parametric Tesis proparametric 247 If the calculated value of Z happens to be less than its critical value, then we accept the null 1.00 example, illustrate the procedure of rank 2.10. NonIf the calculated value of 2 nappens to be less than its critical value of the calculated value of the calculated value of the calculated water of the calculated value o Use the rank correlation test at 1% significance level, determine if there is any positive correlation between the prices of shares and prices of debentures given Price of Shares (Rs.) 52 53 42 60 45 31 37 38 Price of Debentures (Rs.) 65 68 43 38 77 48 35 30 | Price of | R ₁ | Price of | | | 25 50 | |------------|----------------|----------------|----------------|-------------|------------------| | Shares (X) | | Debentures (Y) | R ₂ | $D=R_1-R_2$ | | | 52 | 3 | 65 | | - N1 - K2 | D ₂ | | 53 | 2 | 68 | 3 | 0 | Charles and | | 42 | 5 | 43 | 2 | 0. | 0 | | 60 | 1 | 38 | 6 | -1 | 0 | | 45 | 4 | 77 | 7 | -6 | 36 | | 31 | 8 | 48 | 1 | 3 | 9 | | 37 | 7 | 1 - 2 - 2 - 4 | 5 | 3 | q | | 1 lg = 38 | NAME AND A | 35 | 8 | -1 | 1 | | | S of the made | 30 | 9 | -3 | 0 | | 25 | 10 | 25 | 10 | 0 | 0 | | 27 | 9 50 | 50 | 4 | 5 | 25 | | n = 10 | | | | ΣD = 0 | $\Sigma D^2 = 9$ | Applying the formula, $$R = 1 - \frac{6 \times D^2}{n^3 - n}$$ $$6 \times 90 \qquad 540 \qquad 6 \times \qquad$$ $10^3 - 10$ Rank Correlation Test: We have $n=10, \alpha=0.01, R=0.455$ $H_0: \rho = 0$ (i.e., there is no correlation between the prices of shares and debentures) (there is positive correlation between the two) $H_1: \rho > 0$ Since n < 30, (i.e., 10) the critical value of R as obtained from the Rank Correlation Table for Since, the column is 0.7818. Since the calculated value of R (0.455) is less than its critical value (0.7818), this suggests that make the calculated value of R (0.455) is less than its critical value (0.7818), this suggests that make the calculated value of R (0.455) is less than its critical value (0.7818), this suggests that the calculated value of R (0.455) is less than its critical value (0.7818), this suggests that the calculated value of R (0.455) is less than its critical value (0.7818), this suggests that the calculated value of R (0.455) is less than its critical value (0.7818). the calculated value of R (0.455) is less than its critical value (0.7818), this suggests that he was the price of the shares and price of debentures. (2) Median Test by the price of the shares and price of debentures. (2) Median Test: It is another important non-parametric test. It is used to test whether two or the samples are taken to resamples are taken from the population with same median- Procedure: This test involves the following steps: (i) Set up the null hypothesis H₀ that there is no difference in the median of the two samples. (ii) We find the median of the combined data. Both groups are combined and data are (iii) We determine how many of the values in each sample fall above or below the median (i.e., (iii) We determine how many of the values in each sample fall above or below the median). The the two samples are classified in two groups above median and below median). The frequencies are counted for each group. (iv) We present the data in the form of a (2 × 2) contingency table shown below: | present | Sample I | Sample II | Total | |-----------|----------|-----------|-------| | | 9 | b | a+b | | ve Median | C | d | c + d | | v Median | a + c | b + d | (A) | (v) We now calculate the expected frequencies by using the formula: (Row × Column)/Grand Total (vi) We compute the value of χ^2 by using the formula: $$\chi^2 = \Sigma \left[\frac{(0-E)^2}{E} \right]$$ (vii) Determine the degree of freedom = v = (r - 1) (c - 1). (viii) The critical value of χ^2 at 0·05 level of significance for given degree of freedom is found. (ix) If the calculated a lue of χ^2 exceeds the critical value of χ^2 , H_0 is rejected. It implies that there is no evidence to suggest that the median is the same in case of two samples. In the reverse case, H_0 is accepted. Example 2. Two different fertilisers were used on a sample of eight plots: | Plot No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |--------------|----|----|----|----|----|------|----|------| | Fertiliser I | 49 | 32 | 44 | 48 | 51 | 34 | 30 | 42 | | ertiliser II | 40 | 45 | 50 | 43 | 37 | . 47 | 55 | - 57 | Use Median test to test the hypothesis that the two fertilisers have the same median. Solution: H_0 : The two fertilisers have the same median. Now, we calculate the combined median of the two series. Let us arrange the data | Sr. No. | X | Sr. No. | X | |---------|----|---------|----| | 1 | 30 | 9 | 45 | | 2 | 32 | 10 | 47 | | 3 | 34 | 11 | 48 | | 4 | 37 | 12 | 49 | | 5 | 40 | 13 | 50 | | 6 | 42 | 14 | 51 | | 7 | 43 | 15 | 55 | | 8 | 44 | 16 | 57 | _{n-Parametric} Tests Combined Median = Size of $$\left(\frac{n+1}{2}\right)^{th}$$ item $$= \frac{16+1}{2} = 8.5th \text{ item}$$ $$= \left[\frac{8th + 9th}{2}\right] \text{ item} = \frac{44+45}{2}$$ Form a 2 × 2 contingency table: | 41 41 | Sample I | | |--------------
---|-----------| | Above Median | | Dample II | | Below Median | 5 | 5 Total | | Total | PULL TO THE POPULATION OF | 3 8 | $$E(3) = \frac{8 \times 8}{16} = 4$$ $E(5) = 8 - 4 = 4$ E(3) = 8 - 4 = 4 | | .0 | E | (0-E) | $(0-0)^2$ | | |---|-------|---|-------|------------|-----------------------------| | | 3 | 4 | 1-1-1 | (0 0) | $(0-E)^2/E$ | | 4 | 5 | 4 | +1 | Jan David | 0-25 | | | 5 | 4 | +1 | 1 | 0-25 | | | 3 | 4 | 1 70 | | 0-25 | | 1 | Ud 1) | | | 1 | 0.25 | | L | | | | La company | $\chi^2 = E(0-E)^2 / E = 1$ | $$\chi^2 = \Sigma \left[\frac{(O - E)^2}{E} \right] = 1$$ Degree of freedom = v = (2-1)(2-1)=1 The critical value of χ^2 at 5% for d.f. = 3.84. Since, the calculated value of χ^2 is less than the critical vale of χ^2 at 5% l.o.s., we accept null hypothesis and conclude that the two fertilisers have the same median. (3) Kolmogorov - Smirnov Test Kolmogorov – Smirnov Test Kolmogorov – Smirnov test, named after statisticians A.N. Kolmogorov and N.V. Smirnov, is a simple non-parametric test for testing whether there is a significant difference between an other directions of the chi-square test for goodness of fit. It is used when one is interested in comparing a set of values on an ordinal cest. values on an ordinal scale. an ordinal scale. Procedure: This test involves the following steps: (1) Set up the null hypothesis that there is no significant difference between the observed and the expected values (or theoretical values) i.e., there is good compatibility between theory and experiment. (2) On the basis of the control contr (a) On the basis of the null hypothes is, we calculate the expected frequencies. Non-Parametric Tests 250 (3) Compute the observed relative cumulative frequency (F₀) and expected relative cumulative frequencies (Fe). (4) Determine the largest absolute deviations between F₀ and F_e i.e., D = |F₀ - F_e|. (5) Compute the critical value of D with reference to the values of n and α (l.o.s.) from Kolmogrov – Smirnov Test Table given at the end of book. (6) Compare the calculated value of D with the critical value of D. If the calculated value of D compare the calculated value of D with the critical value of D. If the calculated value of D compare the calculated value of D with the critical value of D. If the calculated value of D compare the calculated value of D with the critical value of D. If the calculated value of D with the critical value of D. If the calculated value of D with the critical value of D. If the calculated value of D with the critical value of D. If the calculated value of D. The following grades were given to a class of 100 students. | | | R | I C | D | E | | |-----------|----|----|-----|----|----------|-------| | Grade | E0 | 60 | 20 | 40 | 30 | 1 | | Frequency | 30 | | 1 | | -: 6 TIo | - W-1 | Test the hypothesis that the distribution of grade is uniform. Use Kolmogorov - ### Solution. Let us take the hypothesis that the distribution of grades are uniform *i.e.*, there is no difference in their distribution. No. of students given grade = 200. We should expect $\frac{200}{5}$ = 40 to each student. | 0 | Observed
Cumulative
Frequency | Observed
Relative
Frequency F ₀ | E | Expected
Cumulative
Frequency | Expected
Relative
Frequency F _e | $D = F_0 - F_e $ | |----|-------------------------------------|--|----|-------------------------------------|--|-------------------| | | 50 | 0.25 | 40 | 40 | 0.20 | 0.05 | | 50 | 110 | 0.55 | 40 | 80 | 0.40 | 0.15 | | 60 | | 0.65 | 40 | 120 | 0.60 | 0.05 | | 20 | 130 | 0.85 | 40 | 160 | 0.80 | 0.05 | | 40 | 170 | 1.00 | 40 | 200 | 1.00 | 0.00 | From the table, we find that the largest absolute difference is 0.15 which is known as Kolmogorov - Smirnov D value. Since the sample size is more than 35, the critical value of D with reference to value of n and α is $\frac{1.36}{\sqrt{200}} = 0.096$. As the calculated value of D exceeds the critical value of 0·096, we reject $H_{ m 0}$ and conclude that the grades are not uniformly distributed. 3 Kelmogorov - Smirner ### **EXERCISE-3** Use the rank correlation test at 1% level of significance, determine if there is any positive correlation between study time and scores: | Number of hours studied (X): | 8 | 5 | 11 | 13 | 10 | 5 | 18 | 15 | 2 8 | |------------------------------|----|----|----|----|----|----|----|----|-------| | Score (Y): | 56 | 44 | 79 | 72 | 70 | 54 | 94 | 85 | 33 63 | [Ans. R = 0.9758, |Z| = 2.94, Reject H_0 and significant relationship.] 2. An I.Q. test was given to a random sample of 15 male and 20 female students of a university. Their scores were recorded as follows: | Male: | 56 | 66 | 62 | 81 | 75 | 73 | 83 | 68 | 18 | 70 | 60 | 77 | 86 | 44 | 72 | 行品 | 9/1 (0.0) | 2 81 | |---------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|-----------|--------| | Female: | 63 | 77 | 65 | 71 | 74 | 60 | 76 | 61 | 67 | 72 | 64 | 65 | 55 | 89 | 45 | 53 | 68 73 5 | سفول ا | Non-Parametric Tests $_{\rm in}$ and the $_{\rm in}$ determine whether LQ. of male and female students is same in the $_{\rm in}$ model. (Given the median of the combined sample = 68) Below is the table of observed frequencies, along with the frequency to the observed under Calculate the K-S statistic. (a) Calculate the Canal Can 0.10 l.o.s. and Kolmogorov - Smirnov | Total Score : | 51-60 (1 = | a normal distribution? Use | |---------------------|----------------|--------------------------------------| | Observed Frequency: | 30 100 | 71-80 | | Expected Frequency: | 40 170 | 440 81-90 91-100
500 | | not contain by | 170 | 300 300 130 | | in Jeway Indian | Report College | | | to the great miles | QUESTIONS | [Ans. $D_5 = 0.117$, Accept H_0] | ### QUESTIONS - 1. What are non-parametric tests? In what ways are they different from parametric tests. - What are two the parametric and non-parametric tests, thus, highlight the advantages - 3. Discuss the methods of using ordinary sign test and Wilcoxon's signed-rank test. - 4. Explain Wilcoxon's signed rank test procedure. - 5. Name various non-parametric tests. Describe by taking a suitable example Mann-Whitney - 6. Explain briefly the Chief features of Wald-Wolfwitz test and its uses in economic data - 7. Write a short note on Kruskal-Wallis H-test. - 8. What is sign test? What is it used and what are its limitations? - 9. Explain the procedure of : - (i) One sample sign test - (ii) Wilcoxon's signed-rank test - (iii) Kruskal-Wallis H-test - (iv) Wald-Wolfwitz run test - 10. What are non-parametric tests? Briefly describe the process of Wilcoxon's Signed-Rank - 11. Write short notes on : - (i) Rank correlation test (ii) Median test and - (iii) Kolmogorov-Smirnov Test. ### Statistical Decision Theory INTRODUCTION In every field of life one has to make decisions in different alternative courses of action. In every field of life one has to make decisions in different alternative or public) is faced Decision making is needed whenever an individual or an organisation (private or public) is faced with a situation of selecting an optimal (or best) course of action among several available with a situation of selecting an optimal (or best) course of action among several available alternatives. For example, an individual may have to decide whether to invest his money in stock, and or debentures; whether to build a house or to purchase a flat or live in a rentational accommodation; whether to join a service or to start own business; which company's carr's cooler should be purchased, etc. Similarly, a business firm may have to decide which product it should be purchased, etc. Similarly, a business firm may have to decide which product it should be purchased, etc. Similarly, a business firm may have to decide which product it should be purchased, etc. Similarly, a business firm may have
to decide which product its should be purchased. should be purchased, etc. Similarly, a pushiess that may have to declare which product it should produce among various products; the type of technique to be used in production; what is the most appropriate method of advertising its product, etc. Decision making is a process of choosing an optimal course of action out of several alternative courses for the purpose of achieving a 'goal or timal course of action out of several automatical forms of quantitative techniques which helps in analysing a decision situation and enable us to assure at a conclusion which is the best under given circumstances of the case. ### ELEMENTS OF A DECISION PROBLEM There are four elements of any decision problem. These are acts, states of nature and pay off matrix and regret matrix which are discussed below: (1) Acts: The decision always involves a choice among several alternatives. These several alternatives are called acts. For example, a management is faced with the problem of choosing one of the three products X, Y and Z for manufacturing. It means that there are three acts out of one act is to be chosen. Thus, acts are the several alternative course of action or strategies, that are available to a decision maker. These are denoted by $A_1, A_2, A_3, \dots A_n$. (2) States of Nature (or Events): In every act, there are events which are uncertain and beyond the control of a decision maker. These events are outside the firm and not under its control. In the above example where the management is faced with the problem of choosing one of three products for manufacutring, the potential demand for the product may turn out to be good, moderate of the product product may be possible to the product may be product the product the product may be product the product the product the product may be product the produc poor. The consumer's demand for the products are the events which are uncertain and beyond the control of the decision maker. Thus, events which are beyond the control of the decision maker are called states of nature. These are denoted by $S_1, S_2, S_3, ... S_n$. (3) Pay off Table (or Pay off Matrix): When the value of each event in the act are calculated that the state of t of a course of action in Acts and States of Nature is associated with pay off, which measures the net benefit to the decision maker. A pay off matrix (or a table) consists of the following two Slatistical Decision Theory galistical $A_1, A_2, A_3, ..., A_n$ and (ii) $A_1, A_2, A_3, ..., A_n$ and (ii) $A_1, A_2, A_3, ..., A_n$ and (ii) $A_1, A_2, A_3, ..., A_n$ and (iii) $A_1, A_2, A_3, ..., A_n$ and (iii) $A_2, A_3, ..., A_n$ and (iii) $A_1, A_2, A_3, ..., A_n$ and (iii) $A_2, A_3, ..., A_n$ and (iii) $A_1, A_2, (| States of | Nature | | 0610M: | | |----------------|------------|------------------|-----------------|-----------------| | X-TT | | · A ₁ | Acts | | | S_1 | A visit of | X ₁₁ | A2 | | | S ₂ | I ALE DES | X ₂₁ | X ₁₂ | A ₃ | | S_3 | | X ₃₁ | X ₂₂ | X ₁₃ | its acts and row represents events (or States of Nature). In the above table containing the above table to take the best possible decisions. For any given table of Nature). 4. Opportunity Loss Table (or Regret Matrix): Opportunity loss is the loss incurred as a containing transfer of the failure to take the best possible decisions. For any given table of the failure to take the best possible decisions. 4. Opportunity Loss 1 apie (or negret Matrix): Opportunity loss is the loss incurred as a consequence of the failure to take the best possible decisions. For any size at loss incurred as a consequence of the failure to take the best possible decisions. For any state of nature (S_i) is defined as the difference between the maximum possible opportunity loss of or the catch pay off or the catch (A_i) over that A_i the A_i over that A_i over the A_i over that A_i over the A_i over the A_i over that A ### Opportunity Loss Table | States of Nature | Acts 53 % San | | | | | |-----------------------|---|---------------------|---------------------|--|--| | - parinim set eq | A ₁ | A ₂ | 4 | | | | at the yes, recommend | $M - X_{11}$ | M - X ₁₂ | M - X ₁₃ | | | | S ₂ | $M - X_{21}$ | M - X ₂₁ | M - X ₂₃ | | | | mi 10183 have a | M - X ₃₁ | M - X ₃₁ | M-X ₃₃ | | | Here M=Maximum possible pay off. ### DECISION MAKING ENVIRONMENTS Decisions are made under three types of environents: (1) Decision making under conditions of certainty: In this environment, only one state of Talure exists i.e., there is complete certainty about the future. It is easy to analyse the situation and make good decisions. (2) Decision making under conditions of uncertainty: Here, more than one states of nature exist but the decision making under conditions of uncertainty: Here, more man one successful but the decision maker lacks sufficient knowledge to assign probabilities to the various states of natura (3) Decision making under conditions of risk: Here also, more than one states of nature exist the decision making under conditions of risk: by Decision making under conditions of risk: Here also, more than one states in the decision maker has sufficient knowledge to assign probabilities to each of these states of the laborate. DECISION CRITERIA Every decision maker has to make choice among the best course of action (or act) under the decision under different decision the decision under different decision to to the decision under different decision to the decis rations y decision maker has to make choice among the best course of action of action to the states of nature. Different criteria are used for making decision under different decision being feroiron ment. was states of nature. Different criteria are used for making decision under different decision under different decision under different decision under u be following charts: ### Statistical Decision Theory For decision making under uncertainty without the use of probability, the following different criteria are usually adopted: - (1) Maximin Criterion - (2) Maximax Criterion (3) Minimax Regret Criterion - (4) Hurwicz Criterion - (5) Laplace Criterion: The maximin criterion was introduced by Wald. It is based on extreme (1) Maximin Criterion: The maximin criterion was introduced by Wald. It is based on extreme pressimism. This decision criterion assumes that worse of the possible is going to happen. Therefore, it is designed to select the action alternative that maximises the minimum monetary pay. Increase, it is designed to select the action alternative that maximises the minimum monetary pay off. This implies that the decision maker has to (i) determine the minimum pay off for each action, and (ii) select that act which maximises the minimum pay offs. - (2) Maximax Criterion: The maximax criterion is based on extreme optimism. It suggests that (2) Maximax Criterion: The maximax criterion is based on extreme optimism. It suggests that the decision maker should select that particular act under which it is possible for him to receive the most favourable pay off (the action that maximises the monetary pay offs). This implies that the decision maker has to (i) determine the maximum pay off for each action, and (ii) selects that act which maker is the maximum pay off for each action, and (ii) selects that act which maximises the maximum pay offs. - (3) Minimax Regret Criterion : This decision criterion was developed by Savage. He pointed (3) Minimax Regret Criterion: This decision criterion was developed by Savage. He pointed out that the decision maker might experience regret after the decision has been made and the state of nature occurred. Thus, the decision maker should attempt to minimise the regret (minimax) before actually selecting a particular action. This implies that the decision maker has to (i) transform the pay off matrix in to a Regret Matrix. This can be done by subtracting each of the values of the act from the largest pay off of that act for a given state of nature (ii) identifies the maximum regret for each act, and (iii) selects that act which minimises the maximum regret. (4) Hurwicz Alpha Criterion: Leonid Hurwicz has developed a criterion which is a - (4) Hurwicz Alpha Criterion: Leonid Hurwicz has developed a criterion which is a en nurvicz Alpha Criterion: Leonid Hurwicz has developed a criterion which is a combination of maximax (optimistic) and maximin (pessimistic) decision criterion. This criterion is based on the assumption that a decision maker has a degree of optimism, which is represented by the coeff. of optimism of The maximum pay off of each act is multiplied by degree of optimism and minimum pay off by the degree of pessimism (1 – a). This implies that the decision maker has to (i) choose an appropriate degree of optimism as a charter of the degree of pessimism, (ii) choose an appropriate degree of pessimism $(1-\alpha)$. This implies that the decision maker that $(1-\alpha)$ choose an appropriate degree of optimism, α so that $(1-\alpha)$ represents the degree of pessimism, α so that $(1-\alpha)$ represents the degree of pessimism degre $(1-\alpha) \times \min$ as well as minimum of each alternative and obtain $P = \alpha \times \max_{i=1}^{n} (1-\alpha) \times \min$ for each act, and (iii) choose the act that yield the maximum value of weighted pay off, denoted by P. Slatistical Decision Theory iffor each act of a denotes the number of th poles were concernating to decision making under uncertainty are studied under the applications relating to decision making under uncertainty are studied under the owing heads. (1) When the pay offs matrix with profit data is given (1) When the pay offs matrix with cost data is given. (2) When the pay offs matrix with profit data is given: When we are given pay off matrix (3) When the pay offs matrix with profit data is given: When we are given pay off matrix with profit
data, the uses of different decision criteria can be illustrated by following examples: Given the following pay off matrix: Example 1. | States of Nature | | | | |------------------|-------|------|----------------| | | A_1 | Acts | | | S ₁ | 700 | 500 | A ₃ | | S ₂ | 300 | 450 | 300 | | S ₃ | 150 | 100 | 300 | Determine the best act to be chosen under: - (i) Maximin Criterion (ii) Maximax Criterion and - (iii) Minimax Regret Criterion Solution. (i) Maximin Criterion: When this criterion is adopted, we select that act which | Acts | | Minimum | pay offs | |-------|-------|----------|----------| | A_1 | 1 156 | 150 | 1 | | A2 | | 100 - | | | | | 000 . 1/ | imum | The maximum value of the minimum pay off is 300 which corresponds to act A_3 . Hence, the decision maker selects A_3 as the best act by using Maximum criterion. 300 ← Maximum (ii) Maximax criterion: In this criterion, we select that act which gives the maximum pay offs. | Acts | Maximum pay offs | |---------|------------------| | A_1 | 700 ← Maximum | | A_2 | 500 | | A. Olom | 300 | The maximum value of maximum pay off is 700 which corresponds to the act A₁. Hence, the decirion maximum pay off is 700 which corresponds to the act A₁. Hence, the decision maker selects A₁ as the best at by using Maximax criterion. His decision maker selects A₂ as the best at by using Maximax criterion. (iii) Minimax Regret Criterion: In this criterion, the following steps are necessary to be following: to be followed: - (a) Determine the opportunity loss (or regret) for each act by subtracting from maximum pay off of each state of nature to the actual pay offs of all the acts under that state of nature. - that state of nature. (b) Determine the maximum of opportunity loss for each action. (c) Select the act which minimises the maximum of the loss. | | Ac | ts | 1 11/2 | |------------------|----------------------------------|----------------------------------|------------------------------------| | States of Nature | A_1 | A ₂ | A ₃ | | States of Nature | 700 - 700 = 0
450 - 300 = 150 | 700 - 500 = 200
450 - 450 = 0 | 700 - 300 = 400
450 - 300 = 150 | | S ₂ | 300 - 150 = 150 | 300 - 100 = 200 | 300 - 300 = 0 | | Acts | Maximum Opportur | ity Loss | |-------|------------------|----------| | A_1 | 150 ← Minimum | | | A | 200 | 145 10 2 | | A | 400 | | A_3 The minimum value of the maximum opportunity loss is 150 which corresponds to act A_1 . Hence, the decision maker selects A_1 as the best act by using minimax regret criterion. Based on the following pay off (profit matrix): Example 2. Pay-Off Matrix | | | Tay OII III | | | |-----------|----|-------------|------|-----------| | States of | | | Acts | J=0 | | Nature | A | В | С | D | | P | 5 | 10 | 18 | 25 | | i i | 8 | 7 | 8 10 | 23 110102 | | R | 21 | 18 | 12 | 21 | | S | 30 | 22 | 19 | 20 | Determine the alternative to be chosen under: - (i) Maximax criterion - (ii) Maximin criterion - (iii) Minimax regret criterion - (iv) Laplace criterion - (v) Hurwicz criterion (Use $\alpha = 0.8$) (i) Maximax criterion: In this criterion, the decision maker selects that alternative Solution. | (act) which maxim | ises the maximum profits: | |-------------------|---------------------------| | Acts | Maximum pay offs | | A | 30 ← Maximum | | В | 22 | | C | 19 | | D | 25 | The decision maker should choose act A. Statistical Decision Theory C D 20 ← Maximum The decision maker should choose act D. The decision maker snouto cnoose act D. (iii) Minimax Regret Criterion: In this criterion, the decision maker select that alternative which minimises the maximum of the opportunity losses. Opportunity Lose Table. | States of Nature | | | | | |---|-------------|----------------|------------------|--------------| | 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | A | , | Acts | | | P | 25 - 5 = 20 | 25 - 10 = 15 | C | - | | Q | 23 - 8 = 15 | 23 - 7 = 16 | 25-18=7 | 25 - 25 = 0 | | R | 21 - 21 = 0 | 21-18=3 | 23 - 8 = 15 | 23-23=0 | | S | 30 - 30 = 0 | 30-22=8 | 21-12=9 | 21 - 21 = 0 | | Acts | Maximu | ım Opportunity | 30-19=11
Loss | 30 - 20 = 10 | 20 В 16 C 15 D 10 ← Minimum. The decision maker should select act D for it minimises the maximum of the opportunity losses. (iv) Laplace Criterion: In this criterion, we assign equal opportunity (or probability) to each state of nature. The decision maker selects that act which gives the maximum average pay offer. | Acts | States of Nature | | | | Average Pay Off | |------------------|------------------|-----|-----------|-----------|---------------------------------------| | | P | Q | R | S | | | Probability
A | 1/4 | 1/4 | 1/4
21 | 1/4
30 | $\frac{1}{4}[5+8+21+30]=16$ | | B SMA | 10 | 7 | 18 | 22 | $\frac{1}{4}[10+7+18+22]=14\cdot 25$ | | С | 18 | 8 | 12 | 19 | $\frac{1}{4}[18+8+12+19]=14\cdot25$ | | D | 25 | 23 | 21 | 15 | $\frac{1}{4}[25 + 23 + 21 + 15] = 21$ | The decision maker should select act D for it maximises the average pay off. (v) Hurwicz Criterion: In this criterion we determine maximum and minimum of each action and obtain weighted pay off $(P) = \alpha \times \max(1 - \alpha)$ minimum for each act. The decision maker chooses that act which gives maximum weighted pay off Here, $\alpha = 0.8$ | Acts | Maximum Pay off | Minimum Pay off | Weighted pay off $P = \alpha \max + (1 - \alpha) \min_{\alpha}$ | |------|-----------------|-----------------|---| | Λ | 30 | 5 | $30 \times \cdot 8 + 5 (1 - \cdot 8) = 25$ | | D. | 22 | 7 | $22 \times \cdot 8 + 7 (1 - \cdot 8) = 19$ | | C | 19 | - 8 | $19 \times \cdot 8 + 8 (1 - \cdot 8) = 16 \cdot 8$ | | D | 25 | 15 | $25 \times \cdot 8 + 15 (1 - \cdot 8) = 23$ | The decision maker should select act A for it maximises the value of weighted payoft (p). (2) When the pay off matrix with cost data is given: When we are given pay off matrix with cost data, then the reverse criterion Minimax and Minimin are used to decide the best course of action by a decision maker. The following example illustrate the uses of these criteria for solving such decision matrix with cost data: Example 3. A decision matrix with cost data is given below: | Acts | | States o | f Nature | | |----------------|-------|----------|----------------|----| | | S_1 | S_2 | S ₃ | S4 | | A1 | 1 | 3 | 8 | 5 | | A2 - | 2 | 5 | 4 | 7 | | A ₃ | 4 | 6 | 6 | 3 | | A | 6 | 8 | 3 | 5 | Find the best act using (i) Minimax criterion; and (ii) Minimin criterion. Solution. (1) Minimax criterion: In this criterion, the decision maker selects the act which minimise the maximum costs. | Acts | Row Maximum Values | |-------|--------------------| | A_1 | 8 | | A_2 | . 7 | | A3 . | 6 ← Minimum | | | | A_4 8 The decision maker should select act A_3 by using Minimax criterion. (ii) Minimin Criterion: In this criterion, the decision maker selects the act which | Act | Row Minimum Values | |-------|--------------------| | A_1 | 1 ← Minimum | | A_2 | 2 | | A_3 | 3 | | A_4 | 3 | minimise the minimum values. The decision maker should select act A_1 by using Minimin criterion. galistical Decision Theory EXERCISE - 1 Suppose that a decision maker faced with three decision alternature construct the following pay off table: | a ₁ | 16 | S2 | and and and | 1 four states o | |------------------|----|----|-------------|-----------------| | . a ₂ | 13 | 10 | 53 | | | a2. | 11 | 12 | 12 | - 34 · | Assume the four states of nature, find the decisions to be recommended under each of the following criteria: (i) Maximin; (ii) Maximax and (iii) Minimax Regret. [Ans. (i) Are Regret. [Ans. (ii) Are Regret. [Ans. (iii) Are The Conditional pay off for each event is given below: Pay off Pay off | Alternative | | States of Nature | |----------------|------------------|----------------------------------| | | E ₁ . | (Possible Event) | | A ₁ | - 2 | -3 E ₃ E ₄ | | A ₂ | -1 | 0 4 3 | | A_3 | - 3 | -4 6 7 | Determine which alternative should be chosen if he adopts - (i) Maximin criterion (or Wald's criterion) - (ii) Maximax criterion - (iii) Minimax regret criterion (Savage criterion) - (iv) Laplace criterion [Ans. (i) Act A_2 (ii) Act A_3 (iii) Act A_2 (iv) Act A_2 Construct the opportunity loss (or regret) table and find the best act using minimum regret criterion from the following pay off table: | Acts/States of Nature | .S ₁ . | S2 | S ₃ . | S ₄ | |-----------------------|-------------------|----|------------------|----------------| | A_1 | .5 | 0 | 8 | - 2 | | A ₂ | ₹3 | 9 | -1 | 4 | | A ₃ | - 7 | 6 | 12 | ,10 | 4. A decision matrix with cost data is given below: | | Pay off | table | Sa | |-----------------------|---------|-------------------------------|-----| | Acts/States of Nature | S_1 | S ₂ 8 ₃ | 5 | | A_1 | 4 | 7 8 | 1 | | A ₂ | 3 | 2 3 | . 6 | | A ₂ | Q | 5 | | **TEALOR and the remainst CITELDAL**. [Ans. (i) A_1 is the best act (ii) A_2 is the best act) Find the best act using (i) Minimax criterion and (ii) Minimin criterion. 5. Suppose that a decision maker with three decision alternatives and four states of nature ofit pay off table : | Acts/States of Nature | s_1 | S ₂ | S_3 | S | |-----------------------|-------|----------------|-------|----------| | Aı | 14 | 8 | 10 | VI 130 5 | | A2 | 11 | 10 | 7 | 7 | | Az | 9 | 12 | 13 | 1 | Assume that the decision maker has no knowledge about the probabilities of occurrence of the four states of nature, find the decision to be recommended under each of the following criterion: (i) Maximin, (ii) Maximax and (iii) Minimax Regret [Ans. (i) A_3 is the best act, (ii) A_1 is the best act (iii) A_3 is the best act] 6. Find the best act by Hurwicz criterion from the following pay off table. Pay off Table | | I uy ou | ubic | 100 | THE RESERVE | |-----------------------|---------|----------------|----------------|-------------| | Acts/States of Nature | S_1 | S ₂ | S ₃ | S4 . | | A_1 | - 2 | - 3 | 4 | 3
| | A ₂ | - 1 | 0 | 6 | 7 | | A_3 | - 3 | - 4 | 9 | 5 | Take the coefficient of optimism $\alpha = 0.71$ [Ans. A_3 is the best act with $\alpha = 0.7$] # (2) Decision Making Under Risks with Probability In this case, the decision maker developed good probability estimates for the different states of nature. The following two criteria are usually adopted in decision making under risks with - (1) Expected Monetary Value (EMV) Criterion - (2) Expected Opportunity Loss (EOL) Criterion - (3) Expected value of Perfect Informations (EVPI) - (1) Expected Monetary Value (EMV) Criterion: This criterion requires the calculation of expected monetary value (EMV) of each act which is obtained by multiplying the conditional pay offs for that act by the assigned probabilities of various states of nature. The decision maker selects that act that yields the highest EMV. The Expected Monetary Value (EMV) for a course of action X is given by : EMV $(X) = p_1 X_{11} + p_2 X_{21} + p_3 X_{31}$ where, X_{11} , X_{21} and X_{31} denote pay off of act X for S_1 , S_2 and S_3 event or states of nature and p_1 , p_2 and p_3 denote the probability of occurrence of S_1 , S_2 , S_3 event (or states of nature). The calculation of EMV consists of following steps : - (i) Construct a pay off table listing the alternative course of action and the various states of nature, if not given. Enter the conditional profit for each decision act-event combination along with the associated probailities. - (ii) Calculate the EMV for each decision act (or alternative) by multiplying the conditional profit by assigned probabilities and adding the resulting conditional values. glatistical Decision Theory jistican (jii) Select the act (or alternative) that yields the highest EMV. galistic (ii) Select the act (or alternative) that yields the highest EMV. 261 (ii) Select the act (or alternative) that yields the highest EMV. (2) Expected Opportunity Loss (EOL) Criterion: An alternative criterion (to maximising EMV proach) is to minimise expected opportunity loss (EOL), Expected opportunity loss for expected value of regrets) represents the amount by which maximum possible portunity loss for expected value of possible actions. The course of action that minimises these losses or reduced under or internative and actions and the reduced under or internative and actions is the conditional opportunity loss for that act by the sagined probabilities of various EOL (X) = $p_1L_{11} + p_2L_{21} + p_3L_{31}$ and L_{31} denote opportunity loss of 20 V. and 20 is given by: Where, L_{11} , L_{21} and L_{31} denote opportunity loss of at X for S_1 , S_2 and S_3 event or states of S_1 , S_2 , and S_3 event or states of Where, L_{11} , L_{21} and L_{31} denote the probability of occurrence of S_1 , S_2 and S_3 event or states of nature and p_1 , p_2 and p_3 denote the probability of occurrence of S_1 , S_2 and S_3 event (or states of Procedure : The calculation of EOL consists of the following steps: - The calculation of a conditional pay off table for each act-event combination, if not given along with the associated probailities. - with the associated probabilities. (2) For each event (or states of nature) determine the conditional opportunity loss (EOL) by subtraction the pay off from the maximum pay off for that event (or states or nature). (3) Calculate the expected opportunity loss (EOL) for each decision alternative (or act) by multiplying the conditional loss by the associated probability and then adding the values. (4) Select the alternative (or act) that yields the lowest EOL. - Note: EOL criterion is similar to EMV criterion except the opportunity losses are considered instead of profits. (3) Expected Value of Perfect Information (EVPI): Under this ceriteion, it is assume that the (3) Expected Value or Perrect Information (EVPI): Under this centeion, it is assume that the decision maker has authentic and perfect information about the future. With perfect information, the retailer (decision maker) would know in advance the demand for each day and will store the eact number as per demand. The expected value of perfect information (EVPI) is the difference between expected pay off with perfect information (EVPI) and expected pay off with uncertainted for EMM 2000. or EMV of Best Action). Symbolically: EVPI = EPPI - EMV of Best Action Where, EPPI = (Best pay off for 1st state of nature × probability of 1st state of nature) + (Best pay off for 2nd state of nature × probability of 2nd state of nature) +...+(Best pay off last state of nature × probability of 2nd state of nature) APPLICATIONS OF DECISION-MAKING UNDER RISKS The applications of decision making under risks with probability are studied under the lowing head. (1) When the conditional pay off matrix with profit data is given. (2) When the conditional pay off matrix with profit data is not given. (2) When the conditional pay off matrix with profit data is not given (1) When the conditional pay off matrix with profit data is not given (1) When the conditional pay off matrix with profit data is given (1) When the conditional pay off matrix with profit data is not given. When we are given distinct the conditional pay off matrix with profit data is given: When we are given distinct profit data is given: When we are given distinct profit data is given: When we are given distinct profit data is given: When we are given distinct profit data is given: When we are given distinct profit data is not given. onditional pay off matrix with profit data is given: When we are grown difficult profit table for different acts and the various states of nature along with the associated probabilities, the uses of EMV criterion and EOL criterion can be illustrated by the following tangles: Pay offs of three acts A,B and C and the states of nature P, Q and R are given | low: | | Acts | | |------------------|------|-------|-------| | States of Nature | Α . | В | С | | | - 35 | 120 | - 100 | | P | 250 | - 350 | 200 | | Q | 550 | 650 | 700 | The probabilities of the states of nature are 0.5, 0.1 and 0.4 respectively. Tabulate the Expected Monetary Values for the above data and state which can be chosen as the best act. Solution. | States of | Probability | | Pay off (Rs.) | | |-----------|-------------|------|---------------|-------| | Nature | | A | В | C | | D | 0.5 | - 35 | 120 | - 100 | | 0 | 0.1 | 250 | - 350 | 200 | | R | 0.4 | 550 | 650 | 700 | The expected monetary value (EMV) for the acts A,B and C are calculated below: EMV for (A) = $(0.5) \times (-35) + (0.1) \times (250) + (0.4) \times (550)$ = -17.5 + 25 + 220 = 227.5 EMV for (B) = $(0.5) \times (120) + (0.1) (-350) + (0.4) (650)$ = 60 - 35 + 260 = Rs. 285EMV for (C) = (0.5) × (-100) + (0.1) × (200) + (0.4) × (700) =-50+20+280 = Rs. 250 Since, the Act B yields the highest EMV of Rs. 285, Act B can be chosen as the best act. Given the following pay off matrix: Example 5. | ven the fond | wing pay on ma | ur. | | 7 -211 17051931 | |--------------|----------------|-------|-------|------------------| | States of | Probability | | Acts | THE PARTY OF THE | | Nature | , | X | Y | Z | | P | 0.3 | - 120 | - 80 | 100 | | Q | 0.5 | 200 | 400 | - 300 | | D | 0.2 | 260 | - 260 | 600 | Using the Expected Monetary Values, decide which act can be chosen as the Solution. | States of | Probability | | Acts | and the | |-----------|-------------|--------|----------------|---------| | Nature | | X | Y | Z | | P | 0.3 | - 120 | - 80 | 100 | | Q | 0.5 | 200 | 400 | - 300 | | D | 1 | 140000 | I - Wasan Bull | 600 | Statistical Decision Theory ision The expected monetary value (EMV) for different acts X, Y and Z are calculated below: Similarly, value (EMV) for different acts X, Y and Z are calc. EMV for $(X) = 0.3 \times (-120) + (0.5)(200) + (0.2)(260)$ = -36 + 100 + 52 = 116EMV for $(Y) = (0.3) \times (-80) + (0.5) \times (400) + (0.2) (-260)$ = -24 + 200 - 52 = 124EMV for (Z) = $(0.3) \times (100) + (0.5) \times (-300) + (0.2) \times (600)$ Since, EMV for Act Y is maximum, Act Y may be selected to be the best act under V criterion. Example 6. A management is faced with the problem of choosing one of three products for manufacturing. The potential demand for each product may turn out to be good, estimated as follows: | Product
X
Y | 0.70
0.50 | Moderate
0·20 | Poor
0·10 | |------------------------------|--------------------------|---------------------|------------------------------------| | Z | 0.40 | 0-30
0-50 | 0.20 | | The estimated pro
Product | fit or loss under
Rs. | the three states of | 0·10
f demand may be taken as : | Rs. X 30,000 20,000 10,000 60,000 30,000 20,000 40,000 10,000 (-) 15,000 (Loss) Calculate the expected monetary value and advise the management about the choice of the product to be manufactured. The given data is rewritten in the form of the fall | States of Nature | - 11 | The B | xpected pay | off ('000 R | s.) | | |------------------|------|-------|-------------|-------------|------|------| | DE STREET | | | 1 | 1 | | Z | | Lot beloding of | р | X | p | Y | p | Z | | Good | 0.70 | 30 | 0.50 | 60 | 0.40 | 40 | | Moderate | 0.20 | 20 | 0.30 | 30 | 0.50 | 10 | | Poor | 0.10 | 10 | 0.20 | 20 | 0-10 | - 15 | The expected monetary value (EMV) for different acts X, Y and Z are calculated as: EMV for $(X) = (0.70) \times (30) + (0.20) \times (20) + (0.10) \times (10)$ = 21 + 4 + 1 = Rs. 26 $= \angle 1 + 4 + 1 = 185.20$ EMV for (Y) = $(0.50) \times (60) + (0.30) \times (30) + (0.20) \times (20)$ =30+9+4=Rs.43= 30 + 9 + 4 = RS, 43 EMV for $(Z) = (0.40) \times (40) + (0.50) \times (10) + (0.10) \times (0.15)$ Since, the expected value of product Y is highest, the management is advised to produce product Y. Calculate the expected opportunity loss (EOL) from the following pay off table Example 7. | hence decide Willen | | A | cts | | |------------------------------|-----|-----|------
------| | States of Nature
(Events) | A | В | С | D | | (Litering) | 50 | 20 | - 10 | - 20 | | S ₁ | 120 | 50 | 200 | 300 | | S ₂ | 200 | 240 | 400 | 350 | The probabilities of the states of nature are 0.2, 0.5 and 0.3 respectively. First of all, we construct the opportunity loss table from the given pay off table : Solution. Opportunity loss (or Regret) Table States of Nature A B 50 - 50 = 0 50 - 20 = 30 50 - (-10) = 60 50 - (-20) = 70 300 - 120 = 180 300 - 50 = 250 300 - 200 = 100 300 - 300 = 0 400 - 200 = 200 400 - 240 = 160 400 - 400 = 0 400 - 350 = 50 vritten in the form of the following table: | States of | Probability | | A | cts | | |-----------|-------------|-----|-----|-----|------| | Nature | | A | В | C | D | | C. | 0.2 | 0 | 30 | 60 | . 70 | | S- | 0.5 | 180 | 250 | 100 | 0 | | 52 | 0.3 | 200 | 160 | 0 | -50 | Expected Opportunity Loss (EOL) for the four acts are calculated below: EOL for $(A) = (0.2) \times (0) + (0.5) \times (180) + (0.3) \times (200) = 150$ EOL for (B) = $(0.2) \times (30) + (0.5) \times (250) + (0.3) \times (160) = 179$ EOL for $(C) = (0.2) \times (60) + (0.5) \times (100) + (0.3) (0) = 62$ EOL for $(D) = (0.2) \times (70) + (0.5) \times (0) + (0.3) \times (50) = 29$ Since, EOL is minimum for Act D, Act D may be selected to be the best act according to EOL criterion. A group of students raises money each year by selling souvenirs outside the stadium after a cricket match betwen Teams A and B. They can buy any of the three different types of souvenirs from a supplier. Their sales are mostly dependent on which team win the match. A conditional pay off table is as under: Example 8. | Teams | | Type of Souvenir | | |----------------------------|---------------------|--------------------|----------------------| | | I | II | III | | Team A wins
Team B wins | Rs. 1200
Rs. 250 | Rs. 800
Rs. 700 | Rs. 300
Rs. 1,100 | (i) Construct the opportunity loss table, (ii) Which type of souvenir should the students buy if the probability of team A's winning is 0.6? (iii) Find out the cost of uncertainty. of uncertainty. Statistical Decision Theory (i) The required opportunity loss table is | Opport | funity loss told | 265 | |--------------------------------|--|-----| | Team Wins
(State of Nature) | tunity loss table (or Regret table) Type of Souvenir (Acts) | 240 | | A | 1200 – 1200 = 0 II | | | В | 11100 - 250 - 05- 1400 - 900 | | | i) Since, the proba | ability that Team 4 | 900 | (ii) Since, the probability that Team A wins is 0.6, therefore, the probability that Team B wins = 1-0.6=0.4. Team B With 1 - 1 = 0.00 With the probabilities 0.6 and 0.4 for the teams A and B to win, | Probability | to win, the given data | |-------------|------------------------| | 0.6 | 1 11 | | 0.4 | 0 III
850 400 900 | | | 0.6 | The expected opportunity loss for the three acts I, II & III are calculated as below: EOL (I) = $0.6 \times 0 + 0.4 \times 850 = \text{Rs.} 340$ EOL (II) = $0.6 \times 400 + 0.4 \times 400 = \text{Rs.} 400$ EOL (III) = $0.6 \times 900 + 0.4 \times 0 = \text{Rs}.540$ Since, the EOL for Type I is minimum, hence the students should buy Type I souvenir. (iii) If there is certainty for a team to win, then there would be no opportunity loss and EOL would be zero. Hence, the cost of uncertainty is Rs. 340. # EXERCISE - 2 The pay offs (in Rs.) of three acts A₁, A₂ and A₃ and the possible states of nature S₁, S₂ and S₂ are given below: | States of Nature | | Acts | | |--|------------------|------------------|-------| | Addition of the State St | . A ₁ | . A ₂ | A_3 | | S_1 | - 20 | - 50 | 200 | | S ₂ | 200 | - 100 | - 50 | | C | | 400 - | 300 | The probabilities of the states of nature are 0.3, 0.4 and 0.3 respectively. Determine the optimal act using the expection principle. Calculate the Expected Monetary Values for the data given below and state which act can be chosen a constant. | as the be | est: | | | | |-----------------|-------------|---------------|----------------------|--------------------| | State of Nature | Probability | X | Pay Offs (in Rs.) | Z
5000 | | A
B | 0·4
0·4 | 2,500
2500 | 3500
3500
1500 | 2500
1000 | | C | 0.2 | 2500 | 1001 | Act 7 is the best] | A manufacturing company is faced with the problem of choosing four products to manufacture. The potential demand for each product may turn out to be good, satisfactory and poor. The probabilities estimated for each of demand are given below: | and poor. The p | Pro | babilities of Types of Dema | and | |-----------------|------|-----------------------------|------| | Product | Good | Statisfactory | Poor | | | 0.60 | 0.20 | 0.20 | | Α | 0.75 | 0.15 | 0.10 | | В | 0.60 | 0.25 | 0.15 | | С | 0.50 | 0.20 | 0.30 | The estimated profit or loss under different states of demand in respect of each product | De taken as . | Rs. | Rs. | Rs. | |---------------|--------|--------|-----------| | Product | 40,000 | 10,000 | 1,100 | | A | 40,000 | 20,000 | (-) 7,000 | | В | 50,000 | 15,000 | (-) 8,000 | | C | 40,000 | 18,000 | 15,000 | Calculate the expected monetary value for different products and advice the company about the choice of the product to manufacture. [Ans. The company should manufacture the product C] Given the following pay off matrix: | | Probability | | Decision | 1 | |-----------------|-------------|---------------------------------|--------------------------|------------------------------------| | State of Nature | Hobabiny | Do not Expand (A ₁) | Expand 200 units (A_2) | Expand 400 units (A ₃) | | High demand | 0.4 | 2,500 | 3,500 | 5,000 | | Medium demand | 0.4 | 2,500 | 3,500 | 2,000 | | Law Jamand | 0.2 | 2,500 | 1,500 | 1,000 | What should be the decision if we use (i) EMV criterion, (ii) The minimax criterion, (iii) The maximax crtierion, (iv) Minimax regret criterion. maximax criterion, (iv) Minimax regret criterion. [Ans. (i) Act A_3 (ii) Act A_3 (iii) Act A_2 or Act A_3 5. A group of volunteers of a service organisation raises money each year by selling gift articles outside the stadium after a cricket match between teams X and Y. They can buy any of three types of gift articles from a dealer. Their sales are mostly dependent on which leam wins the match. A conditional pay off table is as under: | Teams | | Type of gift articles | | |--------------|----------|-----------------------|---------| | | I | п | III | | Teams X wins | Rs. 1000 | Rs. 900 | Rs. 600 | | Teams Y wins | Rs. 400 | Rs. 500 | Rs. 800 | (i) Construct the opportunity loss table. galistical Decision Theory which type of gift articles should the volunteers buy if the probability of Team X's out the cost of uncestability. Out the cost of uncestability. [Ans. (i) $\begin{bmatrix} 0 & 100 & 400 \\ 400 & 200 & 0 \end{bmatrix}$ (ii) The volunteers should buy type I gift articles (ii) Cost of uncertainty = Re. 80) (b) When the conditional pay-off matrix is not given: When we are not given the probability distribution of demand is known, we first construct pay off the alternative actions (or acts) and the various states of nature and also write the associated probability of the states of nature. The use of EMV criterion in such problem can be illustrated by the following examples. A baker produces a certain type of search. (iii) Cost of uncertainty = Rs. 80] A baker produces a certain type of special pastry at a total average cost of Rs. 3 and sells it at a price of Rs. 5. This pastry is produced over the weekend and is sold during the following week: such pastry being produced but not sold during a week's time are totally spoiled and have to be thrown away. According to past experience, the weekly demand for the pastries is never less than 78 or creater than 80, you are required to formulate pay off table. Example 9. greater than 80, you are required to formulate pay off table. It is clear from the problem given that the manufacture
will not produce less than This cream from than 80 pastries. Thus, there are three courses of action open to him i.e., 78, 79 and 80 pastries. The states of nature is the weekly demand for pastries. The rear are three possible states of nature i.e., demand is 78, 79 and 80 pastries. There are three possible states of nature i.e., demand is 78, 79 and 80 pastries. There the data given in the problem, we can calculate the conditional profit values for each action-event (demand) combination: We are given: Profit = 5-3 = Rs. 2 Loss = Rs. 3 Conditional Pay off = $2 \times \text{units sold} - 3 \times \text{units unsold}$ The resulting pay off is given as: | Conditional Pay off Table | | | | | | |---------------------------|------------------------------|---------------|---------------------------------|--|--| | Possible Demand (D) | Possible Purchase Action (S) | | | | | | | 78 pastries | 79 pastries | 80 pastries | | | | 78 | 156 | 156 - 3 = 153 | 156 - 16 = 150
158 - 3 = 155 | | | | 79 | 156 | 158 | 160 | | | Etample 10. Solution. A newspaper boy has the following probabilities of selling a magazine: 14 11 No. of Copies Sold: Cost of copy is 30 paise and sale price is 50 paise. He cannot return unsold copies. How many the corder? Also calculate EVPI. Copies. How many copies should he order? Also calculate EVPI. It is clear from the problem given that the newspaper boy would not purchase less than 10 copies and more than 14 copies. From the data given in the problem, we can calculate the conditional profit values for each purchase action-event (demand) combination. If CP denotes the conditional profit, S the quantity purchased and D the demands, then We are given: Profit = 50 – 30 = 20 paise Loss = 30 paise Conditional Pay off = 20 x copies sold = 30 x copies. Conditional Pay off = $20 \times \text{copies}$ sold $-30 \times \text{copies}$ unsold The resulting pay off table is given below: #### Conditional Pay Off Table | Possible | Probability | Possible Purchase A | | | Action (S) | 6.41.15(19) | |----------------------------------|-------------|---------------------|-------------------|-------------------|-------------------|-------------------| | demand (D)
(No. of
copies) | -,= | 10 copies | 11 copies | 12 copies | 13 copies | 14 copies | | 10 | 0.10 | 200 | 200 - 30
= 170 | 200 – 60
= 140 | 200-90
=110 | 200 – 120
= 80 | | 11 | 0.15 | 200 | 220 | 220 - 30
= 190 | 220 - 60
= 160 | 220 - 90
= 130 | | 12 | 0.20 | 200 | 220 | 240 | 240 - 30
= 210 | 240-60
= 180 | | 13 | 0-25 | 200 | 220 | 240 | 260 | 260 – 30
= 230 | | 14 | 0.30 | 200 | 220 | 240 | 260 | 280 | Expected Monetary Value (EMV) can now be computed by multiplying the probability of each state of nature with the conditional profit value and adding the resulting products. EMV (10 copies) $=0.10\times200+0.15\times200+0.20\times200+0.25\times200+0.30\times200=$ Rs. 200 EMV (11 copies) $=0.10 \times 170 + 0.15 \times 220 + 0.20 \times 220 + 0.25 \times 220 + 0.30 \times 220 = \text{Rs.} 215$ EMV (12 copies) $= 0.10 \times 140 + 0.15 \times 190 + 0.20 \times 240 + 0.25 \times 240 + 0.30 \times 240 =$ Rs. 222.5 EMV (13 copies) $=0.10 \times 110 + 0.15 \times 160 + 0.20 \times 210 + 0.25 \times 260 + 0.30 \times 260 = 220$ EMV (14 copies) $= 0.10 \times 80 + 0.15 \times 130 + 0.20 \times 180 + 0.25 \times 230 + 0.30 \times 280 = 205$ From the above calculations, we see that the highest value of EMV is Rs. 222-50 which corresponds to the new terms of the results of the second seco which corresponds to the purchase of 12 copies. Hence, by EMV criterion, the newspaper boy should order for 12 copies of magazine as it gives maximum expected value. Calculation of EVPI: From the above table, we notice the following: Best pay off for the 1st state of nature $S_1 = 200$, $P(S_1) = 0.10$ Statistical Decision Theory Best pay off for the 2nd state of nature $S_2 \approx 220$, $P(S_2) \approx 0.15$ Best pay off for the 3rd state of nature $S_3 \approx 240$, $P(S_2) \approx 0.15$ Best pay off for the 4th state of nature $S_3 \approx 240$, $P(S_3) \approx 0.20$ Best pay off for the 5th state of nature $S_4 \approx 260$, $P(S_3) \approx 0.20$ EPPI = $200 \times 0 \cdot 10 + 220 \times 0 \cdot 15 + 240 \times 0 \cdot 20 + 260 \times 0 \cdot 25 + 280 \times 0 \cdot 30$ = 20 + 33 + 48 + 65 + 84 = 250= 20 + 30 + 30 + 30 + 30 + 03 + 20 EVPI = EPPI - EMV of Best Act = 250 - 222.50 = Rs. 27.50 269 Example 11. A physician purchases a particular vaccine on Monday for each week. The vaccine must be used within the week following, otherwise it becomes worther the past 50 weeks, the physician has administered the vaccine in the following. | Doses per week : | 20 | | acente II | n the followin | |--------------------|--------|----|-----------|----------------| | No. of weeks : | 5 | 25 | 40 | | | Determine how many | dosert | 15 | 25 | 60 | doses the physician should buy every week. solution. Here, number of doses of the vaccine purchased is an act and weekly demand of the vaccine is an event (or state of nature). As per given information, the physician must not purchase less than 20 or more than 60 doses per week. It is also given that each dose of vaccine administrated within a week yields a profit of Rs. (4–2) = 0.2, and otherwise, it is dead loss of Rs. 2. We are given: Profit = 4-2 = Rs. 2 Loss = Rs. 2 Conditional Pay off=2×units sold-2×units unsold The resulting conditional pay off table is gi | Event (demand Probabili per week) D | | Probability Act | | per week) - | S | |-------------------------------------|-----------------------|-----------------|--------------|--------------|---------------| | Fer Week, D | AT 100 0. | 20 | 25 | 40 | 60 | | 20 | $\frac{5}{50} = 0.1$ | 40 | 40 - 10 = 30 | 40 - 40 = 0 | 40 - 80 = - 4 | | 25 | $\frac{15}{50} = 0.3$ | 40 | 50 | 50 - 30 = 20 | 50 - 70 = - 2 | | 40 | $\frac{25}{50} = 0.5$ | 40 | 50 | 80 | 80 - 40 = 20 | | 60 | $\frac{5}{50} = 0.1$ | 40 | 50 | 80 | 120 | The expected monetary value (EMV) can now be computed as: EMV (20) = $0.1 \times 40 + 0.3 \times 40 + 0.5 \times 40 + 0.1 \times 40 = \text{Rs.} 40$ EMV (25) = $0.1 \times 30 + 0.3 \times 50 + 0.5 \times 50 + 0.1 \times 50 = Rs.48$ EMV (40) = $0.1 \times 30 + 0.3 \times 20 + 0.5 \times 80 + 0.1 \times 80 = \text{Rs.}54$ EMV (60) = $0.1 \times 0 + 0.3 \times 20 + 0.5 \times 80 + 0.1 \times 120 = \text{Rs.} 22$. Since, the purchase 40 doses yields the highest EMV of Rs. 54, the optimal act for the physician would be to purchase 40 doses of the vaccine per week. EMV for Items that have a Salvage Value: EMV for Items that have a Dalvage value: In the discussion so far it has been assumed that the product being stocked (or purchased) was completely worthless if not sold on the same day. This assumption that the product has no salvage, is not always realistic. If the product does a salvage value, then it must be considered in calculating profits for each stock action. An ice-cream retailer buys ice-cream at a cost of Rs. 5 per cup and sells it for Rs. 8 per cup; any remaining unsold at the end of the day can be disposed off as a salvage price of Rs. 2 per cup. Past sales have ranged between 15 and 18 cups per day. The following is the record of sales: | unj. | - | | | | |--------------|------|------|------|------| | Cups Sold: | 15 | 16 | 17 | 18 | | | | 0.20 | 0.40 | 0.30 | | Probability: | 0.10 | 0.20 | 0 40 | 0.30 | Find how many cups, the retailer should purchase per day to maximise his profit. Also calculate EVPI Solution. Here, number of cups of ice-cream purchased is an act and daily demand of the ice-cream cups is an event or state of nature. We are given: Cost per cup = Rs. 5 Selling price = Rs. 8 Profit = Rs. 8 - Rs. 5 = Rs. 3 (if sold) Disposal selling price = Rs. 2 (if unsold) Loss = Rs. 5 - Rs. 2 = Rs. 3 Now, the various conditional profit (pay off) values for each act-event combination are given by: Conditional Pay off = $2 \times \text{units sold} - 3 \times \text{units unsold}$ The resulting conditional pay offs are given below: Conditional Pay off (Rs.) | Conditional and on (20) | | | | | | | |-------------------------|-------------|----|-----------------|-----------------|-----------------|--| | Event | Probability | | Act (pur | chase per week | | | | (demand per
week) D | | 15 | 16 | 17 | 18 | | | 15 | 0.10 | 45 | 45 - 3 (1) = 42 | 45 - 3 (2) = 39 | 45 - 3 (2) = 36 | | | 16 | 0.20 | 45 | 48 | 48 - 3 (1) = 45 | 48 - 3(2) = 42 | | | 17 | 0.40 | 45 | 48 | 51 | 51 - 3 (1) = 48 | | | 10 | 0.00 | 45 | 10 | 51 | 54 | | The expected monetary values for different acts are computed as: EMV (15) = $0.10 \times 45 + 0.20 \times 45 + 0.40 \times 45 + 0.30 \times 45 = \text{Rs.} 45.00$ EMV (16) = $0.10 \times 42 + 0.20 \times 48 + 0.40 \times 48 + 0.30 \times 48 = \text{Rs.} 47.40$ EMV (17) = $0.10 \times 39 + 0.20 \times 45 + 0.40 \times 51 + 0.30 \times 51 = \text{Rs.} 48.60$ EMV (18) = $0.10 \times 36 + 0.20 \times 42 + 0.40 \times 48 + 0.30 \times 54 = \text{Rs. } 47.40$ Since, the act 'purchase 17 cups' yields the highest EMV of Rs. 48-60, the optimal cat for the retailer would be to purchase 17 cups of ice-crosms. Calculation of EVPI: From the above table, we notice the following: Best pay off for the 1st state of nature $S_1 = 45$, $P(S_1) = 0.10$ Best pay off for the 2nd state of nature $S_2 = 48$, $P(S_2) = 0.10$ Best pay off for the 3rd state of nature $S_2 = 48$, $P(S_2) = 0.20$ Best pay off for the 4th state of nature $S_2 = 48$, $P(S_2) = 0.20$ EPPI = $45 \times 0.10 + 48 \times 0.20 + 51 \times 0.40 + 54 \times 0.30$ = $4 \cdot 5 + 9 \cdot 6 + 20 \cdot 4 + 16 \cdot 2 = Rs.50.7$ Statistica. EVPI = EPPI – EMV of Best Act = 50.7 – 48.60 = Rs. 2.1 Each unit of a product and sold yields a profit of Rs. 2.1 not sold results in a loss of Rs. 30. The probability distribution of the number of units demanded is as follows: Example 13. | 0 | - Lace | Probability | |---|--------|-------------| | 1 | | 0.20 | | 2 | | 0-20 | | |
 0.25 | | 1 | | 0.30 | | • | | 0.50 | How many units be produced to maximise the expected profits? Also calculate Solution. Here the number of units produced is an act and the demand of the units is an event or state of nature. We are given: Profit per unit = Rs. 50 Loss per unit = Rs. 30 The various conditional profit (pay off) values for each act - event combination are Conditional Pay off = 50 × units sold - 30 × units unsold | Event | Proba- | | | Acts (Prod | uction) | | |----------|--------|---|-----------------|------------------|--------------------------------|---------------------------------| | (demand) | bility | 0 | 1 | 2 . | 3 | 4 | | 0 | 0.20 | 0 | 0 - 30(1) = -30 | 0-60=-60 | 0-90=-90 | 0-120 = -120 | | 1 - | 0.20 | 0 | 50 | 50 - 30 (1) = 20 | 50 - 60 = -10
100 - 30 = 70 | 50 - 90 = - 40
100 - 60 = 40 | | 2 | 0.25 | 0 | 50 | 100 | 150 | 150 - 30 (1) = 1 | | 3 | 0.30 | 0 | 50 | 100 | 150 | | | 4 | 0.50 | 0 | 50 | 100 | 150 | 200 | The expected monetary value for different acts are computed as: EMV (0) = $0.20 \times 0 + 0.20 \times 0 + 0.25 \times 0 + 0.30 \times 0 + 0.05 \times 0 = 0$ EMV (1) $EMV(1) = 0.20 \times 0 + 0.20 \times 0 + 0.25 \times 0 + 0.30 \times 0 + 0.40 \times 0 = 0.50 \times 0 + 0.20 \times 0 + 0.20 \times 0 + 0.20 \times 0 = 0.20 \times 0 + 0.20 \times 0 = =$ EMV (4) = $0.20(-120) + 0.20(-40) + 0.25 \times 40 + 0.30 \times 120 + 0.5 \times 200 = Rs.114$ Since, highest EMV is Rs. 137, it is optimal to produce 2 units. (ii) The expected value of perfect information (EVPI) is the difference between the expected pay off with perfect information (EVPI) and the maximum expected pay off (Max. EMV) with no additional information i.e. EVPI = EPPI - EMV of the Best Action EDDI is determined as below : | Event (1) | Prob. (2) | Best Pay off under perfect
information (3) | Expected pay off Under
PI (2×3) | |-----------|-----------|---|------------------------------------| | 0 | 0-20 | 0 | 0 | | 1 | 0.20 | 50 | 10 | | 2 | 0.25 | 100 | 25 | | 3 | 0.30 | 150 | 45 | | 4 0.50 | 200 | 100 | | | 4 | 7 | 147 94 4 | Total = 180 | Note: Best Pay off under PI is the max. pay off under each event (or state of nature). The expected value of perfect information is EVPI = EPPI – EMV of Best Actio = 180 - 137 = 43. ## EXERCISE - 3 A newspaper vendor has to decide how many copies of a particular magazine he should buy for the month of Nov. Each magazine costs Rs. 5 and sells for Rs. 10. At the end of the month unused magazine has no value. The probability distribution to demand is given | pelow: | | 11 | 12 | |-------------------------|-----|------|-----| | No. of Copies Demanded: | 10 | - 11 | 12 | | Probability: | 1/3 | 1/3 | 1/3 | Construct a pay off table. According to EMV criterion, how many copies should be stock? [Ans. 10 copies] 2. A proprietor of a food stall has introduced a new item of food delicacy to which he calls Whim. He has calculated that the cost of manufacture is Rs. 1 per piece and sold at Rs. 3 per piece. It is however perishable goods and any goods unsold is a dead loss. The probability | No. of Pieces Demanded : | 10 | 11 | 12 | 13 | 14 | 15 | |--------------------------|-----|-----|-----|-----|-----|-----| | Probability : | -07 | -10 | -23 | -88 | -12 | .10 | How many pieces should be manufacture so that net profit expected is maximum. [Ans. 13 pieces] galistical Decision Theory A retailer purchases berries every morning at Rs. 5 a case and sells for Rs. 8 a case. Any case remaining unsold as the end of the day can be disposed off the next day at a case. Any A retailer purchases bernes every morning at Rs. 5 a case and sells for Rs. 8 a case. Any case remaining unsold as the end of the day can be disposed off the next day at a salvage value of Rs. 2 per case (there after they have no value). Past sales have ranged from 15 to 18 No. of days: 12 Find how many cases the retailer should purchase per day to maximise his profit. 4. A news paper distributor assigns probabilities to the demand for a magazine as follows: 1. 2. Propanded: [Ans. 17 units] Probability: 0.4 0.3 A copy of magazine selles for Rs.7 and costs Rs 6. What can be maximum possible expected A copy of magazine occurred to the distributor can return the unsold copies for Rs. 5 each? Also [Ans. EMV = Rs. 120, EVPI = 0.80] Find EVF1. [Ans. EMV = Rs. 120, EVPI = 0.80] Each unit of a product produced and sold yields a profit of a Rs. 50 if a unit produced but not sold results in a loss of Rs. 30. The probability distribution of the no. of units demanded is as follows: | No. of units demanded : | 1 | . 3 | 5 | |-------------------------|-----|-----|-----| | Probability: | 0-6 | 0-3 | 0.1 | How many units be produced to maximise the expected profits. Also calculate EVPI. [Ans. (a) 3 units (b) EVPI = Rs. 46] A fruit wholesaler buys cases of strawberries for Rs. 200 each and sells them for Rs. 500 each. Any case left would at the end of the day have a salvage value of only Rs. 50. In analysis of past sales record reveals the following probability distribution for the daily number of cases sold: | Daily Sales | Probability | |-------------|-------------| | 10 | 0.15 | | 11 | 0.20 | | 12 | 0.40 | | mary = 13 | 0.20 | (i) What is the optimum stock action for the fruit seller? [Ans. (i) 11 units (ii) Rs. 42.50] (ii) Also calculate EVPI for the same. DESISION TREES Decision making involves several stages and at each stage, each of the choices open will result in a different payoff. For the sake of simplicity, these stages can be represented by an alternative is also known as decision listing out all events and the resultant outs comes. The tree diagram to the stage of the sake of simplicity, these stages can be represented by an alternative is also known as decision because the sake of simplicity, these stages can be represented by an alternative in a stage of the sake of simplicity, these stages can be represented by an alternative in a stage of the sake of simplicity. The sake of simplicity is a stage of the sake of simplicity in a sake of simplicity in a sake of simplicity in a sake of simplicity. remod called tree formation listing out all events and the resultant outs comes. The tree cargain is also known as **decision tree**. A decision tree is a graphic device of a decision making process. It is of nodes, branches, probabilities and the resultant pay-offs. Decision trees have standard to the resultant pay-offs. symbols. Square indicates a decision node. These are a number of branches leading from the square. These branches indicate various courses of action available to the decision maker. At the square. These branches indicate various courses of action available to the decision maker. At the square free horizontal probability estimates. The result outcomes emerge out of the chance node with their associate probability estimates. The net result of each outcome is indicated against each circle. The branches that are drawn from the decision node are named as decision branches while the branches drawn from chance node are named as chance branches. Following diagram gives the structure of the decision tree. Sepecimen of a decision Tree The following example illustrate the application of decision tree. Example: An organisation has two packaging machines : old and new. The new machine is more efficient if the materials are of good quality, on the other hand the old machine performs better if the materials are of poor quality. The following information are given: (i) 80% materials have been of good quality and 20% of poor quality. (ii) The profit position is as under: (a) Using old machine | —If the materials are good | | Rs. 2000 | |----------------------------|--------|----------------| | —If the materials are poor | LIFE I | Rs. 1600 | | (b) Using new machine | | res 217 d ovel | | —If the materials are good | | Rs. 2.400 | —If the materials are poor Rs. 800 Use a decision tree to decide which machine should be used under the condition that the quality of material is not known at this stage. Statistical Decision Theory Expected profit for old machine = $0.8 \times 2000 + 0.2 \times 1600 = Rs. 1920$ Expected profit for new machine = $0.8 \times 2400 + 0.2 \times 1600$ = Rs. 1920 Expected profit for new machine = $0.8 \times 2400 + 0.2 \times 800$ = Rs. 2080 Since, the expected profit of new machine is high, hence select new machine # QUESTIONS - 1. Explain the concept of statistical decision theory and discuss its usefulness in business - What are the elements that decision matrices usually contain? - Explain briefly the following in the context of decision theory: (a) State of Nature (b) Act - (c) Pay off Matrix (d) Minimax Regret Matrix. - 4. Explain different methods for making decision under uncertainty. OR Briefly discuss three different criteria usually adopted for decision making under uncertainty without the use of probability. Explain two different criterion usually adopted for decision making under risk with probability. Explain EMV and EOL criteria of decision making under risk. Write short notes on: (i) Laplace strategy (ii) Savage Criterion (iv) Probability Distribution to demand (iii) Wald's Strategy What do you understand by 'Decision Theory'? Describe some methods which are useful for decision making under uncertainty. Discuss the criteria. Discuss the criteria for taking decision under uncertanity with examples. What is Express. What is EVPT? How is it calculated? 11. Write a note on decision tree. # Statistical Quality Control #### INTRODUCTION INTRODUCTION In this era of every-growing competition, it has become absolute necessary for a manufacturer/ producer to keep a continuous watch over the quality of the goods produced. But due to large scale production level, it is not possible for a producer to check the quality of each and every item produced. Therefore, to control quality of the manufactured goods, the study of statistical quality created
abbrighted as SOC is very important and useful. ntrol, abbrviated as S.Q.C. is very important and useful. # MEANING OF STATISTICAL QUALITY CONTROL Statistical Quality Control (S.Q.C.) refers to the use of statistical techniques in controlling the quality of manufactured goods. It is the means of establishing and achieving quality specification, which requires use of tools and techniques of statistics. It is an important application of the theory of probability and theory of sampling for the maintenance of uniform quality in a continuous flow of manufactured products. One of major tools of S.Q.C. is the control chart first introduced by W.A. Shewhart through the application of normal distribution. # DEFINITION OF STATISTICAL QUALITY CONTROL (S.O.C.) Some important definitions of statistical quality control are given below. "Statistical quality control can be simply defined as an economic and effective system of maintaining and improving the quality of outputs throughout the whole operating process of specification, production and inspection based on continuous testing with random samples." 2. Statistical quality control should be viewed as a kit of tools which may influence decisions to the -Eugene L. Grant functions of specification, production or inspection. —Eugene L. Grant From the above definitions, the essential characteristics of S.Q.C. may be brought about as under: (i) It is designed to control quality standard of goods produced for marketing (ii) It is exercised by the producers during the production process to assess the quality of the goods, (iii) It is carried out with the help of certain statistical tools like Mean chart, Range chart, P-chart, C-chart, Sampling Inspecies. C-chart, Sampling Inspection Plans, etc. and (iv) It is designed to determine the variations in quality of the goods and limits of tolerance. # ADVANTAGES (OR BENEFITS) OF STATISTICAL QUALITY CONTROL The following are some of the advantages (or benefits) of statistical quality control: (1) It provides an objective method of controlling the quality of product during the production process. It tells the production manager at a glance whether the quality of the product is under control or not. Slatistical Quality Control - pititical Quanty (2) It provides a quick method to eliminate assignable causes of variation. By using the technique of statistical quality control, we can detect assignable causes of variation. By using the necessary remedial action can be taken avoiding them. (2) technique rechange in the change and the causes of rechange causes of rechange and the r - interpret and economical interpret and economical interpret and economical protects the interest of the consumers to construct and easy to lot of bad quality. This is also helpful to the producers by helping him to reject a probability of a good lot being rejected. - probability of a good not being rejected. The very presence of statistical quality control (S.Q.C.) in a manufacturing plant has a healthy influence on the psychology of workers and makes them quality conscious. They can be a supported by the probability of t - (6) A quality conscious manufacturing unit is able to earn the goodwill from the consumers of its product which is of immense long run value. - (7) Past data on quality control may serve as a guide for the choice of a new plant and machinery as well as technical staff. - machinery as in the machinery as the machinery as the foreast government agency on the basis of the control records. quality control records. Limitations: Despite the great significance of statistical quality control, the technique of SQC. suffers from certain limitations as under: - (i) It can not be applied indiscriminately as a panacea for all quality evils. - (ii) It cannot be used mechanically to all production process without studying their peculiar - (iii) It involves mathematical and statistical problems in the process of analysis and interpretation of variations in quality. - (iv) It provides only an information services. # CAUSES OF VARIATION IN QUALITY CHARACTERISTICS Every manufacturer / producer produces the product according to pre-determined standards. hough the product is carried out with the most sophisticated technology, some variations in the quality of products are bound to take place. For example, it is not possible that all pins, nuts or bolls produced in a factory would be exactly of the same quality. There must be some variation, however, minor it might be in the quality of the various items produced. There may be various causes of this variation. These causes are classified into the following two groups. (I) Assignable (C) - (i) Assignable Causes: These causes, as the name suggests, refer to those changes in the quality of the products which can be assigned or attributed to any particular cause like defective materials, defective labour, defective machine, etc. However, the effect of such variations can be assigned or attributed to any particular cause like defective machine, etc. However, the effect of such variations can be assigned to the product of control like SQC. - variations can be eliminated with a better system of control like SQC. Chance Chance as the eliminated with a better system of control like square as (ii) Chance Causes: These causes, as the name suggests, takes place as per chance or in a random fashion as a result of the cumulative effect of a multiplicity of several minor causes which cannot be identified. Such type of causes is inherent in every type of Production and hence it is accepted as an allowable variation in any scheme of production. Out of these two types of these two types of these two types of these two types. Out of these two types of causes, nothing can be done about the chance causes. However, graphle variations on the chance causes and the chance causes are the chance causes. on these two types of causes, nothing was specificable variations can be detected and corrected. # METHODS OF STATISTICAL QUALITY CONTROL Statistical quality control methods are applied to two distinct phases of plant operation. They are: - (1) Process control - (2) Product control (2) Product control. (1) Process control: Under the process control, the quality of the products is controlled while the products are in the process of production. The process control is secured with the technique of control charts. Control charts are used as a measure of quality control not only in the production control charts are used as a measure of quality control not only in the production. control charts. Control charts are used as a measure of quality control not only in the production process but also in the areas of advertising, packing, air line reservations, etc. Control charts ensures that whether the products confirm to the specified quality standard or not. (2) Product Control: Under the product control, the quality of the products is controlled while the product is ready for sale and despatch to the customers. The product control is secured with the technique of acceptance sampling. In acceptance sampling, the manufactured articles are formed into lots, a few items are chosen randomly and lot is either accepted on the basis of certain set of other wealthy ralled sampling. Inspection plans. rules, usually called sampling Inspection plans. Thus, process control is concerned with controlling of quality of the goods during the process of manufacturing whereas product control is concerned with the inspection of finished goods, when they are ready for delivery. #### CONTROL CHARTS The control charts are the graphic devices developed by Walter A. Shewhart for detecting unnatural pattern of variation in the production process and determining the permissible limits of variation. Control charts are the core of statistical quality control. These are based on the theory of variation. Control charts are control charts are simple to construct and easy to interpret and they tell the production manager at a glance whether or not the process is in control *i.e.*, within the tolerance limits. A control chart consists of three horizontal lines: - (1) Central Line (CL) - (2) Upper Control Limit (UCL), and - (3) Lower Control Limit (LCL) - (1) Central Line (CL): The central line is the middle line of the chart. It indicates the grand average of the measurements of the samples. It shows the desired standard or level of the process. The central line is generally drawn as bold line. - Upper Control Limit (UCL): The upper control limit is usually obtained by adding 3 sigma (3 o) to the process average. It is denoted by Mean + 3 o. The upper control limit is - generally drawn as dotted line. (3) Lower Control Limit (LCL): The lower control limit is usually obtained by subtracting 3 sigma (30) to the process average. It is denoted by Mean 3 of . The lower control limit is generally drawn as dotted line. On the basis of these three lines, a control chart is constructed. The general format of a control chart is given in the diagram below: In the control chart, the mean values of the statistics T (i.e., Mean, Range, S.D., etc.) for successive samples are plotted and often joined by broken lines to provide a visual clarity. So long as the sample points fall within the upper and lower control limits, there is nothing to worry and in such a case the variation between the complexity of the control such a case the variation between the samples is attributed to chance causes. Logic of Setting of Control Limits at ±30 Logic of Setting of Control Limits at $\pm 3\sigma$ Dr. Shewhart has proposed the 3σ limits for the control charts. From the probability, if a where, \overline{X} is the mean and σ is the standard deviation is 0.9973 which is extremely high. Thus, the words, occurrence of events beyond the limits of $\overline{X}\pm 3\sigma$, provided the events lie on a normal curve, is on the whole nearly 3 out of 1000 events are extremely remote charce under normal
curve, dicumstances. Thus, if $\pm 3\sigma$ limits are employed and the variable quality a characteristic is assumed to be normally distributed, then the probability of sample points falling outside these limits when the process is in control is very small. limits when the process is in control is very small. # Purpose and Uses of Control Charts - The control charts are useful in the following situations: - (1) It helps in determining the quality standard of the products while in process - It helps in detecting the chance and assignable variations in the quality standards of the produts by setting two control limits lines. - (3) It reveals varaitions in the quality standards of the products from the desired level. (4) It indicates whether the production process is in control or not so as to take necessary steps - for its correction. (5) Control charts are simple to construct and easy to interpret. - (6) It ensures less inspection cost and time in the process control. - (7) Control charts tell the production manager at a glance whether or not the process is in control. TYPES OF CONTROL CHARTS Control charts are of two types depending on whether a given quality or characteristics of a shutch is measurable or the state of s Modulet is measurable or not. These are: (A) Control Charts for Variables (1) Chart Control Charts for Attributes (2) R-Chart (2) np-chart (3) C-chart (3) o-Chart A. Control Charts for variables These charts are used when the quality or characteristics of a product is capable of being measured quantitatively such as gauge of a steel alimirah, diameter of a screw, tensile strength of a steel pipe, resistance of a wire etc. Such charts are of three types: (1) X-Chart (or Mean Chart) - (2) R-Chart (or Range Chart) - (3) σ-Chart (or Standard Deviation Chart) - (3) G-Chart (or Standard Deviation Chart) (1) X-Chart: This chart is constructed for controlling the variations in the average quality standard of the products in a production process. Procedure : The construction of \overline{X} -chart involves the following steps : (i) Compute the mean of each sample *i.e.*, $\overline{\chi}_1, \overline{\chi}_2, \overline{\chi}_3, ..., \overline{\chi}_k$ (ii) Compute the mean of the samples means by dividing the sum of the sample means by the Compute the mean of the samples means by dividing the sun of the samples number of samples *i.e.*, $$\overline{\overline{X}} = \frac{\overline{X}_1 + \overline{X}_2 + \overline{X}_3 \dots + \overline{X}_k}{No. \text{ of samples}} = \frac{\Sigma \overline{X}}{k} \quad \text{where, } k = \text{No. of samples}$$ This grand mean (\overline{X}) represents the Central Line (CL) . This grand mean $(\overline{\overline{X}})$ represents the Central Line (CL) (iii) Determine the control limits by using the following formula: (a) On the basis of standard deviation of the population (c) $\text{Control Limits} = \overline{X} \pm \frac{3\sigma}{\sqrt{n}}$ Control Limits $$= \overline{X} \pm \frac{3\sigma}{\sqrt{n}}$$ $$UCL = \overline{X} + \frac{3\sigma}{\sqrt{n}} \text{ and}$$ $$LCL = \overline{X} - \frac{3\sigma}{\sqrt{n}}$$ These control limits represents the upper control line and lower control line. (b) On the basis of the Quality Control Factors A2 and R MAND JOSEPHON AD STREET Control Limits = $\overline{X} \pm A_2 \overline{R}$, where, \overline{R} = Mean of the ranges $$UCL = \overline{\overline{X}} + A_2 \overline{R}$$ $$LCL = \overline{\overline{X}} - A_2 \overline{R}$$ Where, A_2 is a quality control factor whose value is obtained from the control chart table with reference to the size of the sample. gatistical Quality Control $$\overline{R} = \text{Mean of Ranges} = \sum_{N} R$$ and NConstruct the mean chart (\overline{X} -chart) by plotting the sample number on X-axis and sample X-chart. If all the sample X-chart. If all the sample X-chart. (v) CLL, LCLL and Central Line on the y-axis. mean, UCL, LCLL and Central Line on the (2) R-Chart p) R-Chart The Range Chart (R-chart) is constructed for controlling the variation in the dispersion or variability of the quality standard of the products in a production process. Procedure : The construction of R-chart involves the following steps: The constitution R = 1 - C Compute the range (R) of each sample using the formula: R = L - S L = Largest value S = Smallest value (ii) Compute the mean of ranges by dividing the sum of the samples ranges (ZR) by the where, k = No. of samples k / ' The mean of ranges (\overline{R}) represents the Central line (CL) for the R-Chart (iii) Determine the control limits by using the following formula: (a) On the basis of Quality Control Factors D_3 and \overline{D}_4 and \overline{R} : Upper control limit (UCL) = $D_4 \overline{R}$ Lower control limit (LCL) = $D_3\overline{R}$ where D_3 and D_4 are the quality control factors and their values are obtained from the control chart table with reference to the size of the sample. \overline{R} = Mean of Range (b) On the basis of Quality Control Factors D1, D2 and population standard deviation (c) $$UCL = D_2 \sigma$$ $LCL = D_1 \sigma$ where, D_1 and D_2 are the quality control factors. The value of LCL cannot be negative and in such case it would be reduced to zero. (iv) Construct the R-Chart (Range Chart) by plotting the sample number on the x-axis and Sample ranges (R), UCL, LCL and Central Line (CL) on the years. (v) Interpret the R-chart. If all the sample ranges (R) fall within the control limits, the Production Production process is in a state of control otherwise it is beyond control. Construct X-Chart and Range Chart for the following data of 5 samples with | set of 5 items :
Sample No. | | | Weights | | 111 | |--------------------------------|----|----|---------|----|-----| | 1 | 20 | 15 | 10 | 11 | 14 | | , | 12 | 18 | 10 | 8 | 22 | | | 21 | 19 | 17 | 10 | 13 | | 4 | 15 | 12 | 19 | 14 | 20 | | - | 20 | 19 | 26 | 12 | 23 | (Conversion factors for n = 5, $A_2 = 0.577$, $D_3 = 0$, $D_4 = 2.115$) Construction of \overline{X} and R Charts Solution. | Sample
No. | W | eights
sa | of Iter | ns in (X) | in each Total
Weights (ΣΧ | | $\overline{X} = (\Sigma X + 5)$ | Range $R = (L - S)$ | |---------------|----|--------------|---------|-----------|------------------------------|-----|---------------------------------|---------------------| | 1 | 20 | 15 | 10 | 11 | 14 | 70 | 14 | 10 | | 2 | 12 | 18 | 10 | 8 | 22 | 70 | 14 | 14 | | 3 | 21 | 19 | 17 | 10 | 13 | 80 | 16 | 11 | | 4 | 15 | 12 | 19 | 14 | 20 | 80 | 16 | 8 | | 5 | 20 | 19 | 26 | 12 | 23 | 100 | 20 | 14 | | K=5 | | | | | | | $\Sigma \overline{X} = 80$ | $\Sigma R = 57$ | $$\overline{\overline{X}} = \frac{\Sigma \overline{X}}{L} = \frac{80}{5} = 16$$ $\overline{R} = \frac{\Sigma R}{L} = \frac{57}{5} = 11 \cdot 6$ $\overline{\overline{X}}$ Chart $\overline{\overline{X}}$ = 16 (Central line) Control Limits UCL = $$\overline{X} + A_2 \overline{R}$$ = $16 + 0.577 \times 11.4$ $$=16 + 6.577$$ = 22.577 = 22.577 $$LCL = \overline{X} - A_2 \overline{R}$$ $$= 16 - 0.577 \times 11.4$$ $$= 16 - 6.577$$ = 9.423 galistical Quality Control As all the sample mean values fall within the control limits, the chart shows that 283 Range Chart: $\overline{R} = 11.4$ (Central Line) Control Limits: Control Limits: $UCL = D_4 \overline{R} = 2 \cdot 115 \times 11 \cdot 4 = 24 \cdot 09$ As all the range points fall within the control limits, so *R*-thart shows that the given process is in statistical control. A machine is set to deliver packet of a given weight. 10 samples of size 5 each were recorded in the data given below: Example 2. | Sample No.: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | | |-----------------------|------|----|----|----|----|----|----|----|----|----| | Mean \overline{X} : | a 15 | 17 | 15 | 18 | - | | , | 8 | 9 | 10 | | D | _ | 1/ | 13 | 18 | 17 | 14 | 18 | 15 | 17 | 16 | | Range : | 7 | 7 | 4 | 9 | 8 | 7 | 12 | 4 | 11 | 5 | Construct the Mean Chart and Range chart and comment on state of control. (Conversion Factors for n=5 are $A_2=.577, D_3=0, D_4=2.115$) Solution: |
Sample No.: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Total | |-------------|----|----|----|----|----|----|----|----|----|----|-------| | Mean X: | 15 | 17 | 15 | 18 | 17 | 14 | 18 | 15 | 17 | 16 | 162 | | Range · | 7 | 7 | 4 | 0 | 8 | 7 | 12 | 4 | 11 | 5 | 74 | $$\overline{\overline{X}} = \frac{\Sigma \overline{X}}{N} = \frac{162}{10} = 16 \cdot 2$$ Mean Chart (\overline{X} Chart) $\overline{\overline{X}} = 16 \cdot 2$ (Central Line) Control Limits $$UCL = \overline{\overline{X}} + A_2 \overline{R}$$ $LCL = \overline{\overline{X}} - A_2 \overline{R}$ =16·2--577×7·4=11·93 $=16 \cdot 2 + \cdot 577 \times 7 \cdot 4 = 20 \cdot 47$ As all the sample mean points lie within the control limits, \overline{X} -chart shows that the given process is in statistical control. Range Chart (R-Chart) $\overline{R} = 7.4$ (Central Line) **Control Limits** UCL= D_4 . \overline{R} = 2·115×7·4=15·65 LCL= D_3 \overline{R} = 0×7·45=0 RANGE CHART As all the sample range points lie within the control limits, the R-Chart shows that the given process is in statistical control. The following are the mean lengths and ranges of lengths of a finished product from 10 samples each of size 5. The specification limits for length are 200±5 cm. Construct X and R charts and examine whether the process is under control and | Sample No.: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |-----------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | Mean \overline{X} : | 201 | 198 | 202 | 200 | 203 | 204 | 199 | 196 | 199 | 201 | | Range: | 5 | 0 | 7 | 3 | 4 | 7 | 2 | 8 | 5 | 6 | Assume for n = 5, $A_2 = 0.577$, $D_3 = 0$ and $D_4 = 2.115$. Statistical Quality Control Exmaple 4. The specification limits for length are given to be 200±5 cm. Hence, mean is $CL = \overline{\overline{X}} = 200.$ UCL = $\overline{\overline{X}} + A_2 \overline{R}$, where $\overline{R} = \frac{\Sigma R_1}{10} = \frac{47}{10} = 47$. $UCL = 200 + 0.577 \times 47 = 202.712$ LCL=200-0.577 x 4.7=197.29. Control limits for R chart Sample number \longrightarrow It can be seen that all points lie within the control limits of R chart. The process variability is, therefore, under control. However, three points corresponding to sample no. 5, 6 and 8 lie outside the control limits \overline{X} chart. The process is, sample no. 5, 6 and 8 lie outside the control limits \overline{X} chart. The process cherefore, not in statistical control. The process, therefore, should be halted to therefore, not in statistical control. The process if they are found, the process check whether there are any assignable causes. If they are found, the process should be readjusted to remove them, otherwise fluctuations are going to be there. Twenty five samples of six items each were related from the assembly line of a machine having mean of 25 samples is 0.81 inches and range 0.025 inches. Solution. Compute the upper control limits and lower control limits of mean chart and range chart. (For n = 6, $A_2 = 0.483$, $D_3 = 0$, $D_4 = 2.004$) Given: $\overline{\overline{X}} = 0.81$, $\overline{R} = 0.0025$, n = 6 \overline{X} –Chart. Control Limits $$UCL = \overline{\overline{X}} + A_2 \overline{R} = -81 + (-483) (-0025) = -8112$$ $LCL = \overline{\overline{X}} - A_2 \overline{R} = -81 - (-483) (-0025) = -8088$ Range Chart Control Limits UCL= $$D_4 \overline{R} = (2.004) \times (.0025) = 0.0050$$. LCL= $D_3 \overline{R} = 0 \times (.0025) = 0$. The mean life of battery cells manufactured by a certain plant as estimated on the basis of a large sample was found to be 1500 hrs with standard deviation of 180 hrs. Compute the 3-sigma (3 σ) control limits for \bar{X} -Chart for a sample of size Given: $\overline{\overline{X}} = 1500 \text{ hrs.}, \sigma = 180 \text{ hrs.}, n = 9$ Solution. Control Limits for \overline{X} chart. From X chart. $$UCL = \overline{X} + 3 \frac{\sigma}{\sqrt{n}} = 1500 + 3 \times \frac{180}{\sqrt{9}} = 1680$$ $$LCL = \overline{X} - 3 \frac{\sigma}{\sqrt{n}} = 1500 - 3 \times \frac{180}{\sqrt{9}} = 1320$$ (3) σ-Chart (3) or-narr This chart is constructed to get a better picture of the variations in the quality standard in a process than that is obtained from the Range chart provided the standard deviation of the various samples are readily available. Procedure: The constuction of o-chart involves the following steps: (i) Find the S.D. of each sample, if not given. (ii) Compute the mean of the standad deviation by using the formula: $$\overline{S} = \frac{\Sigma S}{k} = \frac{S_1 + S_2 + S_3 + \dots S_k}{k}$$ The mean of S.D.s. (\overline{S}) represents the central line (CL). (iii) Find the upper and lower control limits by using the formula: (a) On the basis of quality control factors B_1 , B_2 and population standard $$CL = B_2.\sigma$$ $LCL = B_1.\sigma$ UCL= B_2 . σ LCL= B_1 . σ (b) On the basis of quality control factors B_3 , B_4 and estimated population standard deviation (S) $$CL = B_4 \cdot \overline{S}$$ $LCL = B_3$ UCL= B_4 . \overline{S} LCL= B_3 . \overline{S} Where, B_1 , B_2 , B_3 and B_4 are the quality control factors. Stalistical Quality Control (iv) Construct o-Chart by plotting the sample number on the r-axis and r- (v) Interpret the chart thus thawn. Quality control is maintained in a factory with the help of mean and standard deviation charts. Ten items are chosen in every sample. Eighten samples and were chosen whose $\Sigma \overline{X}$ was 595-8 and ΣS was 5.28. Determine the three sigma limits of \overline{X} and σ charts. You may use the following factors for finding 3 o limits $n = \frac{A_1}{B_3} = \frac{B_3}{B_3}$ Example 6. $$\begin{array}{cccc} n & A_1 & \text{osc the following factors for findin} \\ 10 & 0.949 & B_3 & B_4 \\ \text{Given}: \Sigma \overline{X} = 595 \cdot 8, \Sigma S = 8 \cdot 28, n = 18 & 1.72 \end{array}$$ $\overline{\overline{X}} = \frac{\Sigma \overline{X}}{k} = \frac{595 \cdot 8}{18} = 33 \cdot 1$ $\overline{S} = \frac{\Sigma S}{k} = \frac{8 \cdot 28}{18} = 0.46$ $$\overline{S} = \frac{\Sigma S}{k} = \frac{8 \cdot 28}{18} = 0.46$$ \overline{X} -Chart **Control Limits** $$\begin{array}{lll} \text{UCL} = \overline{\overline{X}} + A_1 \overline{\sigma} & \text{LCL} = \overline{\overline{X}} - A_1 \overline{\sigma} \\ &= 33 \cdot 1 + (0 \cdot 949) \, (46) & = 33 \cdot 1 - (0 \cdot 949) \, (46) \\ &= 33 \cdot 1 + \cdot 43675 = 33 \cdot 53 & = 32 \cdot 66 \end{array}$$ σ Chart **Control Limits** $\overline{S} = 0.46$ $UCL = B_4 \overline{S} = 1.72 \times 0.46 = 0.7912$ $LCL = B_3 \overline{S} = 0.28 \times 0.46 = 0.1288$ ### EXERCISE - 1 1. Construct \overline{X} -Chart and R-Chart for the following data of 12 samples with each set of 5 | ciiis. | | | | | | | | | | | | |--------|----|----|----|----|-----|-----|----|----|-----|-----|-----| | 42 | 42 | 19 | 36 | 42 | 51 | 60 | 18 | 15 | 69 | 64 | 61 | | 65 | 77 | | | | | 60 | 20 | 30 | 109 | 90 | 78 | | | 45 | 24 | 54 | 51 | 74 | | | 39 | 113 | 93 | 94 | | 75 | 68 | 80 | 69 | 57 | 75 | 72 | 27 | | 118 | 109 | 109 | | 78 | 72 | 81 | 77 | 59 | 78 | 95 | 42 | 62 | | 112 | 136 | | 87 | 90 | 01 | 04 | 70 | 132 | 138 | 60 | 84 | 153 | 112 | 150 | [Ans. $UCL_{\overline{x}} = 106 \cdot 2$, $LCL_{\overline{x}} = 37 \cdot 0$, $UCL_{\overline{R}} = 125 \cdot 9$, $LCL_{\overline{R}} = 0$] (Given: n=5, $A_2 = .58$, $D_3 = 0$, $D_4 = 2.115$) | | | II | III | |------------|----|----|-----| | Sample No. | | 19 | 25 | | 1 | 20 | 22 | 28 | | 2 | 25 | 23 | 30 | | 3 | 32 | 20 | 15 | | 4 | 18 | 12 | 18 | | 5 | 10 | 25 | 17 | | 6 | 22 | 39 | 24 | | 7 | 28 | 29 | 30 | | : 1 | 30 | 29 | 30 | (Given: n = 3, $A_2 = 1.023$, $D_3 = 0$, $D_4 = 2.575$) $(23, \nu_3 = 0, \nu_4 = 2.573)$ [Ans. UCL_X = 29.266, LCL_X = 16.734, UCL_R = 15.77, LCL_R = 0] 3. A machine is set to deliver packet of a given weights. 10 samples of size 5 each were recorded in the data given below: 1 2 3 4 5 6 7 8 9 10 | Sample No. | - | - | | 1 20 | 26 | 29 | 13 | 34 | 37 . | 23 | |--|----|----|----|------|----|-----|----|-----------|------|----| | Sample Mean (\overline{X}) | 20 | 34 | 45 | 39 | 20 | 177 | 21 | 11 | 90 | 10 | | Sample Mean (\overline{X})
Sample Range (R) | 23 | 29 | 15 | 5 | 29 | 17 | 21 | 11 | 70 | 10 | | Sample Range (10 | | | | | | | | tion born | | | Construct \overline{X} chart and range chart and point out whether the process is within control (Conversion factors for n=5, $A_2=.58$, $D_3=0$, $D_4=2.115$) [Ans. UCL $_{\overline{X}}=41.658$; LCL $_{\overline{X}}=18.342$, UCL $_{\overline{X}}=42512$, LCL $_{\overline{X}}=0$] The following data provide the mean (\overline{X}) and range (\overline{X}) of 10 samples having 5 items each, construct mean chart and range chart and comment on the process of quality: | construct mean chai | t and I | Lange e | 2 | 1 | 5 | 6 | 7 | 8 | 9 | 10 | |--------------------------------|---------|---------|------|------|------|-----|------|-----|------|------| | Sample No.: | 1 | 11.0 | 10.0 | 11.6 | 11.0 | 9.6 | 10-4 | 9.6 | 10-6 | 10-0 | | Sample Mean (\overline{X}) : | 11.2 | 11.8 | 10.8 | 11-0 | | 4 | . 0 | 4 | - 7 | 9 | | - · p (P) · | 7 | 4 | 8 | 5 | 1 | 4 | 0 | - 4 | | _ | (Conversion factor for n=5 are A₂ = 0.577, , D₃ = 0 and D₄ = 2.115) [Ans. UCL√x = 14.2951, LCL√x = 7.0249, UCL_R = 13.3245, LCL_R = 0] 5. Thirty samples of 5 items each were taken from the output of a machine and a critical dimension measured. The mean of 30 samples was 0.6550 inches and Range mean 0.0036 inch. Compute the control limits for X and R charts. 6. A drilling machine bores holes with a mean diameter of 0.5230 cm. and a standard deviation of 0.0032 cm. Calculate the 2-sigma and 3-sigma upper and lower control limits for means of samples of size 4, and prepare a control chart. [Ans. 2-sigma limits: UCL = 0.5262; LCL = 0.5198] 2-sigma limits: UCL = 0.6298; ICL = 0.5182 Construct a control chart for
mean (X) and range (R) for the following data from 10 independent samples of 5 observations each from a production process: Statistical Quality Control | Sample No. : | 1 2 1 | |--------------------------------|------------------------------------| | Sample Mean (\overline{X}) : | 43 49 37 4 5 | | Sample Range (R) : | 5 6 7 44 45 7 8 | | | 5 7 7 51 46 9 10 | | achine is set to | [Ans. UCL $\bar{\chi}$ = 47.56 LCV | A machine is set to deliver packets of a given weights. Ten samples of size 5 peaks and R = 12.257, LCL_R = 0. Sample No. 1 2 Sample No. 1 2 | Sample 1101 | - | 1 2 | 3 . | | size 5 each we | |------------------|----------|---------|-----------|-------|----------------| | Mean: | 45 | 51 | 30 1 | 5 6 | 7 | | Range: | 9 | 7 | 9 47 | 57 39 | 53 40 9 10 | | culate the value | e of the | central | line on 1 | 7 8 | 8 2 0 49 | Calculate the value of the central line and control limits for mean and range chart. (Conversion factors for n=5 are $A_2=0.58$, $D_3=0$, $D_4=2.115$) [Ans. $UCL_{\overline{\chi}}=51.766$, $LCL_{\overline{\chi}}=42.834$; $ULC_{R}=16.28$, $LCL_{R}=0$] # B. CONTROL CHARTS FOR ATTRIBUTES These charts are used when the quality or characterities of a product cannot be measured in quantitative form and the data is studied on the basis of totality of attributes like defective and products. Such charts are of three types: non-defectives. Such charts are of three types: (1) p-chart (or Fraction Defective Chart) - (2) np-chart (or Number of Defective Chart) (3) c-chart (or Number of Defects per unit Chart) - (1) p-chart (Fraction Defective Chart): This chart is constructed for controlling the quality standard in the average fraction defective of the products in a process when the observed sample items are classified into defectives and non-defectives. - Procedure: The construction of p-chart involves the following steps: (i) Find the fraction defective or proportion of defective in each sample i.e., - (ii) Find the mean of the fraction defectives by using the formula: Total No. of Defectives \overline{z}_{-1} $\overline{p} = \frac{10 \text{ at No. of Defectives}}{\text{Total No. of Units Inspected}}, \ \overline{q} = 1 - \overline{p}$ Aliter: The value of \overline{p} can also be calculated as: $$\overline{p} = \frac{p_1 + p_2 + \dots + p_k}{k}$$ where, $k = \text{No. of samples}$ The value of p represents the central line of the p-chart (iii) Determine the control limits by using the formula: Control Limits = $\overline{p} \pm 3\sqrt{\frac{\overline{p} \cdot \overline{q}}{n}}$ $$LCL = \overline{p} - 3\sqrt{\frac{\overline{p} \cdot \overline{q}}{n}}$$ $$UCL = \overline{p} + 3\sqrt{\frac{\overline{p} \cdot \overline{q}}{n}}$$ The value of LCL cannot be negative and in such a case it would be reduced to zero. (iv) Construct the *p*-chart by plotting the sample number on *x*-axis and sample fraction defectives, UCL, LCL and central line on the *y*-axis. (v) Interpret the *p*-chart. If all the sample fraction defective (*p*) fall within the control limits, the process is in a state of control otherwise it is beyond the control. - If the number of defectives is small, then p-chart should be constructed by finding the percentage defective. This chart is specially useful when the size of the sample (n) is un equal. In such a case the value of n can be obtained by dividing the defective units in all the samples by the number of samples. #### CASE I : EQUAL SAMPLE SIZE The following data refers to visual defects found during the inspection of the first 10 samples of size 100 each from a lot of two-wheelers manufactured by an | automobile company | : | | | | | | | | 200 | | |--------------------|---|---|---|---|---|---|---|----|-----|----| | Sample Number : | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | No. of defectives | 5 | 3 | 3 | 6 | 5 | 6 | 8 | 10 | 10 | 4 | Construct a control chart for fraction defective. What conclusions you draw from the control chart? Solution. We are given : n = size of sample = 100, k = No. of samples = 10 | Comp | utation of Fraction I | Defectives | |----------------|-----------------------|-------------| | Sample No. (k) | Size of Sample (n) | No. of defe | | Sample No. (k) | Size of Sample (n) | No. of defectives | Fraction defectives | |----------------|--------------------|-------------------|---------------------| | 1 | 100 | 5 | 5 / 100 = 0.05 | | 2 | 100 | 3 | 3 / 100 = 0.03 | | 3 | 100 | 3 | 0.03 | | 4 | 100 | 6 | 0.06 | | 5 | 100 | 5 | 0.05 | | 6 | 100 | 6 | 0.06 | | 7 | 100 | 8 | 0.08 | | 8 | 100 | 10 | 0.10 | | 9 | 100 | 10 | 0.10 | | 10 | 100 | 4 | 0.04 | | k = 10 | 1,000 | $\Sigma d = 60$ | 0.60 | $$\overline{p} = \frac{\text{Total No. of Defectives}}{\text{Total No. of Units}} = \frac{60}{1000} = 0.06 \implies \overline{q} = 1 - \overline{p} = 1 - 0.06 = 0.94$$ The value of \overline{q} represents the control line. The value of \overline{p} represents the central line Control Limits for p-chart $$UCL = \overline{p} + 3\sqrt{\overline{p} \cdot \overline{q}}$$ Statistical Quality Control $$= 0.06 + 3 \sqrt{\frac{06 \times 94}{100}}$$ $$= 0.06 + 3(0.0237) = 0.06 + 0.0711 = 0.1311$$ $$LCL = \overline{p} - 3 \sqrt{\frac{\overline{p} - \overline{q}}{n}} = 0.06 - 3 \sqrt{\frac{06 \times 94}{100}}$$ $$= 0.06 - 3(0.237) = 0.06 - 0.0711 = 0.0111 = 0$$ defective cannot be negative. = .06 - 3(.0237) = .06 - .0711 = -0.0111 = 0.Since, the fraction defective cannot be negative, LCL is taken as zero. The fraction defective chart (p-chart) is shown below: The above chart shows that all the points lie within the control limits. This suggests that the process is in control. # CASE II : VARYING SAMPLE SIZE The number of defective needles of sewing machine has been given in the following table on the basis of daily inspection. Prepare 'p-chart' and state whether the production process is in control. | production process is in to | iuor. | | | | | | - | _ | _ | _ | |-----------------------------|-------|----|----|-----|-----|----|-----|-----|-----|-----| | Day 🦈 🦠 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | Duy | _ | - | - | - | | | | | 100 | 100 | | No. of needles inspected | 90 | 60 | 70 | 100 | 120 | 50 | 100 | 110 | 100 | 100 | | - or necures hispecieu | | - | - | - | | - | 10 | 6 | 8 | 25 | | No. of defective needles | 5 | 12 | 7 | 3 | 6 | 3 | 10 | - | - | | | Day | Ontrol limits for p-cha | No. of defectives | Percentage defective needles | |-----------------------|-------------------------|-------------------|------------------------------| | scand o strand in | Inspected | - | 5.56 | | 1 | 90 | 12 | 20.00 | | 2 | 60 | -7 | 10.00 | | Adder eave to list in | 70 | 3 | 3-00 | | and set of the street | 100 | 6 | 5-00 | | - | 120 | | | Statistical Quality Control | 6 | 50 | 5 | 10.00 | |------|-----|----|---------| | 7 | 100 | 10 | 10.00 | | . 8 | 110 | 6 | 5.45 | | 9 | 100 | 8 | 8.00 | | 10 | 100 | 25 | 25 · 00 | | k=10 | 900 | 87 | | $$\overline{p} = \frac{\text{Total No. of Defectiver Needles}}{\text{Total no. of Items Inspected}} = \frac{87}{900} = 0.0967$$ \bar{p} is the percentage form = 9.67 The value of \bar{p} represents the central line Control limit for p-chart where, $$\bar{p} = 0.0967$$, $\bar{q} = 1 - 0.0967 = 0.9033$ $$n = \frac{\text{Total No. of Items Inspected}}{k} = \frac{900}{10} = 90$$ Substituting the values we get $$\begin{array}{lll} \text{UCL} = \overline{p} + 3\sqrt{\frac{\overline{p} \cdot \overline{q}}{n}} & \text{LCL} = \overline{p} - 3\sqrt{\frac{\overline{p} \cdot \overline{q}}{n}} \\ & = 0.0967 + 3 \times \sqrt{\frac{0.0967 \times 0.9033}{90}} & = 0.0967 - 3\sqrt{\frac{0.0967 \times 0.9033}{90}} \\ & = 0.0967 + 3 \times 0.0312 & = 0.0967 - 3 \times 0.0312 \\ & = 0.1903 \text{ or } 19.03\% & = 0.0031 \text{ or } 0.31\% \end{array}$$ The above chart shows that although out of 10 points 8 points are within the control limits but the points of sample number 2 and 10 are outside the upper limit. This suggests that the process is not in control. Construct a control chart for the proportion of defectives obtained in repeated samples of size 100 from a process which is considered to be under control when Example 9. _{Slatistical} Quality Control the average proportion of defective p is equal to 0.20. Draw the central line and We are given . $\bar{p} = \text{Average fraction defective} = 0.2, n = 100, \bar{q} = 1 - \bar{p} = 1 - 0.2 = 0.8$ A daily sample of 30 items was taken over a period of 14 days in order to establish control limits. If 21 defectives were found, what should be the upper and lower control limits for the proportion of defectives? Example 10. Solution. No. of samples (k) = 14 Size of the sample (n) = 30 Σd i.e., number of defectives=21 \overline{p} = Average fraction defectives = $\frac{21}{14 \times 30}$ = 0.05 $\overline{q} = 1 - \overline{p} = 1 - 0.5 = 0.95$ Control limits for *p*-chart: Central Line = $\bar{p} = 0.05$ $$UCL = \bar{p} + 3\sqrt{\frac{\bar{p} \cdot \bar{q}}{n}}$$ $$= 0.05 + 3\sqrt{\frac{(05)(0.95)}{30}} = 0.17$$ $$LCL = \bar{p} - 3\sqrt{\frac{\bar{p} \cdot \bar{q}}{n}} = 0.05 - 3\sqrt{\frac{(05)(0.95)}{30}} = 0.06$$ 292 The negative value of LCL is taken as zero. (2) np-Chart (Number of Defective Chart) (2) np-Chart (Number of Defective Chart) This chart is constructed for controlling the quality standard of attributes in a process where the sample size is equal and it is required to plot the number of defectives (np) in samples instead of fraction defectives (p). Procedure: The construction of np-chart involves the following steps: (i) Find the average number of defectives (np) Total no. of Defectives $n\overline{p} = \frac{Total no. of Samples}{Total no. of Samples} = \frac{\Sigma d}{k}$ $$n\bar{p} = \frac{\text{Total no. of Defectives}}{T_{\text{obstantial no. of Samples}}} = \frac{\Sigma d}{k}$$ The value of $n\overline{p}$ represents the central line (ii) Find the value of \overline{p} by using the formula : $\overline{p} = \frac{n\overline{p}}{n} \implies \overline{q} = 1 -
\overline{p}$ $$\overline{p} = \frac{np}{n} \implies \overline{q} = 1 - \overline{p}$$ Aliter: The values of \bar{p} can also be calculated by using the formula: $\bar{p} = \frac{\Sigma d}{n \times k}$ $$\overline{p} = \frac{\sum d}{n \times k}$$ (iii) Determine the control limits by using the formula : $\therefore \qquad UCL = n\overline{p} + 3\sqrt{n\overline{p}\overline{q}}$ UCL= $$n\bar{p} + 3\sqrt{n\bar{p}\bar{q}}$$ L.C.L. $=n\overline{p}-3\sqrt{n\overline{p}q}$ The value of LCL cannot be negative and in such a case it would be reduced to zero. (iv) Construct np-chart by plotting the sample number-on x-axis and sample number of defectives, UCL, LCL and control line (CL) on the y-axis. (v) Interpret np-chart. If all the sample number of defectives fall within the control limits, the process is in a state of cotnrol otherwise it is beyond control. Note: The construction and interpretation of the number of defective chart i.e., np chart is similar to that of p-chart. In np-chart, the central line is drawn at np instead of p and the actual number of defectives (np) in samples of fixed size n is plotted instead of fraction defectives. Example 11. An inspection of 10 samples of size 400 each from 10 lots reveal the following number of defectives: Solution. We are given, $$n = 400$$, $k = (No. \text{ of samples}) = 10$, $\overline{p} = \text{Average fraction defectives} = \frac{140}{10 \times 400} = 0.035$, $\overline{q} = 1 - 0.35 = 0.965$ Also, n = 400 $n\overline{p} = 400 \times \cdot 035 = 14$ The value of $n\overline{p}$ represents the central line Control Limits for np-chart $UCL = n\overline{p} + 3\sqrt{n\overline{p}\overline{q}}$ $= 14 + 3\sqrt{400 \times 0.035 \times 0.965}$ $$=14+3\sqrt{400\times0.035\times0.965}$$ $$LCL = n\overline{p} - 3\sqrt{n\overline{p}\overline{q}}$$ = 14 - 3\sqrt{400 \times 0 \cdot 035 \times 0 \cdot 965} glatistical Quality Control The above chart shows that although out of 10 points 9 points are within the control limits but the point for sample 4 is outside the UCL. This suggest that the Example 12. In a certain sampling inspection, the number of defectives found in 10 samples of 100 each are given below: Solution. Here, we use $n\overline{p}$ -chart to find whether quality characteristics under inspection is in a state of control or not. We are given: n = 100 k = 10, $\Sigma d = \text{Total no. of Defectives} = 170$ $\overline{p} = \frac{170}{100 \times 10} = 0.17, \overline{q} = 1 - 0.17 = .83$ $$\overline{p} = \frac{170}{100 \times 10} = 0.17, \overline{q} = 1 - 0.17 = .83$$ Also, n=100, Now, $n\overline{p} = 100 \times \cdot 17 = 17$ The value of $n\overline{p}$ represents the central line Control Limits for np chart UCL= $n\overline{p}$ + 3 $\sqrt{n\overline{p}q}$ =17 + 3 $\sqrt{100 \times 0.17 \times 0.83}$ The proper variables for $$n\bar{p}$$ chart $CL = n\bar{p} + 3\sqrt{n\bar{p}q}$ $CL = n\bar{p} + 3\sqrt{n\bar{p}q}$ $CL = n\bar{p} + 3\sqrt{100 \times 0.17 \times 0.83}$ $CL = n\bar{p} + 3\sqrt{100 \times 0.17 \times 0.83}$ $CL = n\bar{p} + 3\sqrt{100 \times 0.17 \times 0.83}$ $CL = n\bar{p} - 3\sqrt{n\bar{p}q}$ 3\sqrt{n\bar{p}q$ Example 13. = 28.268 Since, none of the points is lying outside the lower and upper control limits, the Process is in a state of statistical control. It was found that the production process is termed "Controlled" in a sample size of 10 units each when average number of defetive is 1.2. What control limits you will establish for a control chart of a sample size of 10 units each? Solution. We are given : $n\overline{p} = 1 \cdot 2$, n = 10, $\overline{p} = \frac{n\overline{p}}{n} = \frac{1 \cdot 2}{10} = 0 \cdot 12$, $\overline{q} = 1 - \overline{p} = 1 - 0.12 = 0.88$ =4.281 Control Limits for $n\overline{p}$ chart $UCL = n\overline{p} + 3\sqrt{n\overline{p}q}$ $= 1 \cdot 2 + 3\sqrt{10 \times 0.12 \times 0.88}$ $=1\cdot 2+3(1\cdot 027)$ $LCL = n\overline{p} - 3\sqrt{n\overline{p}\overline{q}}$ = 1 \cdot 2 - 3\sqrt{10 \times 0 \cdot 12 \times 0 \cdot 88} =1.2-3.081=-1.881 (iii) C-Chart (Number of Defects Per unit Chart) (iii) C-Chart (Number of Defects Per unit Chart) This chart is used for the control of number of defects per unit say a piece of cloth/glass/paper/bottle which may contain more than one defect. The inspection unit in this chart will be a single unit of product. The probability of occurrence of each defect tends to remain very small. Hence, the distribution of the number of defects may be assumed to be a Poisson Distribution with Mean = Variance. Procedure: The construction of C-chart involves the following steps: (i) Determine the number of defects per unit (C) in the samples of equal size. (ii) Find the mean of the number of defects counted in several units by using the formula: $\overline{C} = \frac{\Sigma C}{K}$ where, K=Total No. of Units Inspected. The value of \overline{C} represents the central line of the C-chart. (iii) Determine the control limits by using the formula : Control Limits = $\overline{C} \pm 3\sqrt{\overline{C}}$. $UCL = \overline{C} + 3\sqrt{\overline{C}}$ $LCL = \overline{C} - 3\sqrt{\overline{C}}$ The value of LCL cannot be negative and in such case it would be reduced to zero. (iv) Construct C-chart by plotting the sample numbers on the x-axis and number of defects observed per unit, LCL, UCL and CL on the y-axis. (v) Interpret C-Chart. If the observed values of the number of defects per unit fall within the control limits, the process is a state of control otherwise it is beyond the control. #### USES OF C-CHART Althoguh the application of C-chart is somewhat limited compared with \overline{X} and R charts, yet a number of practical situation exist in many industry where C-chart is used. The following are the fields of applications of C-hart. (1) Number of defects of all kinds of aircraft final assembly. (2) Number of defects counted in a roll of coated paper, sheet of photographic film, bale (or pieces) of cloth, etc. Example 14. Ten pieces of cloth out of differnt rolls of equal length contained the following number of defects: 1, 3, 5, 0, 6, 0, 9, 4, 4, 3 _{Slatistical} Quality Control Draw a control chart for the number of defects and state whether the proce We have N=10, and C=No. of defects = 35 Solution. $\widetilde{C} = \frac{\Sigma C}{N} = \frac{35}{10}$ 10 The value of \overline{C} represents the central line. Control Limits for C-Chart UCL= \overline{C} + 3 $\sqrt{\overline{C}}$ = 3.5+3 $\sqrt{3.5}$ = 3.5+5.612=9.112 The above chart shows that all the plotted points are within the two control limits This suggests that the process is in control. Example 15. | The number of de | etects o | of 20 it | ems a | re gvi | en bel | ow: | | | | _ | |------------------|----------|----------|-------|--------|--------|-----|----|----|----|----| | Item No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | No. of defects | 2 | 0 | 4 | 1 | 0 | 8 | 0 | 1 | 2 | 0 | | Item No. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | No of defeate | 6 | 0 | 2 | 1 | 0 | 3 | 2 | 1 | 0 | 2 | Devise a suitable control chart and draw your conclusion. As the number of defects per unit is given, the suitable control chart is C-chart Solution We have N = 20, and C = No. of defects = 35 $\overline{C} = \frac{\Sigma C}{N} = \frac{35}{20}$ The value of \overline{C} represents the central line. Control Limits for C-chart UCL= \overline{C} +3 $\sqrt{\overline{C}}$ =1.75+3 $\sqrt{1.75}$ =5.7186 $LCL = \overline{C} - 3\sqrt{\overline{C}} = 1.75 - 3\sqrt{1.75} = -2.218 = 0$ The abvoe chart shows that although out of 20 plotted points 18 points are within the control limits but the points for sample 6 and sample 11 are outside the UCL. This suggests thet the process is not control. ## EXERCISE - 2 Calculate the control lines for p-chart from the following information derived from inspection of 10 samples selected from the production process of an electric bulbs manufacturing industry. State whether the production process is under control? | Sample No. | No. of Units Inspected | No. of Defective Units | | | | | |------------|------------------------|------------------------|--|--|--|--| | 1 | 10 | 2 | | | | | | 2 | 40 | 4 | | | | | | 3 | 100 | ample 15. 8 he tar can | | | | | | 4 | 50 | 5 | | | | | | 5 | 60 | 12 | | | | | | 6 | 100 | 10 | | | | | | 7 | 100 | 3 | | | | | | 8 | 30 | intelligent 3 | | | | | | 9 | 80 | 4 | | | | | | 10 | 60 | 3 | | | | | [Ans. \bar{p} = 0.086 or 8.6%, UCL = 19.4%, LCL = 0, The process is not within control] Each of 20 lots of rubber bells contained 2000 rubber bells. Number of defective rubber bells in those lots are 410, 420, 324, 332, 292, 310, 282, 300, 320, 296, 392, 432, 294, 324, 220, 400, 258, 226, 460, 280. 200, 220, 220, 220, 280. 280. Calculate control limits for fraction defective chart and give your conclusions. [Ans. UCL = 0.1891; LCL = 0.1395] 3. If the average fraction defective of a large sample of products is 0.1537, caluclate the control limits for fraction defectives (Given that the size of each sample is 200) [Ans. UCL = 0·17738, LCL = 0·12952 or 0] Salistical Quality Control An inspection of 9 samples of size 100 each from 9 lots reveal the following number of (each of 100 items) No. of defectives : 12 Construct a suitable cotnrol chart and give your conclusion. [Ans. CL = 8-66, UCL = 9-38, LCL = 7-61art] In a manufacturing concern of radio production lot of 250 liems are inspected at a lime and defectives noted are given below. Draw a suitable control chart. | Lot No. (each of 250 items): | _1 | 2 | 2 | - | - | | | 430 | TITADIE | : | |--|----|----|----|-------|----|----|----------|-----|---------|---| | No. of defectives : | 25 | 47 | 22 | 4 5 | 6 | 7 | 8 | | | 1 | | Lot No.: | 11 | 12 | 12 | 36 24 | 34 | 39 | 32 | 25 | 10 | ł | | No. of defectives :
(each of 250 Items) | 45 | 40 | 32 | 35 21 | 16 | 17 | 18
28 | 19 | 20 | | | and the state of the state of | | | | _ | | | - | ۵ | 42 | l | [Ans. CL = 31.9 UCL =
32.84, LCL = 16-16] 6. An inspection of 10 samples of size 100 each revealed the following number of defective 2, 1, 1, 3, 2, 3, 4, 2, 2, 0 Calculate control limits for the number of defective units. Plot the control limits and the observations and state whether the process is under control or not. [Ans. np-chart, CL = 2, UCL = 6-2, LCL = 2-2] 7. In a certain sampling inspection, the number of defectives found in 21 samples of 100 each In a certain same of a regiven below: 5, 7, 9, 7, 8, 13, 8, 4, 8, 4, 3, 7, 7, 12, 15, 5, 13, 4, 3, 10, 8. Does these indicate that the quality characteristics under inspection is under statistical control? [Ans. UCL =16-48, LCL =-0-48=0] 8. During an examination of equal length of cloth, the following number of defects are 2, 3, 4, 0, 5, 6, 7, 4, 3, 2. Draw a control chart for the number of defects and comment whether the process is under control or not. [Ans. CL = C = 3·6, UCL = 9·292, LCL = 0] 9. A plant produces rolls of paper. The number of defects disclosed by the Inspection of 20 rolls are as follows: 12.6 1.8 4.5 0.4 5 1.0 1.2 1.2 1.1 1.2 1.3 1.1 (Comment on the state of control 3, 4, 8, 4, 2, 4, 7, 3, 5, 9, 2, 4, 3, 2, 5, 6, 2, 8, 7, 12 # ACCEPTANCE SAMPLING ACCEPTANCE SAMPLING Another major area of statistical quality control is product control or acceptance sampling. Another major area of statistical quality control is product control or acceptance sampling. That is concerned with the inspection of manufactured products. The items are inspected to know whether to accept a lot of items conforming to standards of quality or to reject a inspected to know whether to accept a lot of items conforming. That is why product control lot as non-conforming. Here the decision is arrived through sampling. "According to Simpson and Kafka "Acceptance sampling is concerned with the decision to accept a mass of non-conforming to quality. The decision is reached through sampling." reached through sampling." # RISKS IN ACCEPTANCE SAMPLING OR PRODUCT CONTROL There are following two types of risks in acceptance sampling or product quality control: (i) Producer's Risk (ii) Consumer's Risk Let us discuss them briefly: Let us discuss them briefly: (i) Producer's Risk: Sometimes it happens that inspite of good quality, the sample taken may show defective units as such the lot will be rejected. Inspite of good quality the lot is rejected, such a type of risk of rejection is known as producer's risk. In other words, the probability of rejecting a lot which has actually been found satisfactory by the producer according to acceptable quality level is known as producer's risk. Thus, the risk of rejecting a lot of good items is known as producer's (ii) Consumer's Risk: Sometimes it may happen that the quality of the lot is not good but the sample results show good quality units as such the consumer has to accept a defective lot. Such a risk is known as consumer's risk. In other words, the probability of accepting a lot which has actually been satisfactory by the consumer according to a pre-determined standard is known as consumer's risk. Thus, the risk of accepting a lot of bad items is known as consumer's risk. The consumer and producer both decide the acceptance standard of the lot. This is as known of Acceptable Quality Level (AQL) or Lot Tolerance Percentage Defective (LTPD). How to Conduct Acceptance Sampling? OR #### Types of Sampling Inspection Plans Acceptance sampling is based on sampling. After the inspection of samples, the decision is made about the acceptance or rejection of a lot. In acceptance sampling, the number of samples and their order plays a significant role. To frame the rules for acceptance or rejection of a lot acceptance sampling plan is prepared. The following three types of sampling plan are frequently used in acceptance sampling: (1) Single Sampling Plan (2) Double Sampling Plan and (3) Multiple or Sequential Sampling Plan (3) Multiple or sequential Sampling Plan (1) Single Sampling Plan: Under single sampling plan, a sample of n items is first chosen at random from a lot of N items. If the sample contains, say, c or few defectives, the lot is accepted, while if it contains more than c defectives, the lot is rejected (c is known as 'acceptance number'). The single sampling plan is shown in the following chart: Example: A lot of goods consisting of 500 items is submitted for inspection for which the cacceptance number of defectives is 10. Take a sample of 30 items you find that there is acceptance in the lot should be accepted or rejected for the cacceptance. Example: A lot of goods consisting of 500 items is submitted for inspection for which the acceptance number of defectives is 10. Take a sample of 30 items you find that there are 8 items in the lot should be accepted or rejected for marketing. Figure S. State if the 10c of the same are 8 solution: We have c i.e., acceptance number = 10 and die, the number of defective observed solution: We have c i.e., acceptance number = 10 and die, the number of defective observed solution. in the sample = 8. d < c (i.e., 8 < 10) Thus, Thus, d < c, the lot under consideration should be accepted. Since, d < c, the lot under consideration should be accepted. (2) Double Sampling Plan: Under this sampling plan, a sample of n_1 items is first chosen at another from the lot of size N. If the sample contains, say, c_1 or few defective, the lot is accepted; if a contains more than c_2 defectives, the lot is rejected. If however, the number of defectives in the sample exceeds c_1 , but is not more than c_2 a second sample of n_1 items is taken from the same lot. If now, the total number of defectives in the two samples together does not exceed c_1 , the lot is contained; otherwise, it is rejected. (c_1 is known as acceptance number for the first sample and I now, no samples together does not exceed cy, the lot is excepted; otherwise, it is rejected. (c₁ is known as acceptance number for the first sample and c₂, the lot is the acceptance number for both the samples taken together). The Double sampling plan is shown in the following chart: Example: A double sampling plan has the following facts as specified: N = 5,000, $n_1 = 50$, $c_1 = 4$, $n_2 = 100$ and $c_2 = 6$ Execute the plan. Execution of the double sampling plan involves the following steps: (i) Indianate in the sampling plan involves the following steps: (i) Inspect all the 50 items of the first sample after taking the same at random from the letter of from the lot of 5,000 items. (ii) Accept the lot the number of defectives observed from the sample (d₁) is less (ii) Accept the lot the number of detectives observed from the sample (d_1) is less than or equal to 4(i.e.c, 1). if $d_1 > 6(i.e.c, 2)$ reject the lot. (iii) If the number of defectives in the sample thus observed $i.e.d_1$ is more than $4(c_1)$ but not more than $6(c_2)$, inspect all the 100 items of the second sample. (iv) If now the total number of defectives $(d_1 + d_2)$ observed in the combined $(d_1 + d_2)$ observed $(d_1 + d_3)$ observed in the combined $(d_1 + d_3)$ observed $(d_1 + d_3)$ observed the lot. If $(d_1 + d_3)$ is less than $(d_1 + d_3)$ observed the lot. If $(d_1 + d_3)$ is with in now the total number of defectives $(a_1 + a_2)$ observed in the combined sample of 150 items $(n_1 + n_2)$ is less than 6 (i.e., c_2), accept the lot. If it exceeds 6, than reject the lot. than reject the lot. (3) Multiple or Sequential Sampling Plan: Under this sampling plan, a decision to accept or reject a lot is taken after inspecting more than two samples of small size each. In this plan, units are examined one at a time and after examining each unit decision is taken, However, such plan are very complicated and hence rarely used in practice. # OPERATING CHARACTERISTIC CURVE OF AN ACCEPTANCE SAMPLING PLAN OPERATING CHARACTERISTIC CURVE OF AIR ACCESS TABLE SAMPLING PLAN This is a graphic measure of assessing the ability of a sampling plan in distinguishing between good and bad items. It depicts the relationship between the probability of acceptance of a lot $P\alpha(p)$ for different lot quality expressed in terms of percentage defectives. In the construction of OC curve we take p.i.e. lot qualities in terms of percentage defectives along the x-axis and p_2 (p) i.e., probability of acceptance of a lot along the y-axis. There is always an operating characteristic above (OC Curve) corresponding to any given sampling plan. A typical OC Curve has the following shape: ## LOT QUALITIES IN TERMS OF PERCENTAGE DEFECTIVE In the above figure, it has been assumed that the acceptable and rejectable qualities are measured as proportion of items that are defective and are $p_{\alpha}=0.05$; and $P_{r}=0.15$. From the OC curve, it must be seen that the probability of acceptance of a lot of the quality 0.05 is little less than 0.9, and the probability of rejection of a lot of the quality 0.15 is little more than 0.1. This shows that the chance of rejection of good products, which is producer's risk is little more than 0.1 must be chance of acceptance of bad products, which is the consumer's risk is little more than 0.1. Thus, the risks of both producer and consumer are more or less same. glatistical Quality Control galistical Quanty The steepness of the curve depends upon the sample size. The larger the sample, the steepness of the curve is determined by the maximum number of the sample, the steeper allowable for acceptance, called the acceptance mumber is made sen number. If the curve is shifted to left or right of lollowing example illustrate the procedure of constructing an OC curve. The following the following data relating to a single sampling. From the following data relating to a single sampling plan, determine the probability of acceptance at 0.5%, 7.5%, 1%, 2%, 5%, 10% and determine the the lot quality and fit a OC Curve to represent the data: | % defective in lot | Mean defective | P (0) - a-m |
ities using Pois | son Distribution | |--------------------|--|-------------|------------------|----------------------------------| | | | 147-2 | P(1) = m. e-m | Patel per | | 0.50 | $\frac{50}{100} \times .5 = .25$ | 0.7788 | 0-1947 | $P\alpha(p) \approx P(0) + P(1)$ | | 0.75 | 50 | Section 1 | 100 | 0-9735 | | | $\frac{50}{100} \times .75 = .38$ | 0-6839 | 0-2599 | 0-9438 | | 1.00 | $\frac{50}{100} \times 1 \cdot = 0.50$ | 0-6065 | 0-3033 | 0-9098 | | 2.00 | $\frac{50}{100} \times 2 \cdot 0 = 1 \cdot 00$ | 0.3678 | 0-3678 | 0.7358 | | 5.00 | $\frac{50}{100} \times 5 = 2.50$ | 0-0821 | 0-2053 | 0-2874 | | 10-00 | $\frac{50}{100} \times 10 = 5.00$ | 0-0070 | 0.0350 | 0-0420 | | 15-00 | $\frac{50}{100} \times 15 = 7.50$ | 0.0006 | 0.0045 | 0-0051 | Now we represent the probabilities of the acceptance of the lot with the given percentage defectives by a single sampling plan. This is drawn below: The above OC curve indicates that out of the 1,000 items (Since N = 1000) inspected 974 (9735×1000) items will be accepted and 26 items rejected with 0.5% defectives. #### QUESTIONS 1. What is statistical quality control? Explain its merits and limitations. OR What is statistical quality control? Explain it utility in industry. - Explain the followings: (a) Causes of variations in quality characteristics. - (b) Purpose and logic of control charts. What are control charts? Explain the purpose and logic of control charts. - Explain the basic concept and logic of construction of control charts. - Describe different types of control charts. - Discuss the basic principles uderlying control charts. Explain in brief the construction and uses of P-chart and c -chart. - 7. Distinguish between process control and product control. How are control charts used in process control? - 8. Explain construction and uses of \overline{X} chart and R- chart. - 9. Explain the meaning, purpose and types of various accepting sampling plans. 10. What is acceptance sampling plan? Outline the procedure of single and double sampling - 11. Explain the meaning and utility of OC curve. - 12. State and discuss the significance of consumer's risk and producer's risk in statistical quality - 13. Explain: - (i) Purpose and logic of control charts. - (ii) Causes of variations in quality characteristics. - (iii) Consumer's risk and Producer's risk in acceptance sampling. - (iv) Operating characteristic curve of an acceptance sampling plan. # ASSOCIATION OF ATTRIBUTES # 1. INTRODUCTION In TROPICE 1. In the chapter on correlation, we have studied the relationship between two such phenomena which are capable of direct quantitative measurement like weight, height, income for the control of contro or absence of some qualitative characteristic. # 2. MEANING AND DEFINITION Statistics of attributes are classified on the basis of attributes such as distribution of population into males and females, married and unmarried, educated and uneducated etc. The method of association employed to know the relationship between the two attributes. For example, if we want to investigate whether there is any association between the eyes colour of fathers and sons, literacy and criminality, we use the technique of association, thus, association refers to a technique by which we can measure the relationship between the two attributes. Like correlation, association is a measure which deals with attributes rather than the variables variables ## DEFINITION OF ASSOCIATION - "Association measures the relationship between two such phenomena whose size canno be measured". - Walls and Roberts. - "Association studies the nature of relationship between statics fo attributes". J.F Kenny and E.S. Keeping Thus, association measures the relationship between two attributes. - 3. DIFFERENCE BETWEEN CORRELATION AND ASSOCIATION - The main difference between correlation and association is as follows: - Correlation is used to measure the relation between two variables whereas association is used to measure the relation between two variables whereas association is - In correlation, universe is classified in quantitative terms whereas in association of attributes, universe is classified on the basis of presence or absence of an attribute. used to measure the relation between two attributes. - Correlation is the analysis of the covariation between the two variables. For the association of attributes, the presence of the two attributes together is not only sufficient but they must appear together in a greater number of cases that is to be expected. - The methods of finding correlation and association are different. It is relatively easy to determine association than correlation. # 4. USE OF TERMS AND NOTATIONS The following terms and notations are used in the study of association between the attributes: - (1) Positive and Negative Attributes: Presence of an attribute is known as positive (I) Positive and Negative Attributes: Presence of an attribute is known as positive attribute and absence of an attribute is known as negative attribute. Generally capital letters A,B,C etc. are used to denote the presence of an attribute and small letters a,b,c or Greek letters (Alpha), β(Beta) etc. are used to denote the absence of an attribute. For example, if 'A' denote (Alpha), β(Beta) etc. are used to denote the absence of an attribute. For example, if 'A' denote literate, then 'α' would denote illiterate. Similarly, if 'B' denote males, then 'β would denote females. - (2) Combination of Attributes: When two attributes are studied together, we obtain their different group, which are called combination of attributes. In order to denote the combinations of different attributes the symbols related to these are written together. Thus, if A stands for males and B for graduates, then the combinations formed by them will be as under: - AB = Graduate males . - AB = Non-graduate males - αB = Graduate males $A, \alpha, B, \beta, AB, A\beta, \alpha B, \alpha \beta.$ - $\alpha\beta$ = Non-graduate females. - (3) Class frequency: The number of observations falling in each class is called its class frequency and is denoted by enclosing the corresponding class symbol in brackets like (A), (α) , (B), (A β) etc. Here (AB) represents the number of observations possessing both the attributes A and B simultaneously. - (4) Classes: Classes are of three types (1) Positive classes, (2) Negative classes, and (3) Contrary classes. Classes expressed in capital letters represent presence of attribute and they are known as positive classes e.g. A, B, AB etc. Classes expressed in small letters or Greek letters represent absence of attribute e.g., α, β,αβ etc. and they are known as negative classes. Classes formed by the combination of capital letters and small letters represent presence of one attribute and absence of another attribute, they are known as contrary classes e.g. $A\beta_n \alpha B$ etc. - (5) Number of Classes: The total number of classes can be obtained by using the following formula: No. of classes = 3^n (where n stands for number of attributes) If there is only one attributes under study, the total number of classes would be $3^1 = 3$ (N, A and α) and if there are two attributes the total number of classes would be 3² = 9. These are: N (6) Order of Classes and Class Frequencies: On the basis of number of attributes, classes and class frequencies can be written according to different orders, such as 1st order, 2nd classes having only one attribute such as A, \alpha, B, \beta are knowned to the control of Classes frequencies can be written according to 0n the basis of number of attributes, order, 3rd order etc. A class having only one attributes are shown as classes and classes having two attributes are known as classes of B, B, B are known as classes of the first order, second order and third order such as called class frequencies of the 1st, 2nd and 3rd order. Class frequencies of the various order in B, A, B, B are known as classes of second order such as called class frequencies of the 1st, 2nd and 3rd order. Class frequencies of the various order in B. A B and B are the various order in B and B are the various order in B. | N
(A) (B) | Frequency of Zero Order Frequencies of First Order | |-----------------------------------|--| | (α) (β)
(AB) (αB)
(Aβ) (αβ) | Frequencies of Second Orde | (7) Ultimate Class Frequencies: If there are only two attributes, then the classes of the second order and is case of three attributes, classes of the third order are known as ultimate classes and the corresponding frequencies of such ultimate classes are called ultimate class To total number of ultimate classes can be obtained by using the formula: No. of Ultimate Classes = 2^n (where n stands for the number of attributes) If the number of attributes are 2, then the number of ultimate classes would be $2^2 = 4$. The ultimate class frequency would be - (AB), $(A\beta)$, (αB) and $(\alpha \beta)$. ### 5. DETERMINATION OF UNKNOWN CLASS FREQUENCIES If we known some of the class frequencies, we can easily found out the frequencies of the remaining classes. In case of two attributes, the unknown class frequencies can be known from the following table which is known as Nine-square table (since nine squares are formed) or | | A | α | Tota | |-------|------|------|------| | В | (AB) | (αB) | (B) | | В | (Aβ) | (αβ) | (β) | | | | (a) | N | | Total | (A) | (α) | | From this table, certain relationships can be described. Columnwise (Vertical): $(AB) + (A\beta) = (A)$ $(\alpha B) + (\alpha \beta) = (\alpha)$ $B = (B) + (\beta) = N$ Row-wise (Horizontally) as well: $(AB)+(\alpha B)=(B)$ $(A\beta) + (\alpha \beta) = (\alpha)$ $(A) + (\alpha) = N$ $N = (AB) + (A\beta) + (\alpha B) + (\alpha \beta)$ From these relationship, if we know any of the ultimate class frequencies and any other three values, we can find the
frequencies of the remaining classes. The following points are to be kept mind while determining the unknown class frequencies. (i) Class frequencies of the first order are obtained by adding the class frequencies of the second order: ond order. $$(A) = (AB) + (A\beta) \Rightarrow (AB) = (A) - (A\beta)$$ $$(A\beta) = (A\beta) + (A\beta)$$ $$(A\beta) = (A) - (A\beta)$$ $$(B) = (AB) + (\alpha B) \Rightarrow (AB) = (B) - (\alpha B)$$ $$(\alpha B) = (\beta) - (AB)$$ $$(\alpha) = (\alpha B) + (\alpha \beta) \Rightarrow (\alpha B) = (\alpha) - (\alpha \beta)$$ $$(\alpha\beta) = (\alpha) - (\alpha B)$$ $$(\beta) = (A\beta) + (\alpha\beta) \Rightarrow (A\beta) - (\alpha \beta)$$ $$(\alpha\beta) = (\alpha) - (\alpha B)$$ $$(\beta) = (A\beta) + (\alpha\beta) \Rightarrow (A\beta) - (\alpha\beta)$$ $$(\alpha\beta) = (A\beta) - (\beta)$$ (ii) If the ultimate class frequencies are known, the frequencies of the positive classes and negative classes can be obtained as follows: $(A) = (AB) + (A\beta); (\alpha) = (\alpha B) + (\alpha \beta)$ $$(A) = (AB) + (AB), (A) = (AB) + (AB)$$ $$(B) = (AB) + (\alpha B); (\beta) = (A\beta) + (\alpha \beta)$$ (iii) The sum of all ultimate class frequencies is always equal to the total number of $N = (AB) + (\alpha B) + (A\beta) + (\alpha \beta)$ The following examples illustrate the determination of unknown class frequencies. Example 1. Find the missing frequencies from the following data: (AB) = 100, (A) = 300, (B) = 600, N = 1000 Solution: Putting the given values in the nine-square table as follows: | | A | α | Total | |-------|-----------|-------------|----------| | В | (ÅB) | (α B) | (B) | | | 100 | ? | 600 | | β | (Aβ)
? | (αβ)
. ? | (β)
? | | Total | (A) | (α) | N | | - | 300 | ? | 1000 | The missing frequencies (AB), (aB) The missing frequencies $$(A\beta)$$, $(\alpha\beta)$ $(A\beta) = (A) - (AB) = 300 - 100 = 200$ $(\alpha) = N - (A) = 1000 - 300 = 700$ $$(\alpha) = N - (A) = 1000 - 300 = 700$$ $$(\beta) = N^{\frac{1}{2}}(B) = 1000 - 600 = 400$$ $$(\alpha B) = (B) - (AB) = 600 - 100 = 500$$ $$(\alpha \beta) = (\beta) - (A\beta) = 400 - 200 = 200$$ $(\alpha \beta) = (\beta) - (A\beta) = 400 - 200 = 200$ $$(A\beta) = 200, (\alpha B) = 500, (\alpha \beta) = 400, (\alpha) = 700, (\beta) = 400$$ Example 2. Finding the missing frequencies from the following data: $(\alpha \beta) = 500, (B) = 600, (\alpha) = 500, (\beta) = 1,000$ Solution: Putting the given data in the nine square table as follows: | | Α - | α | Terri | |-------|-----------|-------------|--------------| | В | (AB)
? | (a)
? | (B) 600 | | β | (Aβ) | (αβ)
500 | (β)
1,000 | | Total | (A) | (α)
500 | N
? | The missing frequencies are calculated as: $$N = (B) + (\beta) = 600 + 1000 = 1600$$ $$(A) = N - (\alpha) = 1600 - 500 = 1100$$ $$(A \beta) = (\beta) - (\alpha \beta) = 1000 - 500 = 500$$ $$(AB) = (A) - (A\beta) = 1100 - 500 = 600$$ $(\alpha B) = (B) - (AB) = 600 - 600 = 0$ Example 3. From the following ultimate class frequencies, find the frequencies of the positive and negative classes and the 'N': (AB) = 20, $$(\alpha B)$$ = 80, $(A\beta)$ = 140, $(\alpha \beta)$ = 160 Solution: Putting the given data in the nine square table as follows: | | A | α | Total | |-------|-------------|-------------|----------| | В | (AB) | (α B)
80 | (B) | | . β | (Aβ)
140 | (αβ)
160 | (β)
? | | Total | (A) | (α) | N
2 | Missing frequencies of positive classes $\{(A),(B)\}$ and negative classes $\{(\alpha),(\beta)\}$ and N are computed as follows: Positive Classes: $$(A) = (AB) + (A\beta) = 20 + 140 = 160$$ (B) = $$(AB) + (\alpha B) = 20 + 80 = 100$$ $(\alpha) = (\alpha B) + (\alpha \beta) = 80 + 160 = 240$ Negative Classes: $$(\beta) = (A\beta) + (\alpha\beta) = 140 + 160 = 300$$ $$N = (A) + (\alpha) = 160 + 240 = 400$$ $$N = (B) + (\beta) = 100 + 300 = 400$$ $$N = (AB) + (\alpha B) + (A\beta) + (\alpha \beta)$$ $$= 20 + 80 + 140 + 160 = 400$$ Example 4. Find the frequencies of the ultimate classes if N = 1000, (A) = 300, (B) = 600 and Solution: No. of Ultimate Classes = $2^n = 2^2 = 4$ These ultimate classes are: AB, $A\beta$, α B, α β . The frequency of the ultimate class AB is known, the other frequencies are calculated as follows: | | A | α | Total | |---------|-------------|------------|------------| | В | (AB)
100 | (α B) | (B)
600 | | β | (Aβ)
? | (αβ)
? | (β)
400 | | Total . | (A)
300 | (α)
700 | N | $$(\alpha B) = (B) - (AB) = 600 - 100' = 500$$ $$(A\beta) = (A) - (AB) = 300 - 100 = 200$$ $$(\alpha\beta) = (\alpha) - (\alpha\beta) = 700 - 500 = 200$$ Find the missing frequencies from the following data: $$(\alpha B) = 300, (B) = 600, (\alpha) = 800, (\beta) = 1000$$ [Alis. $$(AB) = 100, (\alpha B) = 500, (AB) = 700$$ [Ans. $(AB) = 100, (\alpha B) = 500, (A\beta) = 700, (A) = 800, N = 1600$] Given the following frequencies of the positive order, find out the frequencies of the $$N = 100$$, $(A) = 70$, $(B) = 40$ and $(AB) = 30$ [Ans. $$(\alpha B) = 10, (A\beta) = 40, (\alpha\beta) = 20, (0)$$ [Ans. $(\alpha B) = 10, (A\beta) = 40, (\alpha\beta) = 20, (\beta) = 60, (\alpha) = 30$] From the following ultimate class frequencies, find the frequencies of positive and negative classes and the 'N'. $$(AB) = 160, (A\beta) = 80(\alpha B) = 120, (\alpha \beta) = 40$$ [Ans. (A) = 240, ($$\alpha$$) = 160, (B) = 280, (β) = 120, N=400] 4. From the following data, find out the missing frequencies: $$(AB) = 35, (\alpha B) = 325, (A) = 383, N = 1500$$ [Ans. $$(B) = 360, (A\beta) = 348, (\alpha\beta) = 729, (\beta) = 1140, (\alpha) = 1117$$] [Ans. $(A\beta) = 60$, $(\alpha B) = 80$, $(\alpha \beta) = 120$, $(\alpha) = 200$] Find the frequencies of the ultimate classes if $$N = 300$$, $(A) = 100$, $(B) = 120$ and $(AB) = 40$ In an examination at which 600 students appeared, boys outnumbered girls by 16% of all the candidates. The number of passed candidates exceeded those of the failed candidates by 310. Boys failing in the examination numbered 88. Construct a nine square table and find the unknown class frequencies. [Ans. No. of boys passed = 260; Girls passed = 195; Girls failed = 57] # 6. CONSISTENCY OF DATA In order to find out whether the given data is consistent or not, we apply a very simple test. The test is to find out whether any one or more of the ultimate class frequencies is negative or not. If none of the ultimate class frequencies is negative, we can conclude that the given data or not. If none of the ultimate class frequencies is negative, we can conclude that the given data or not. If none of the ultimate class frequencies comes out to be are consistent. On the other hand, if any of the ultimate class frequencies comes out to be are consistency of the data are inconsistent. The necessary and sufficient condition for the consistency of the data is that no ultimate class frequencies is negative. Procedure for the consistency of the data, the Procedure for Testing the Consistency of Data: In order to test the consistency of the data, the following procedure following procedure is adopted: 311 (i) Put the given data in the form of a nine square table and obtain the unknown class frequencies. It should be remembered that there are four ultimate class frequencies in case of two attributes such as (AB), (A β), (A β), (α β). (ii) If any of the ultimate class frequencies such as (Λ B), (Λ β), (α B) and (α β) is negativ, then the given data are called inconsistent otherwise consistent. The following examples clarify the consistency of data. Example 5. From the following data find out whether the data are consistent or not: (A) = 200.(B) = 300.(AB) = 285, N = 1000 Solution: Put the given values in the nine-square table, and then we can find the missing ultimate class frequencies such as $(A\beta).(\alpha\,B).(\alpha\,B)$ | | A | α | Total | |-------|-----------------|--------------------------------|------------------| | В | (AB)
285 | (αB)
300 - 285 = 15 | (<i>B</i>) 300 | | β | $(A\beta)$ | $(\alpha\beta)$ | (β) | | | 200 – 285 = -85 | 700 –(-85) = 785 | 1000–300 = 700 | | Total | (A) | (α) | N | | | 200 | 800 | 1000 | From the table, the ultimate class frequencies are: $$(AB) = 285, (A\beta) = -85, (\alpha B) = 15, (\alpha \beta) = 785$$ Since one of the ultimate class frequencies is negative i.e. $(A\beta) = -85$, the given data are inconsistent. Example 6. Examine the consistency of the following data: $$N = 500, (\alpha B) = 90, (A\beta) = 40, (\alpha \beta) = 310$$ Solution: Put the values in the nine-square table, and then we can find the missing frequencies. | | В | β | Total | |-------|---------------------|-----------------|-------------------| | A | (AB)
100–40 = 60 | (Aβ)
= 40 | (A) 500-400 = 100 | | α | $(\alpha B) = 90$ | (αβ)
- = 310 | (α)
= 400 | | Total | (β)
= 150 | (β)
= 350 | N
= 500 | Since all the ultimate class frequencies i.e. (AB), $(A\beta)$, (αB) , $(\alpha \beta)$ are positive, the given data are consistent. Example 7. Find ultimate class frequencies and test for consistency from the following data: N = 100, (A) = 76, (B) = 60, (AB) = 15Solution: Putting the given values in the nine-square to | | · · | | | |--------------------|---------------|-------------|------| | В | (AB) | α | | | | = 15 | (a B) | Tota | | | (AB) | = 45 | (B) | | В | = 61 | (αβ) | - 60 | | tally all all outs | C PLACE NO. 1 | = -21 | (B) | | Total | (A) | | 40 | | 10 | = 76 | (α)
= 24 | N | The ultimate class frequencies are: (AB) = (given) $$(\alpha B) = (B) - (AB) = 60 - 15 = 45$$ $$(A\beta) = (A) - (AB) = 76 - 15 = 61$$ $$(\alpha \beta) = (\alpha) - (\alpha B) = 24 - 45 = -21$$ Since one of the ultimate class frequencies is negative i.e. ($\alpha(\beta) = -2L$ the given data are Example 8. In a report on consumer's preference, it was revealed that out of 500 persons surveyed, 410 preferred tea, 380 preferred
coffee and 270 persons liked both. Are the data consistent? Solution: Let A denote preference for Tea B denote preference for coffee Thus, the given data is: $$N = 500, (A) = 410, (B) = 380, (AB) = 270$$ We can find the missing ultimate class frequencies by putting the values in the nine square | we led and a con- | | α | Total | |-------------------|-------------|--------------|------------| | R with the second | (AB) | (α B)
110 | (B)
380 | | - Service Area | 270
(Aβ) | (αβ)
-20 | (β)
120 | | P | (A) | (a) | N
500 | | Total | (A) | 90 | | Since one of the ultimate class frequency i.e. $(\alpha \beta) = -20$, so the data are inconsistent. Exercise 2 Test the consistency of the following data: N = 1000, (A) = 600, (B) = 500, (AB) = 50 [Ans. $(\alpha \beta) = -50$, Inconsistent] Test the consistency of the following data: $(\alpha B) = 100, (A\beta) = 125, (\alpha \beta) = 80, N = 300$ [Ans. (AB) = -5, Inconsistent] 1.000 persons are living in a focality. The number of educated persons is 750 and that of unemployed persons is 400. Of the unemployed persons, 410 are educated. Is there any inconsistency in the information? [Ans. $(\alpha \beta) = -10$, Inconsistent] An enquiry of 30 persons was conducted regrading their food habits. It was found that 25 of them were vegetarians and 20 of them liked boiled vegetables. Another 10 were vegetarians and liking boiled vegetables. Show that the data are inconsistent. [Ans. $(\alpha \beta) = -5$, Inconsistent] In a report on consumer's preference, it was given that out of 500 persons surveyed, 410 preferred Coca Cola, 380 preferred Pepsi Cola and 270 persons liked both. Are the data [Ans. $(\alpha \beta) = -20$, Inconsistent] Find ultimate class frequencies and test for consistency of the data: $$(A) = 40, (B) = 60, (AB) = 30, N = 130$$ [Ans. $(\alpha B) = 30, (A\beta) = 10, (\alpha \beta) = 60, \text{consistent}$] #### 7. ASSOCIATION OF ATTRIBUTES Generally, when one attribute appear in a number of cases along with the other attribute, then we find mutual association between them. But in statistics, it has a special meaning. In statistics, two attributes are said to be associated when both the attribute are more commonly found together than is ordinarily expected. In the words of Yule and Kendel, "In statistics A and B are associated only if they together in a greater number of cases then is to be expected if they are independent". Evidently A and B are disassociated if this number is less than expected for independence. # 7.1 KINDS OF ASSOCIATION Association of attributes can be positive, negative or independent. It may be of the following three forms: (1) Positive Association: When two attributes are found to be present or absent together, are said to be positively Associated or merely Associated. Such association is found to be present or absent together, between situation the observed frequency is found to be more than the expected frequency. (AB) > $\frac{(A)(B)}{(AB)}$ (2) Disassociation or Negative Association: When presence of one attribute is associated with the absence of other attribute, they are said to negative association may also be termed as disassociation. Negative Association is found between literacy and criminality, vaccination and attack of small pox, education and dishonesty etc. In such a situation, the observed frequency is found to be less then the expected frequency. $$(AB) < \frac{(A)(B)}{N}$$ (3) Independence: When the two attributes have not a tendency of being present together or not that a tendency of one attribute being absent when another is present, then they are said to be independent of each other. In such a situation, the observed frequency is equal to be expected frequency. Symbolically: $$(AB) = \frac{(A)(B)}{N}$$ #### 7.2 METHODS OF DETERMINING ASSOCIATION Following are the main methods for determining the association between the two attributes: - (1) Frequency Method - (2) Proportion Method. - (3) Yule's Coefficient of Association. - (4) Coefficient of Colligating. - (5) Coefficient of Contingency. Let us discuss them in detail # (1) Frequency Method The method is also called **comparison** of observed and expected frequency method. Under this method, we determine the nature of association between the two attributes by comparing the observed frequency with expected frequency. If A and B are two attributes, we compare the observed frequency of AB with the expected frequency of AB is calculated by using the following formula: $$E(AB) = \frac{(A).(B)}{N}$$ (A) = Frequency of attribute A (B) = Frequency of attribute B Symbolically, two attributes A and B are: Symbolically, two attributes A and B and B. (i) Independent if O (AB) = i.e. (AB) = $$\frac{(A).(B)}{N}$$ (ii) Positively associated if O(AB) > E(AB) i.e. (AB) > $$\frac{(A) \cdot (B)}{N}$$ (iii) Negatively associated if O (AB) < E(AB) i.e. (AB) < $\frac{(A) \cdot (B)}{N}$ Similarly, we can determine the nature of association for A and β,α and B and α and β by comparing the observed frequency with the expected frequency. The frequency method can be summarised in the table below: | Attributes | Independent | Positive Association | Negative Association | |----------------------|--|---|---| | A and B | $(AB) = \frac{(A) \times (B)}{N}$ | $(AB) > \frac{(A) \times (B)}{N}$ | $(AB) < \frac{(A) \times (B)}{N}$ | | A and β | $(A\beta) = \frac{(A) \times (\beta)}{N}$ | $(A\beta) > \frac{(A) \times (\beta)}{N}$ | $(A\beta) < \frac{(A) \times (\beta)}{N}$ | | α and β | $(\alpha B) = \frac{(\alpha) \times (B)}{N}$ | $(\alpha B) > \frac{(\alpha) \times (B)}{N}$ | $(\alpha B) < \frac{(\alpha) \times (B)}{N}$ | | α and β | $(\alpha \beta) = \frac{(\alpha) \times (\beta)}{N}$ | $(\alpha\beta) > \frac{(\alpha) \times (\beta)}{N}$ | $(\alpha\beta) < \frac{(\alpha) \times (\beta)}{N}$ | Example 9. Find if A and B are independent, positively associated or negatively associated $$(A) = 470, (B) = 620, (AB) = 320, N = 1000$$ Solution: O(AB) = 320 (Given) $$E(AB) = \frac{(A).(B)}{N}$$ $$= \frac{470 \times 620}{1000} = 291.4$$ Since the observed frequency of AB (320) is more than the expected frequency of AB (291.4), attribute A and B are positively associated. Example 10. Given (A) = 80, (B) = 60, (AB) = 40, N = 200. $_{0}$ ple 10. Or $_{0}$ $_{$ Solution: Putting the given values in a nine square table | , | Α . | Table: | | |-------|--------------|---|-------------| | В | (AB)
= 40 | α
(αB) | Total | | β | (Aβ)
= 40 | = 20
(αβ) | (B)
= 60 | | Total | (A)
= 80 | = 100 · · · · · · · · · · · · · · · · · · | = 140 · | | | | = 120 | = 200 | We can calculate the expected frequencies as follows. (i) $$E(AB) = \frac{(A).(B)}{N} = \frac{80 \times 60}{200} = 24$$ $$O(AB) = 40$$ (Given) $$O(AB) > E(AB)$$ i,e., $40 > 24$ $$E(\alpha\beta) = \frac{(\alpha).(\beta)}{N} = \frac{120 \times 80}{200} = 84$$ $$O(\alpha\beta) = 100(Given)$$ $$O(\alpha\beta) > E(\alpha\beta)$$ (ii) α and β are positively associated. (iii) E(A $$\beta$$) = $\frac{(A) \cdot (B)}{N} = \frac{80 \times 140}{200} = 56$ $$O(A \beta) = 40 (Given)$$ $$O(A\beta) < E(A\beta)$$ i.e., $40 < 56$ A and β are negatively associated. (iv) $$E(\alpha\beta) = \frac{(\alpha) \cdot (B)}{N} = \frac{120 \times 60}{200} = 36$$ $O(\alpha B) = 20(Given)$ $$O(\alpha B) < E(\alpha B)$$ i.e., 20 < 36 and B are negatively associated. Example 11. Out of total number of 900 members, 300 have A and 280 have B attributes, 180 persons have both A and B attributes. Are A and B independent? Solution: Using frequency method, two attributes A and B are independent if $$(AB) = \frac{(A) \times (B)}{N}$$ According to given data, (AB) = 180, (A) = 300, (B) = 280 and $$\frac{(A)\times(B)}{N} =
\frac{300\times280}{900} = 93$$ approx. Thus (AB) > $$\frac{(A).(B)}{N}$$ Hence A and B are not independent but positively associated. #### Limitation of Frequency Method This method determines only the nature of association (i.e. whether there is positive or negative association or no association) and does not tell us anything about the degree of association (i.e. whether the association is high or low) between the attributes. ### Exercise 3 Show that whether A and B are independent, positively associated or negatively associated in each of the following cases: (i) $$N = 300$$, (A) = 48, (B) = 100 and (AB) = 16 ## [Ans. (i) Independent (ii) Positively associated] Find if A and B are independent, positively associated or negatively associated from the data given below: $$(AB) = 256$$, $(\alpha B) = 768$, $(A\beta) = 48$, $(\alpha \beta) = 144$ [Ans. Independent] From the following data, find out whether the attributes (i) A and B (ii) A and β (iii) α and B and (iv) α and β are independent, positively associated or negatively associated. $$N = 100$$, $(A) = 40$, $(B) = 80$, $(AB) = 30$ [Ans. (i) –vely associated (ii) + vely associated (ii) + vely associated and (iv) –vely associated] Given (A) = 12, (B) = 25, (AB) = 4, N = 75, Are A and B independent? [Ans. Independent] (2) Proportion Method Under this method, if A and B are two attributes, two proportions are calculated: (AB) (ii) Proportion of B's in $$\alpha's = \left[\frac{(\alpha B)}{(\alpha)}\right]$$ (i) Independent if $$\frac{(AB)}{(A)} = \frac{(\alpha B)}{(\alpha)}$$ (ii) Positively associated if $$\frac{(AB)}{(A)} > \frac{(\alpha B)}{(\alpha)}$$ (iii) Negatively associated if $$\frac{(AB)}{(A)} < \frac{(\alpha B)}{(\alpha)}$$ The association between A and B can also be found by comparing the proportion of A in B and B. The two proportions are calculated as: Proportion of A's in $$B = \left[\frac{(AB)}{(B)}\right]$$ Proportion of A's in $$\beta s = \left[\frac{(A\beta)}{(\beta)}\right]$$ The same results hold good. Similarly we can determine the nature of association for α and \emph{B} by comparing the proportion of α in B and β . The proportion method can be summarized in the table below: | Attributes | Independence | Positive Association | Negative Association | |---------------------------------------|---|---|--| | A in B and β | $\frac{(AB)}{(B)} = \frac{(A\beta)}{(\beta)}$ | $\frac{(AB)}{(B)} > \frac{(A\beta)}{(\beta)}$ | $\frac{(AB)}{(B)} < \frac{(A\beta)}{(\beta)}$ | | $B \text{ in } A \text{ and } \alpha$ | $\frac{(AB)}{(A)} = \frac{(\alpha B)}{(\alpha)}$ | $\frac{(AB)}{(A)} > \frac{(\alpha B)}{(\alpha)}$ | $\frac{(AB)}{(A)} < \frac{(\alpha B)}{(\alpha)}$ $(\alpha B) \geq \frac{(\alpha B)}{(\alpha B)}$ | | α in B and β | $\frac{(\alpha B)}{(B)} = \frac{(\alpha \beta)}{(\beta)}$ | $\frac{(\alpha B)}{(B)} > \frac{(\alpha \beta)}{(\beta)}$ | (B) (β)
(Aβ) < (αβ) | | β in A and α | $\frac{(A\beta)}{(A)} = \frac{(\alpha\beta)}{(\beta)}$ | $\frac{(A\beta)}{(A)} > \frac{(\alpha\beta)}{(\alpha)}$ | (A) (a) | Example 12. Show whether A and B are independent, positively associated or negatively associated by the method of proportions from the following data: $$(A) = 430, (\alpha) = 570$$ $$(AB) = 294, (\alpha B) = 380$$ **Solution:** Given (A) = 430, $(\alpha) = 570$ $$(AB) = 294, (\alpha B) = 380$$ Using method of proportions, Using method of proportions, Proportion of B in $$A = \frac{(AB)}{(A)} = \frac{294}{430} = 0.68$$ or 68% Proportion of B in $$\alpha = \frac{(\alpha B)}{(\alpha)} = \frac{380}{570} = 0.66$$ or 66% $$\operatorname{As} \frac{(AB)}{(A)} > \frac{(\alpha B)}{(\alpha)}$$:. A and B are positively associated. Example 13. Out of 70,000 literates in a district, number of criminals were found to be 500. Out of 9,30,000 illiterates in the same district, the number of criminals was 15,000. On the basis of data do you find any association between illiteracy and criminality. Solution: Let A denote illiteracy and as such a represents literacy. Let B denote criminality and as such β would denote non-criminality. We are given $$(\alpha) = 70,000, (\alpha B) = 500, (A) = 9,30,000, (AB) = 15,000$$ Using the proportion method, Proportion of criminals (B) among illiterate (A) - $$\frac{(AB)}{(A)} = \frac{15,000}{930,000} = .016 \text{ or } 1.6\%$$ Proportion of criminals (B) among literate (α) – $$\frac{(\alpha B)}{(\alpha)} = \frac{500}{70,000} = 0.0071 \text{ or } .71\%$$ As $$\frac{(AB)}{(A)} > \frac{(\alpha B)}{(\alpha)}$$ Thus, there is a positive association between criminality and illiteracy. Fample 14. In a population of 500 students the number of married is 200. Out of 150 students who failed 60 belonged to the married group. It is required to find out whether the attributes with a denote-married students and as such α or negatively associated. who and the state of find out whether the attributes solution: Let A denote married students and as such α would denote unmarried students and as such α would denote unmarried tet B denote mon-failures. Putting the information in a such α would denote unmarried tet B denote non-failures. Putting the information in a such α would denote unmarried tet B denote non-failures. | i distrib | A
(Married) | α | ormano | |--------------|---------------------|-----------------------------|---------------------| | B (Failure) | (AB)
= 60 | (Unmarried)
(αB)
= 90 | Total (B) | | Non-Failure) | (<i>A</i> β) = 140 | (αβ)
= 210 | = 150
(B) | | Total | (A)
= 200 | (α)
= 300 | = 350
N
= 500 | Using the proportion method, Percentage of failed students (B) among married (A) $$\frac{(AB)}{(A)} \times 100 = \frac{60}{200} \times 100 = 30\%.$$ Percentage of failed students (B) among unmarried (a) $$\frac{(\alpha\beta)}{(\alpha)} \times 100 = \frac{90}{300} \times 100 = 30\%$$ Since the two percentages (or proportions) are same, we conclude that the attributes marriage and failure are independent. ### Limitation of Proportion Method Like frequency, method, this method determines only the nature of association and does not tell us anything about the degree of association. Exercise 4 In a certain study the following data were reported: $$(AB) = 216, (A\beta) = 25, N = 400 (B) = 300$$ Determine the association between A and B by the method of proportions. [Ans.: Positively as: 322 Out of 3,000 unskilled workers of a factory, 2,000 come from rural areas and out of 1,200 skilled workers, 300 come from rural areas. Determine the association between skill and residence in rural areas by the method of proportions. [Ans.: Negatively associated] Out of 900 persons, 300 were literate and 400 had travelled beyond the limits of their district. Of the literate persons 200 were among those who travelled. Is there any relation between literacy and trayelling? [Ans.: Positively associated] 200 candidates appeared for a competitive examination and 60 of them succeeded, 35 received special coaching and out of them 20 candidates succeeded. By using proportion method, discuss whether coaching is effective or not. [Ans.: Special coaching is effective] Out of 5 lakh literates in a particular district of India, no. of criminals was 2,000. Out of 50 lakh illiterates in the same district, no. of criminals was 80,000. On the basis of these figures, do you find any association between illiteracy and criminality? [Ans.: Positive association] ### (3) Yule's Coefficient of Association Prof. Yule has propounded a coefficient of association to find out degree of association between two attributes. The coefficient of association gives us the direction and the degree of association between the two attributes. The coefficient of association is denoted by Q and is calculated by applying the following formula: $$Q = \frac{(AB)(\alpha\beta) - (A\beta)(\alpha B)}{(AB)(\alpha\beta) + (A\beta)(\alpha B)}$$ Where Q = Yule's coefficient of Association. (AB), $(\alpha\beta)$, $(A\beta)$ and $(\alpha\beta)$ = Ultimate class frequencies. #### Interpretation of Coefficient of Association Like coefficient of correlation, the value of Q lies between -1 and +1. Its interpretation is as follows: - (i) If Q = 0, there is no association between the attributes i.e. they are independent. - (ii) If Q = +1, there is a perfect positive association - (iii) If Q = -1, there is a perfect negative association. Remark: Yule's coefficient of association can be remembered with the help of the following table: | | A | | |-----------------
--|------| | В | (AB) | α | | β | (Aβ) 4 | (aB) | | timby frequency | and the same of th | (αβ) | Multiply frequencies of the first and fourth cells and subtract the multiplication of the ond and the third cells from it. Divide the figure so obtained by the addition of the two multiplications. multiplications. Example 15. Eighty-eight students residents of an Indian city, who were interviewed during a sample survey are classified below according to their smoking and tea drinking habits. Calculate Yule's coefficient of Association and comment on its value: | Smokers | Non-smokers | |---------|--| | 40 . | 32 | | 3 | 33 | | | St. Communication of the Commu | Solution: Let $A = \text{Tea drinkers } \alpha = \text{Non-tea drinkers}$ $B = \text{Smokers } \beta = \text{Non-smokers}$ Tabulating the given data: | e al municipal pay randayed libra | В | β | |-----------------------------------|--------------|----------------| | . A | (AB)
= 40 | · (Aβ)
= 33 | | α | (αB)
= 3 | (αβ)
= 12 | Applying Yule's Coefficient of Association: $$Q = \frac{(AB)(\alpha\beta) - (\alpha B)(A\beta)}{(AB)(\alpha\beta) + (\alpha B)(A\beta)}$$ $$= \frac{40 \times 12 - 3 \times 33}{40 \times 12 + 3 \times 33}$$ $$= \frac{381}{579} = +0.65$$ Thus, there is positive association between tea drinkers and smokers. $$N = 1500, (A) = 383, (B) = 360, (AB) = 35$$ Solution: By putting the know values in the nine square table, we can find out the unknown | alues. | 4 | α | Total | |--------|-------|--------|--------| | В | (AB) | (αB) | (B) | | | = 35 | = 325 | = 360 | | β | (Aβ) | (αβ) | (β) | | | = 348 | = 792 | = 1140 | | Total | (A) | (α) | N | | | = 383 | = 1117 | = 1500 | Applying Yule's Coefficient of Association: $$Q = \frac{(35)(792) - (348)(325)}{(35)(792) + (348)(325)}$$ $$= \frac{27720 - 113100}{27720 + 113100} = \frac{-85380}{140820} = -0.606$$ Thus, there is negative association between A and B. Example 17. Investigate the association between the temperament of brothers and sisters from the following data: Good natured brothers and good natured sisters: 1040 Good natured brothers and sullen sisters: 160 Sullen brothers and good natured sisters: 180 Sullen brothers and sullen sisters: 120 Solution: Let A = good natured brothers; $\alpha = sullen$ brothers $B = good natured sisters; \beta = sullen sisters$ · Tabulating the given data in a nine square table: | | В | β | |---|----------------|---------------| | A | (AB)
= 1040 | (Aβ)
= 160 | | | = 1040 | = 160 | | α | (αΒ) | (αβ)
= 120 | | | = 180 | = 120 | Applying Yule's method: $Q = \frac{(AB)(\alpha\beta) - (\alpha\beta)(A\beta)}{(AB)(\alpha\beta) + (\alpha\beta)(A\beta)}$ $$Q = \frac{1040 \times 120 - 160 \times 180}{1040 \times 120 + 160 \times 180} + (\alpha_B)(AB) + (\alpha_B)(AB)$$ $$= \frac{124,800 - 28,800}{1,24,800 + 28,800} = \frac{96000}{153600} = +0.625$$ here is no situative account. Thus, there is positive association between temperament of brothers and sisters. Example 18. Calculate Yule's coefficient of association between marriage and fail students from the following data pertaining to 525 students: | | Passed | 17 | and failu | |--------------|--------|--------|---------------| | Married / | 90 | Failed | $\overline{}$ | | Unmarried // | 260 | 65 | Total
155 | Solution: Let A denote married persons and as such α will denote unmarried persons. Let B denote those who failed and as such β will denote those passed. Thus, $(A\beta) = 90, (\alpha\beta) = 260, (AB) = 65 (\alpha B) = 110$ | | В | | |---|--------------------|-------------------| | A | (AB)
= 65 | β
(Aβ)
= 90 | | α | (\alpha B) = 110 · | (αβ)
= 260 | Applying Yule's coefficient of association: $$Q = \frac{(AB)(\alpha\beta) - (A\beta)(\alpha\beta)}{(AB)(\alpha\beta) + (A\beta)(\alpha\beta)} = \frac{(65)(260) - (110)(90)}{(65)(260) + (110)(90)}$$ $$= \frac{16900 - 9900}{16900 + 9900} = \frac{7000}{26800} = + 0.261$$ Example 19. Calculate the Coefficient of Association between extravagance in fathers and sons from the following data: | Extravagant fathers with extravagant sons | | 327 | |---|-----|-----| | | | 545 | | Extravagant fathers with miserly sons | | 741 | | Miserly fathers with extravagant sons Miserly fathers with miserly sons | ı İ | 235 | | WINCELLY tathore with micerly cons | | | Solution: Let A = extravagant fathers; α = miserly fathers B = extravagant sons; β = miserly sons Tabulating the given data in the nine-square table: | | В | β | |---|---------------|-------| | | (AB) | (Αβ) | | A | (AB)
= 327 | = 545 | | | (αB) | (αβ) | | α | = 741 | = 235 | Applying Yule's coefficient of Association: $$Q = \frac{(327) \times (235) - (741) \times (545)}{(327) \times (235) + (741) \times (545)}$$ There is, thus negative association between extravagant in fathers and sons. Example 20. From the data given in the following table, compare the association between literacy and unemployment in the urban and rural areas; | | Urban | Rural | |-------------------------------|---------|----------| | Total Adult Males | 25 lakh | 200 lakh | | Literate Male | 10 lakh | 40 lakh | | Unemployed Male | 5 lakh | 12 lakh | | Literate and Unemployed males | 3 lakh | 4 lakh | Solution: Let A = Literate males; $\alpha = \text{illiterate males}$ $B = Unemployed males; \beta = Employed males$ #### Urban Area: Tabulating the given data in a nine square table: | | В | β | 11.00 | |---|-------------|-------------------|-------------| | A | (AB)
= 3 | (<i>A</i> β) = 7 | (A)
= 10 | | α | (αB) | (αβ) | (α) | | | = 2 | = 13 | = 15 | | | (B) | (β) | N | | | = 5 | = 20 | = 25 | $$Q = \frac{(3 \times 13) - (2 \times 7)}{(3 \times 13) + (2 \times 7)} = \frac{39 - 14}{39 + 14} = \frac{25}{53} = +0.47$$ Rural Area: Tabulating the given data in a nine square table 327 | | В | |
-------------|------|--------------| | A | (AB) | β Tota | | | = 4 | (Ap) | | α | (αB) | = 40 | | | = 8 | (αβ) (α) | | Total | (B) | = 16 | | | = 12 | (β)
= 188 | $$Q = \frac{(4 \times 152) - (8 \times 36)}{(4 \times 152) + (8 \times 36)}$$ $$= \frac{608 - 288}{608 + 288} = \frac{320}{896}$$ $$= +0.35714$$ Thus, the coefficient of association between literacy and unemployment in the urban area is $\pm .47$ and in rural area $\pm .35$ Example 21. 200 candidates appeared for a competitive examination and 60 of them succeeded 35 received special coaching and out of them 20 candidates succeeded. Using Yule's coefficient of association discuss whether special coaching is effective or not. Solution: Let A = Successful candidates; $\alpha = Unsuccessful candidates;$ B = who received special coaching; β = those who did not receive special coaching The data given are: | and and it | A | α | Total | |------------|--------------|---------|-----------| | В | (AB)
= 20 | - | s(B) = 35 | | β | | Liberal | 1-1 | | Total | (A) = 60 | - m | . N = 200 | The complete data will be as follows: | | 2 × 2 A3 | Τα | Total | |-------|--------------|-------------------|--------------| | | (AB) | α
(αB)
= 15 | (B)
= 35 | | В | = 20
(Aβ) | (αβ)
= 125 | (β)
= 165 | | β | = 40
(A) | (α)
= 140 | N
+ 200 | | Total | . = 60 | - 140 | | Yule's coefficient of Association is given by - coefficient of Association 1 $$Q = \frac{(20 \times 125) - (15)(60)}{(20 \times 125) - (15)(60)}$$ $$= \frac{1900}{3100} = \frac{19}{31} = 0.65$$ There is thus a moderate degree of positive association between A and B. Hence the special coaching is effective. # IMPORTANT TYPICAL EXAMPLES Example 22. In an examination at which 600 candidates appeared, boys out numbered girls by 16 per cent of all candidates. Number of passed candidates exceeded the number of failed candidates by 310. Boys failing in the examination numbered 88. Calculate coefficient of association between male sex and success in the examination. Solution: Denoting boys by A and girls by α ; Success by B and failure by β , the given values will by presented like this: $$(A) + (\alpha) = 600 \dots (i)$$ $(B) + (\beta) = 600 \dots (iii)$ $(A) - (\alpha) = 96 \dots (ii)$ $(B) - (\beta) = 310 \dots (iv)$ By adding (i) & (ii), we ge By adding (iii) & (iv), we get $2(A) = 696 \dots (A) = 348 \dots (B) = 455$ Now we have: $(\alpha) = 600 - 348 = 252, (\beta) = 600 - 455 = 145$ Other values can be obtained from the nine square table as follows: We are also given $(A\beta) = 88$ | : | A | | | |-----------------|--------------|---------------|------------| | В | (AB) | (aB) | Total | | , . | = 260 | = 195 · · · · | (B) | | β | (Aβ)
= 88 | (αβ) | = 455 | | | (A) | = 57 | (β) | | Total | = 348 | (α)
= 252 | = 145
N | Applying Yule's Coefficient of Association: $$Q = \frac{(AB)(\alpha\beta) - (A\beta)(\alpha B)}{(AB)(\alpha\beta) - (A\beta)(\alpha B)}$$ $$= \frac{260 \times 57 - 88 \times 195}{260 \times 57 + 88 \times 195} = \frac{14820 - 17160}{14820 + 17160} = \frac{-2340}{31980} = -0.073$$ s. thus, negative association between the contraction of the second of the contraction cont There is, thus, negative association between the two attributes i.e. male examines and success in the examination. Example 23. The following table gives the distribution of students according to age in completed years and regular player among them: | Age in years: | 15 . | 16 | . 17 | 18 | 19 | 20 | |------------------|------|-----|------|-----|-----|----| | No. of students: | 250 | 200 | 150 | 120 | 100 | 80 | | Regular players: | 200 | 150 | 90 | 48 | 30 | 12 | Calculate coefficient of association between maturity and playing habits on the assumption that maturity is attained in the 18th year of age. Solution: Let 'A' denote maturity (18 to 20 years) and a' minority (15 to 17 years) | 'B' denote regular players and β n | | |--|--| | No. of minor students No. of major students No. of minor regular player No. of major regular players | $(\alpha) = 250 + 200 + 150 = 600$ $(A) = 120 + 100 + 80 = 300$ $(\alpha B) = 200 + 150 + 90 = 440$ $(AB) = 48 + 30 + 12 = 90$ | | | | values in a 2 × 2 association table as follows: | B (AB) (aB) = 440 (cB) (cB) (cB) (cB) (cB) (cB) (cB) (cB) | | |---|--------------| | = 90 (gs) | (B) = 530 | | | (β)
= 370 | | β = 210 (α) = 160 | N
= 90 | plying Yule's coefficient of the plying Yule's coefficient of the plying Yule's $$Q = \frac{(AB)(\alpha\beta) - (\alpha B)(\alpha\beta)}{(AB)(\alpha\beta) + (\alpha B)(A\beta)}$$ $$= \frac{90 \times 160 - 440 \times 210}{90 \times 160 + 440 \times 210}$$ $$= \frac{14400 - 92400}{14400 + 92400} = \frac{-78000}{106800} = -0.73$$ Thus, there is negative association between maturity and playing habits among the Example 24. Using Yule' coefficient of association, investigate the association between eye colour of husbands and eye colour of wives from the data given below: | Husbands with light eyes and wives | | 200 | a di cando | |---|--------|---------|-------------------| | With light eyes | = | 309 | No. of the last | | Husbands with light eyes and wives with
not light eyes | | 214 | | | Husbands with not light eyes and wives | | 1 | | | with light eyes | = | 132 | | | Husbands with not light eyes and wives | | | | | with not light eyes | = | 119 | | | | obonde | with no | t light eyes byo. | Solution: Denoting husbands with light eyes by A and husbands with not light eyes by α ; wives with light eyes by B and wives with not light eyes by β . Putting the values in a 2 × 2 association table as follows. | | В | β | |---|---------------|-------| | | (AB)
= 309 | (Αβ) | | A | = 309 | = 214 | | _ | (αB) | (αβ) | | u | = 132 | = 119 | Applying Yule's Coefficient of association: $$Q = \frac{(AB)(\alpha\beta) - (\alpha B)(A\beta)}{(AB)(\alpha\beta) + (\alpha B)(A\beta)}$$ $$= \frac{309 \times 119 - 132 \times 214}{309 \times 119 + 132 \times 214} = \frac{8523}{6519} = 0.13$$ is the list. There is, thus, little association between the eye colour of husbands and that of wives. Find out the coefficient of association between the type of teaching and success in | College | Successful | , II- | |------------|------------|--------------| | Conege | 58 | Unsuccessful | | University | 40 | 42 | [Ans.: Q=+.179] Investigate the association between eye colour of fathers and eye colour of sons from the colour of sons from Fathers with black eyes and sons with black eyes Fathers with black eyes and sons with not black eyes 100 Fathers with not black eyes and sons with black eyes Fathers with not black eyes and sons with not black eyes 200 [Ans.: Q = .6, Positive Association] In a study to find whether tall husbands tend to marry tall wives, the following information about the wives of 250 tall and 250 short statu red husbands were published. Find the coefficient of association between the stature of wives and husbands: | to nectage in the second | Tall husbands | Short husbands | |--------------------------|---------------|----------------| | Tall wives | 112 | 26 | | Short wives | 22 | 90 | [Ans.Q = +0.89] Find the association between literacy and unemployment from the following figures: | Total Adults | | 10,000 | |--------------|--------------------|--------| | Literate | 1.50 | 1,290 | | | and the facilities | 1,390 | | Unemployed | | 820 | Comment on the result. [Ans. Q = 0.923] Prepare a 2 × 2 table from the following information, calculate Yule's coefficient association and interpret the result: $$N = 500$$, $(\alpha) = 300$, $(B) = 125$, $(AB) = 25$ [Ans. Q=-.55, Negative association] 331 A teacher examined 280 students in Economics and Auditing and found that 160 failed in Economics, 140 failed in Auditing and 80 failed in both the subjects. Is there any association between failure in Economics and Auditing? # [Ans. Q = 0, No Association] In an experiment on immunization of cattle from tuberculosis, the following results were | | Died or affected | Unaffected | | | |----------------|------------------|------------|--|--| | Inoculated | 12 | 26 | | | | Not Inoculated | 16 | 6 | | | Examine the effect of vaccine in controlling susceptibility to tuberculosis. [Ans. Q = -.70, effective] 1660 candidates appeared for a competitive examination and of these 422 were successful, 256 had attended a coaching class and of these 150 came out successful. Examine the utility of the coaching class. [Ans. Q = +.7096 Coaching is effective] #### (4) Coefficient of Colligation Prof. Yule has given another coefficient known as Coefficient of Colligation to find the degree of association between the two attributes. It is denoted by symbol γ (Gamma) and is calculated by applying the following formula: $$\gamma = \frac{\sqrt{(AB)(\alpha\beta)} - \sqrt{(A\beta)(\alpha B)}}{\sqrt{(AB)(\alpha\beta)} + \sqrt{(A\beta)(\alpha B)}} = \frac{1 - \frac{\sqrt{(A\beta)(\alpha B)}}{\sqrt{(AB)(\alpha\beta)}}}{1 + \frac{\sqrt{(A\beta)(\alpha B)}}{\sqrt{(AB)(\alpha\beta)}}}$$ where γ = Coefficient of Collignation. Relationship between Coefficient of Colligation and Coefficient of Association: Yule coefficient of association can also be obtained from the coefficient of Colligation by using the formula: $$Q = \frac{2\gamma}{1 + \gamma^2}$$ Coefficient of Colligation is not widely used in practice. Example 25. Form the data given below, find the coefficient of Colligation $$(AB) = 80, (A\beta) = 20, (\alpha B) = 220, (\alpha \beta) = 180$$ Hence or otherwise find Yule's coefficient of association. Solution: Tabulating the given data in a nine
square table: 333 $$= \frac{1 - \sqrt{\frac{(A\beta)(\alpha B)}{(AB)(\alpha\beta)}}}{1 + \sqrt{\frac{(A\beta)(\alpha B)}{(AB)(\alpha\beta)}}}$$ $$= \frac{1 - \sqrt{\frac{(A\beta)(\alpha B)}{(AB)(\alpha\beta)}}}{1 + \sqrt{\frac{(A\beta)(\alpha B)}{(AB)(\alpha\beta)}}} = \frac{1 - \sqrt{\frac{20 \times 220}{80 \times 180}}}{1 + \sqrt{\frac{20 \times 220}{80 \times 180}}}$$ $$= \frac{1 - \sqrt{\frac{4400}{14400}}}{1 + \sqrt{\frac{4400}{14400}}} = \frac{1 - \sqrt{3055}}{1 + \sqrt{3055}} = \frac{1 - 5527}{1 + 5527} = \frac{.4473}{15527} = + 0.288$$ # Calculation of Yule's coefficient of Association Yule's coefficient of Association can be obtained from coefficient of Colligation using the formula: $$Q = \frac{2\gamma}{1+\gamma^2} = \frac{2 \times 288}{1 + (288)^2} = \frac{576}{1 + 083}$$ $$= \frac{576}{1083} = +.532$$ Example 26. From the following data relating to sanity and deafness of 135 persons, find out the coefficient of association between sanity and deafness using coefficient of Colligation:] | CHAIR T | | Insane | Total | |------------|------|--------|-------| | 7 41. 2017 | Sane | · · | 60 | | Deaf | . 20 | 40 | 75 | | Not Deaf | 50 | 25 | 135 | | Total | 70 | 65 | 1 | $\alpha = Insanc$ β = Not Deaf B = Deaf; Tabulating the given data in a nine square table: | | | α | |---|-----------------|--------------| | | (AB) | (αB)
= 40 | | В | = 20 | (αβ) | | β | $(A\beta) = 50$ | = 25 | Coefficient of Colligation $$(\gamma) = \frac{1 - \sqrt{(A\beta)(\alpha B)}}{(AB)(\alpha B)}$$ $$= \frac{1 - \sqrt{\frac{50 \times 40}{20 \times 25}}}{1 + \sqrt{\frac{500 \times 40}{500}}} = \frac{1 - \sqrt{\frac{2000}{500}}}{1 + \sqrt{\frac{2000}{500}}}$$ $$= \frac{\sqrt{20 \times 25}}{1 + \sqrt{\frac{50 \times 40}{20 \times 25}}} = \frac{\sqrt{500}}{1 + \sqrt{\frac{2000}{500}}}$$ $$= \frac{1 - \sqrt{4}}{1 + \sqrt{4}} = \frac{1 - 2}{1 + 2} = \frac{-1}{3} = -0.333$$ Coefficient of Association (Q) = $\frac{2\gamma}{1+\gamma^2} = \frac{2(-333)}{1+(-333)^2} = \frac{-.666}{1.110} = -0.6$ There is negative association between sanity and deafness. # Exercise 6 Find the coefficient of colligation and Yule's coefficient of association from the $$N = 1,000, (A) = 380, (B) = 380, (AB) = 230$$ [Ans. $$\gamma = .127, Q = .25$$] Determine the coefficient of colligation and coefficient of association $$(AB) = 100, (\alpha B) = 30, (A\beta) = 20, (\alpha \beta) = 10$$ [Ans. $\gamma = .127, Q = .25$] 九十二 In an investigation whether tall husbands tend to marry tall wives, the following results Tall Husbands Tall wives Short wives 11 Calculate the coefficient of colligation and also show its relationship with Yule's coefficient of Association. Verify your answer with direct calculation. [Ans. γ = .6155, Q = + .893, Verified] (5) Coefficient of Contingency Prof. Karl Person has propounded coefficient of contingency to find the degree of association in a 2×2 or 3×3 etc. association table. It is denoted by C' and is calculated by Coefficient of contingency (C) = $$\sqrt{\frac{\chi^2}{N + \chi^2}}$$ Where $\chi^2 = \text{Chi-square quantity (pronounced as Ki square)}$ N = Number of observations. Calculation of χ^2 : The calculation of χ^2 involves the following steps: (i) Obtain the expected frequency for each cell. For example, the expected value of the cell $E(AB) = \frac{(A)(B)}{(AB)}$ N - (ii) Calculate the difference between the observed frequencies and expected frequencies i.e., calculate (O-E). - (iii) Square the difference between the observed and expected frequencies in each cell i.e. calculate $(O-E)^2$ - Divide the squared differences by corresponding expected frequencies i.e. calculate $(O-E)^2/E$. (v) Obtain $$\sum \left(\frac{(O-E)^2}{E}\right)$$ to get the value of χ^2 Thus, $$\chi^2 = \sum \left(\frac{(O-E)^2}{E}\right)$$ The following examples illustrate the calculation of coefficient of contingency. | cess in leaching | 4- | Unsuccessful | Total | |------------------|------------|--------------|------------| | Institution | Successful | 42 | 100 | | College | 58 | 51 | 100 | | University | 49 | | 200 | | Total | 107 | 93 | 1 1/2 1/20 | Solution: Let A =College Education; α = University Education B = Successful; β= Unsuccessful Putting the given values in a 2×2 association table (or contingency table) as follows: | | R | β . | Total | |-------|------------------|--------------|-------------------| | A | (AB)
= 58 | (Aβ)
= 42 | (A) = 100 | | α | ((\alpha B) = 49 | (αβ)
= 51 | (α) 1100
= 100 | | Total | (B)
= 107 | (β)
93 | = 200 | From this we calculate the expected frequency for each cell as follows: $$E(AB) = \frac{(A).(B)}{N} = \frac{100 \times 107}{200} = 53.5$$ $$E(\alpha B) = \frac{(\alpha).(B)}{N} = \frac{100 \times 107}{200} = 53.5$$ or $$E(\alpha B) = 107 - 53.5 = 53.5$$ $$E(A\beta) = \frac{(A).(\beta)}{N} = \frac{100 \times 93}{200} = 46.5$$ or $$E(A\beta) = 100 - 53.5 = 46.5$$ $$E(\alpha \beta) = \frac{(\alpha).(\beta)}{N} = \frac{100 \times 93}{200} = 46.5$$ or $$E(\alpha \beta) = \frac{(\alpha).(\beta)}{N} = \frac{100 \times 93}{200} = 46.5$$ or $$E(\alpha \beta) = 100 - 53.5 = 46.5$$ | . (AB) | 58 | 53.5 | + 4.5 | (O-E)2 | $(O-E)^2$ | |---------------|----|------|-------|--------|--------------------------------------| | (\alpha B) | 49 | 53.5 | -4.5 | 20.25 | 0.378 | | (<i>A</i> β) | 42 | 46.5 | -4.5 | 20.25 | 0.378 | | (αβ) | 51 | 46.5 | + 4.5 | 20.25 | 0.435 | | | | | 7.5 | 20.25 | .0.35 | | | | | | | $\chi^2 = \sum \frac{(O-E)^2}{1626}$ | | | | | | | -= 1.626 | Coefficient of Contingency (C) = 1.626 $=\sqrt{\frac{1.626}{200 + (1.626)}} = \sqrt{\frac{1.626}{201.626}} = 0.087$ Since the coefficient of contingency is 0.087, there is, thus, poor association between the Example 28. Calculate the coefficient of contingency from the following da | | | | from the following | data: | |--------------------------------|------|-------------|--------------------|-------| | Intelligence → Social Status ↓ | Dull | Intelligent | Brilliant | Total | | Lower | 22 | 35 | 23 | 80 | | Middle | 38 | 70 | 32 | 140 | | Upper Middle | 60 | 20 | 20 | 100 | | Total | 120 | 125 | . 75 | 320 | | Intelligence → | Dull
A ₁ | Intelligent
A ₂ | Brilliant
A ₃ | Total | |-----------------|------------------------|-------------------------------------|-------------------------------------|--------------------------| | Social Status ↓ | | | | | | Lower Middle | (A_1B_1) 22 | (A_2B_1) 35 | (A ₃ B ₁) 23 | (B ₁)
80 | | Middle | (A_1B_2) 38 | (A ₂ B ₂) 70 | (A ₃ B ₂) 32 | (B ₂)
140 | | Upper Middle | (A_1B_3) | (A ₂ B ₃) | (A_3B_3) 20 | (B ₃)
100 | | Total | (A ₁) | (A ₂) | (A ₃)
75 | N 320 | The expected frequency of each cell is calculated as follows: e expected frequency of each cell is calculated as for $$E(A_1B_1) = \frac{(A_1) \cdot (B_1)}{N} = \frac{120 \times 80}{320} = 30$$ $$E(A_1B_2) = \frac{(A_1) \cdot (B_2)}{N} = \frac{120 \times 140}{320} = 52.5$$ $$E(A_1B_3) = \frac{(A_1) \cdot (B_3)}{N} = \frac{120 \times 100}{320} = 37.5$$ $$E(A_2B_1) = \frac{(A_1) \cdot (B_1)}{N} = \frac{125 \times 80}{320} = 31.25$$ $$E(A_2B_2) = \frac{(A_2) \cdot (B_3)}{N} = \frac{125 \times 140}{320} = 54.7$$ $$E(A_2B_3) = \frac{(A_2) \cdot (B_3)}{N} = \frac{125 \times 100}{320} = 39.1$$ $$E(A_3B_2) = \frac{(A_3) \cdot (B_3)}{N} = \frac{75 \times 80}{320} = 18.75$$ $$E(A_3B_3) = \frac{(A_3) \cdot (B_3)}{N} = \frac{75 \times 140}{320} = 32.8$$ $$E(A_3B_3) = \frac{(A_3) \cdot (B_3)}{N} = \frac{75 \times 100}{320} = 23.4$$ # Calculation of γ^2 | | 0 | E | (O-E) | $(O-E)^2$ | $(O-E)^2/E$ | |------------|----|-------|--------|-----------|-----------------------------------| | (A_1B_1) | 22 | 30 | - 8 | 64 | 2.133 | | (A_1B_2) | 38 | 52.5 | - 14.5 | 210.25 | 4.004 | | (A_1B_3) | 60 | 37.5 | 22.5 | 506.25 | 13.50 | | (A_2B_1) | 35 | 31.25 | 3.75 | 14.0625 | .45 | | (A_2B_2) | 70 | 54.7 | 15.3 | 234.09 | 4.279 | | (A_2B_3) | 20 | 39.1 | - 19.1 | 364.81 | 9.330 | | (A_3B_1) | 23 | 18.75 | + 4.25 | 18.0625 | .963 | | (A_3B_2) | 32 | 32.8 | - 0.8 | 0.64 | .019 | | (A_3B_3) | 20 | 23.4 | - 3.4 | 11.56 | .494 | | | | | | | $\chi^2 = \sum \frac{(O-E)^2}{E}$ | | | | | | 1,000 | = 35.172 | Coefficient of contingency (C $\sqrt{\frac{35.172}{320 + 35.172}} = \sqrt{0.991} = .315 \text{ approx.}$ Calculate the coefficient of contingency from | | Employed | wing data; | |------------|----------|------------| | illiterate | 21 | Unemployed | | Literate | 105 | 469 | | | 185 | 1315 | Calculate the coefficient of contingency from the following data: [Ans. C=.085] | Intelligence | Good | | | |--------------|------|-----|-------------| | Height | | Bad | Indifferent | | Tall | 10 | - | | | Middle | 20 | 5 | 5 | | Short | 30 | 10 | 5 | | | | 10 | 10 | [Ans. C = 0.1] # MISCELLANEOUS SOLVED EXAMPLES Example 29. Given the following data, calculate Yule's coefficient of association. | | A | α | |---|----|----| | В | 75 | 23 | | β | 5 | 42 | | | ociation racio | | |--------------------------------|----------------|----| | Annual making special property | A | α | | R | 75 | 23 | | ß | | 42 | | β | 75
5 | 42 | Yule's Coefficient of Association is given by: $$Q = \frac{75 \times 42 - 5 \times 23}{75 \times 42 + 5 \times 23}$$ $$= \frac{3150 - 115}{3150 + 115} = \frac{3035}{3265} = +0.929$$ 3150+115 3205 Example 30. Out of 2000 people exposed to a small-pox in a village, 450 were attacked. Example 30. Out of 2000 people exposed to a small-pox in a village, 450 were attacked. Form a nine square Among the people 365 were vaccinated and out of them 50 were attacked. Form a nine square attacked to the square of table and conclude there from whether vaccination can be regarded as a good preventive or not. Solution: Let vaccination be denoted by B and not attacked by A. Putting the given information in a nine square table: | Attributes | Not-Attacked (A) | Attacked
(α) | Total | |--------------------|------------------|---------------------|-------------| |
Vaccinated
(B) | (AB)
315 | (α <i>B</i>)
50 | (B)
365 | | Not Vaccinated (β) | (Aβ)
1235 | (αβ)
50 | (β)
1635 | | | (A)
1550 | (α)
450 | N = 2000 | Using Yule's coefficient of association: $$Q = \frac{(AB)(\alpha\beta) - (\alpha B)(A\beta)}{(AB)(\alpha\beta) + (\alpha B)(A\beta)}$$ $$= \frac{315 \times 400 - 1235 \times 50}{315 \times 400 + 1235 \times 50} = \frac{64250}{1,87,750} = +0.342$$ Thus, vaccination can be regarded as a satisfactory preventive measure, though not very good. Example 31. 800 candidates of both sexes appeared at an examination. The boys outnumbered the girls by 15% of the total. The number of candidates who passed exceeded the number failed by 480. Equal number of boys and girls failed in the examination. Prepare a 2×2 table and find the coefficient of association. Solution: Denoting boys by A and girls by α . Success by B and failure by β , the given values will be calculated like this: $$(A)+(\alpha)=800$$(i) $(A)-(\alpha)=120$(ii) By adding $$2(A) = 920$$ $(4) = 460$ Putting the value of (A) in (i), we get $460 + (\alpha) = 800$ $(\alpha) = 340$ $(A) = 460, (\alpha) = 340$ $(B) + (\beta) = 800$ $(B) - (\beta) = 480$ By adding $(2B) = 1280$ $(B) = 640$ Putting the value of (B) in (iii), we get $640 + (\beta) = 800$ $(\beta) = 160$ $(B) = 640, (\beta) = 160$ Also we are given $(A\beta) = (\alpha\beta) = \frac{160}{2} = 80$ We can now present the above information in the form of a 2×2 table as follows: | | | Table as follow | | |----------------|-------------|-----------------|------------| | 17/4 | A | α | Total | | B DUG (| (AB)
380 | (aB) | (B)
640 | | β | (Aβ)
80 | (αβ)
80 | (β)
160 | | Total | (A)
460 | (α)
340 | N =
800 | Yule's coefficient of association is given by: $$Q = \frac{(AB)(\alpha\beta) - (\alpha B)(A\beta)}{(AB)(\alpha\beta) + (\alpha B)(A\beta)}$$ $$= \frac{380 \times 80 - 80 \times 260}{380 \times 80 + 80 \times 260} = \frac{30400 - 20800}{30400 - 20800} = \frac{9600}{51200} = +.1875$$ Thus, the coefficient of association shows positive association of a low degree between sex and success in examination. Example 32. 1,000 candidates appeared in a certain examination. Boys outnumbered girls by 20% of all candidates who appeared in the examination. Number of passed candidates exceeded the number of failed candidates by 166. Girls failing in the examination numbered 58, the number of saled candidates by 166. Girls failing in the examination numbered 58. Construct 2 × 2 table and then find the coefficient of association. Also interpret the coefficient, Solution: Denoting boys by A and girls by α ; Success by B and failure by β . We are given; (a) +($$\alpha$$) = 1000(i) (b) +(α) = 200(ii) Adding (i) and (ii), we get (A) = 600 and (α) = 400 (iii) $$(B)+(\beta)=1000$$ (iii) (iv) $$(B) - (\beta) = 166$$ Adding (iii) and (iv), we get (B) = 583 and (β) = 417 Also we are given $(\alpha\beta) = 58$ We can now present the above information in the form of a 2×2 table as follows: | | Α α | | | |---|-------------------|------------|------------| | В | (AB) | (αβ) | (B) | | | 241 | 342 | 583 | | β | (<i>A</i> β) 241 | (αβ)
58 | (β)
417 | | | (A) | . (α) | N = | | | 600 | 400 | 1000 | Yule's coefficient of association is given by: $$Q = \frac{(AB)(\alpha\beta) - (\alpha B)(A\beta)}{(AB)(\alpha\beta) + (\alpha B)(A\beta)}$$ $$= \frac{241 \times 58 - 359 \times 342}{241 \times 58 + 359 \times 342} = \frac{-108800}{136756} = -0.796$$ This shows that there is a negative association between male sex and success in the examination. Example 33. In a class test in which 135 candidates were examined for proficiency in English and Economics. It was discovered that 75 students failed in English, 90 failed in Economics and 50 failed in both. Find if there is any association between failure in English and Economics. **Solution:** Denoting those whose failed in English by A and passed and passed in English by α . Failed in Economics by B and passed in Economics by β . Putting the given information in a nine-square table, we have | | (AB) | | 3 | |--------------------|------------------|------------|-------------------------| | В | 50 | (\alpha B) | The plant were specific | | 0 | (Αβ) | 40 | (B) | | . Р | 25 | (αβ) | 90 | | | (A) | 20 | (β) | | 100 | 75 | (α) | 45 | | 000 | | 60 | N = | | Yule's coefficient | of association . | | 135 | ciation is given by: Coefficient of association is given by: $$Q = \frac{(AB)(\alpha\beta) - (\alpha B)(A\beta)}{(AB)(\alpha\beta) + (\alpha B)(A\beta)} = \frac{(50)(20) - (25)(40)}{(50)(20) + (25)(40)} = \frac{1000 - 1000}{1000 + 1000} = 0$$ efficient allows that the attributes are independent. The coefficient allows that the attributes are independent. Example 34 . In a population of 1000 students, the number of married is 400. Out of the 300 students who failed, 120 belonged to married group. Using Yule's coefficient of association, find out extent of association of the attributes, marriage and failure. **Solution:** Denoting married students by A and unmarried by α ; Failed by B and passed by β . Putting the given information in the form of nine square table: | | | -q-are tubic. | | |----------------------------------|-------------|---------------|------------| | | . (A) | (a) | | | (B) | (AB)
120 | (αB)
280 | (B)
300 | | (B) | (Aβ)
280 | (αβ) | (β) | | The transfer of the later to the | (4) | 320 | 700 | Yule's coefficient of association is given by: $$Q = \frac{(AB)(\alpha\beta) - (\alpha B)(A\beta)}{(AB)(\alpha\beta) + (\alpha B)(A\beta)}$$ $$= \frac{(120)(320) - (280)(280)}{(120)(320) + (280)(280)} = \frac{38400 - 78400}{38400 + 78400} = \frac{-40000}{1168300} = -0.3424$$ 600 The coefficient shows that there exists low degree of negative association between marriage and failure. Example 35. In a population of 1000 students, 40 percent students are married. Out of 40 percent students who failed, 300 belonged to the married group. Prepare a 2 × 2 table and using Yule's coefficient of association, whether there is any association between the two attributes marriage and failure. marriage and failure. **Solution:** Denoting married student by A, and unmarried by α ; students failed by B and student | by β. | Married
(A) | Unmarried
(a) | | |------------|----------------|----------------------|------------| | Failed (B) | (AB)
300 | (α <i>B</i>)
100 | (B)
400 | | Passed (B) | (Aβ)
100 | (αβ)
500 | · (β) | | | (A)
400 | (α)
600 | N = 1000 | Yule's coefficient of association is given by: coefficient of association is given by: $$Q = \frac{300 \times 500 - 100 \times 100}{300 \times 500 + 100 \times 100} = \frac{140000}{16000} = +.875$$ The coefficient shows that there exists high degree of positive association between marriage and failure. Example 36. A distribution according to age group and martial status of girls studying in a particular collage is given below: | Age: | 15 | 16 | 17 | 18 | 19 | - 20 | 21 | 22_ | |-----------------------|----|----|----|----|----|------|----|-----| | No. of girls: | 15 | 18 | 22 | 25 | 20 | 23 | 27 | 30 | | No. of married girls: | 1 | 2 | 3 | 4 | 5 | 7 | 8 | 10 | Obtain the value of coefficient of association between the adult girls and married girls if it is assumed that adulthood is attained after 18 years of age. Solution: As the adulthood is attained after 18 years of age, so 20 + 23 27 30 = 100 adult girls, 15 + 18 + 22 + 25 = 80 minor girls, $5 \div 7 \div 8 + 10 = 30$ adult married girls, and 1+2+3+4=10 minor married girls. Let A denote adult girls α will denote minor girls Let B denote those who are married β will denote those who are unmarried. Putting the given information in a nine square table: | | Married (B) | Unmarried | | |-------------------|---------------------|-------------|------------| | Adult Girls (A) | (AB)
30 | (β)
(Aβ) | ana . | | Minor Girls (α) | (α <i>B</i>) | 70 (αβ) | (A)
100 | | . + . | (B) | (B) | (α)
80 | | Vulais coefficier | nt of association : | 140 | N=
180 | association is given by: $$Q = \frac{30 \times 70 - 70 \times 10}{30 \times 70 + 70 \times 10} = \frac{2100 - 700}{2100 + 700} = \frac{1400}{2800} = +.50$$ we find a positive exercise: Thus, we find a positive association between maturity and marriage. Example 37. The male population of U.P. is 250 lakhs. The number of literate males is 20 lakhs and total number of criminals is 26 thousands. The number of literate criminals is 26 thousands. The number of literate criminals is 2 thousand. Do you find any association between literacy and criminality? Solution: Let A denote literate males .: α will denote literate males Let B denote male criminals .: β will denote male non-criminals. The given information can be put in a nine square table: | | Criminality (B) | Non-criminality (β) | Total | |----------------|-----------------|---------------------|------------| | Literate (A) | (AB)
2 | (<i>A</i> β)
18 | (A)
20 | | Illiterate (a) | (α <i>B</i>) | (αβ)
206 | (a)
230 | | Total | (B)
26 | (β)
224 | N = 250 | Yule's coefficient of association is given by: coefficient of association is given by: $$Q = \frac{2 \times 206 - 18 \times 24}{2 \times 206 + 18 \times 24} = \frac{412 - 432}{412 + 432} = \frac{-20}{844} = -0.023$$ The coefficient shows that the attributes literacy and criminality are negatively association i.e. literacy checks criminality. # IMPORTANT FORMULAE - The criterion of consistency of data is that no ultimate class frequency should be - negative. 2. Frequency Method Attributes A and B are said to be: - (i) Independent if $AB = \frac{(A) \times (B)}{X}$ - (ii) Positively associated if $(AB) > \frac{(A) \times (B)}{N}$. - (iii) Negatively associated if $(AB) < \frac{(A) \times (B)}{N}$ - 3. Proportion Method Attributes A and B are
said to be: - (i) Independent if $\frac{(AB)}{(A)} = \frac{(\alpha B)}{(\alpha)}$ - (ii) Positively associated if $\frac{(AB)}{(A)} < \frac{(\alpha B)}{(\alpha)}$ - 4. Yule's Coefficient of Association $$Q = \frac{(AB)(\alpha\beta) - (A\beta)(\alpha B)}{(AB)(\alpha\beta) + (A\beta)(\alpha B)}$$ 5. Coefficient of Collignation $$\gamma = \frac{1 - \sqrt{\frac{(A\beta)(\alpha B)}{(AB)(\alpha \beta)}}}{1 + \sqrt{\frac{(A\beta)(\alpha B)}{(AB)(\alpha \beta)}}};$$ Also $$Q = \frac{2\gamma}{1+\gamma^2}$$ Coefficient of Contingency $$C = \sqrt{\frac{\chi^2}{N + \chi^2}}$$ QUESTIONS - Define Association of Attributes. Discuss the various types of association. - Explain the difference between association and correlation. - (a) Explain the terms 'Association' and Dis-association between two attributes with (b) State Yule's coefficient of association and its range. State its limitations. - What is meant by association of attributes? Explain briefly the various methods of measuring association between two attributes. Write Short notes-on: (i) Consistency of Data; (ii) Association of Attributes. . 000 # Advanced Statistical Tables | | т. | T | 1 2 | T 3 | | 121 | A | NTIL | OGA | MIL | 10 | | 7 | _ | _ | _ | - | _ | |------|-------|-------|-------|-------|-------|------|------|------|-------|------|-----|-----|----|-----|-----|----|-----|-----| | - Iz | 9 101 | _ | | | 4 | 5 | • | 7 | 1 | • | 1 | | ~ | | 11 | | | | | 12 | 110 | | | | 1009 | 1012 | 1014 | 1016 | 1019 | 1021 | ÷ | 2 3 | + | _ | 6 | 7 | | , | | - 14 | | | | | 1057 | 1035 | 1038 | 1040 | 1042 | 1045 | 0 | 0 1 | 1 | 1 | - 1 | 2 | 2 | 2 | | | 3 101 | | | | 1081 | 1084 | 1062 | 1064 | 1067 | 1069 | 0 | 0 1 | 1: | 1 | 1 | 2. | 2 | 2 | | 10 | 4 100 | 6 10 | | | 1107 | 1109 | 1112 | 1089 | 1091 | 1094 | 0 | 0 1 | 13 | | - 1 | 12 | 2 | 2 | | 7 | 5 113 | 2 11: | 5 112 | 11130 | 1132 | 1135 | 1138 | 1114 | 1117 | 1119 | 0 | 1 1 | 1 | | 2 | 2 | : | 2 | | | 1114 | | | 1156 | 1159 | 1161 | 1164 | 1167 | 1143 | 1146 | 0 | 1 1 | T | 1 | - 2 | 12 | - | 2 | | - | 1 | | | | 1186 | 1129 | 1191 | 1104 | 1169 | 1172 | 0 | 1 1 | | | | 12 | 2 | 2 | | | | | 5 120 | | 1213 | 1216 | 1219 | 1222 | 1225 | 1199 | 0 | 1 1 | | | 2 | 12 | 2 | 2 | | - | | | | | 1242 | 1245 | 1247 | 1250 | 1253 | 1256 | 0 | 1 1 | | | | 2 | 2 | 3 | | .10 | | | | | 1271 | 1274 | 1276 | 1279 | 1282 | 1285 | 0 | 1 1 | - | 1 | | 1: | 2 | 3 | | -11 | | | | | 1300 | 1303 | 1306 | 1309 | 1312 | 1315 | 0 | 1 1 | | ! ! | | 12 | | 3 | | -12 | | | | | 1330 | 1334 | 1337 | 1340 | 1343 | 1346 | 10 | 1 | | ! : | | 13 | | 3 | | -12 | | | | | 1361 | 1365 | 1368 | 1371 | 1374 | 1377 | 10 | | | | | 12 | | 3 | | .14 | | | | | 1393 | 1396 | 1400 | 1403 | 1406 | 1409 | 0 | 1 | | | 2 2 | | | 3 | | .15 | | 1000 | | | 1426 | 1429 | 1432 | 1435 | 1439 | 1442 | 0 | 1 | | | 1 2 | | | 3 | | .16 | | | | | 1459 | 1462 | 1466 | 1469 | 1472 | 1476 | 0 | 1 : | | | 2 2 | | | | | .17 | | | | | 1493 | 1496 | 1500 | 1503 | 1507 | 1510 | 0 | 1 | . | | 2 2 | | | | | .11 | | | | 1524 | 1528 | 1531 | 1535 | 153R | 1542 | 1545 | 0 | 1 | 1 | 1 | 2 2 | | | | | .19 | | | - | | 1563 | 1567 | 1570 | 1574 | 1578 | 1581 | 0 | 1 | 1 | 1 | 2 2 | | , , | | | .20 | | | | 0.000 | 1600 | 1603 | 1607 | 1611 | 1614 | 1618 | 0 | 1 | П | 1 | 2 7 | | 3 | 3 | | 21 | | | | | 1637 | 1641 | 1644 | 1643 | 1652 | 1656 | 0 | - 1 | ıi | 2 | 2 : | 1 | 3 3 | 3 | | .22 | | | | | 1675 | 1679 | 1623 | 1687 | 1690 | 1694 | 0 | 1 | 1 | 2 | 2 : | 1 | 3 1 | 3 | | 23 | Invit | 1 | | | 1714 | 1718 | 1722 | 17:6 | 1730 | 1734 | 0 | 1 | 1 | 2 | 2 : | 2 | 3 | | | .24 | | | | | 1754 | 1734 | 1762 | 1766 | 1770 | 1774 | 0 | 1 | 1 | 2 | | | 3 | | | -25 | | | | | 1795 | 1799 | 1803 | 1807 | 1811 | 1216 | 10 | | 1 | 2 | | | | 3 4 | | .26 | | | | | 1837 | 1841 | 1845 | 1249 | 1254 | 1252 | 0 | | 1 | 2 | | 3 | 3 | 3 4 | | | 1863 | | | | 1879 | 1884 | 1888 | 1892 | 1897 | 1901 | | | 1 | 2 | | 3 | | 3 4 | | .28 | 1905 | 0.00 | 123 | 0 10 | 1923 | 1922 | 1932 | 1936 | 1941 | 1945 | 10 | | 1 | 2 | | 3 | | 4 4 | | .29 | 1950 | | | | 1962 | 1972 | 1977 | 1912 | 1925 | 1991 | 10 | _ | 1 | 2 | | 3 | • | 4 4 | | .30 | 1999 | 200 | | | 2014 | 2012 | 2023 | 2028 | 2032 | 2037 | 10 | - | 1 | 2 | | 3 | 1 | 4 4 | | 31 | 2043 | 204 | 2051 | 2056 | 2061 | 2065 | 2070 | 20:5 | 2080 | 2084 | | | 1 | 2, | 5 | 3 | 3 | 4 4 | | .32 | 20. | 202 | 2099 | 2104 | 2109 | 2113 | 2118 | 2123 | 2128 | 2133 | 10 | 1 | L | 2 | 2 | 3 | 3 | 4 4 | | .33 | 21 18 | 214 | 2148 | 2153 | 2158 | 2163 | 2168 | 2173 | 2172 | 2183 | | | 1 | 2 | 2 | 3 | 1 | 4 4 | | .34 | 218× | 219 | 2199 | 2203 | 2202 | 2213 | 2218 | 2223 | 2228 | 2234 | 1 | 1 | 2 | 3 | 3 | 3 | 4 | 4 5 | | 35 | 2234 | 224 | 2249 | 2254 | 2259 | 2265 | 2270 | 2275 | 2280 | 2286 | | 1 1 | 2 | 2 | 3 | 3 | 4 | 4 5 | | .16 | 2291 | 220 | 2101 | 2307 | 2312 | 2317 | 2323 | 2328 | 2333 | 2339 | 1 | 1 1 | 2 | 2 | 3 | 3 | | 1 2 | | .37 | 2344 | | | 2140 | 2366 | 2371 | 2377 | 2382 | 2388 | 239 | 1 | 1 1 | 2 | 2 | 3 | 3 | 4 | 4 5 | | 38 | 2199 | 1 | - | - | 2421 | 2427 | 2432 | 2438 | 2443 | 244 | 1 | 1 1 | 2 | 2 | 3 | 3 | • | 4 : | | .39 | 2455 | 1 | | | 2477 | 2483 | 2489 | | 2500 | 250 | 6 | 1 1 | 2 | 1 | 3 | 3 | 1 | 5 | | | | 246 | | - | 2535 | 2541 | 2547 | - | | 256 | 7 | 1 1 | 2 | 1 | 3 | 4 | 4 | 5 | | 5. | | | | | 2594 | 2600 | - | - | 1 | 262 | 4 | 1 1 | 2 | 1 2 | 3 | 4 | 1 | 5 | | 41 | | 257 | 18.70 | 260 | - | | | 1 | | 268 | 5 | 1 1 | 2 | 1 2 | 3 | 4 | 1. | 3 | | .42 | 26,30 | 340 | | | 2655 | 2661 | | | | 1 | | 1 1 | 2 | 13 | 3 | 4 | 1 1 | 5 | | 43 | 36.93 | 36.9 | 2704 | | 2716 | 2723 | | - | 1- | - | - 1 | 1 1 | 2 | 1 3 | 3 | 4 | 14 | 3 | | .44 | 2754 | 275 | 2767 | 2773 | 2780 | 2786 | | | - | - | | 1 1 | 1 | 13 | 3 | 4 | 15 | 5 | | 14 | 'xix' | 'x.' | 2411 | 3474 | 3844 | 2851 | | | | | | 1 1 | 2 | | 3 | 4 | 15 | 5 | | 1.4 | CHRI | 340 | 289 | 2981 | 2911 | 2917 | | | | 1 | | ii | 2 | 1 | | 4 | 15 | 5 | | 47 | 2951 | 195 | | | 2979 | 2989 | 199 | | | | | 1 1 | 1 | 1 | | 4 | 15 | | | 48 | 1020 | 1 | 17 | 1 | 3048 | 305 | 106 | 306 | | | | | | 1. | | | 1 | | | 19 | 1000 | m | | 31:: | 11119 | 3126 | lus | 314 | : 114 | 11 | | 1 1 | | | | | | | Part of the Land | _ | | | | | | _ | _ | Ti | F 7 | 1 | RITH. | 1 | 2 | 3 | 4 | 5 | 6 | 5 | 6 | 7 | |-----|--------|-------|--------|--------------|--------------|------|--------------|-------|------|------|-------|-----|------|----|-----|----|-----|------|-----|------| | 19 | | | 1. | 12 | 13 | 1 | 5 | | - | 3221 | 3228 | 1 | 1 | 2 | 3 | 4 | 4 | 3 | 6 | 7 | | | - | • | | 3177 | 3184 | 3192 | | 3206 | 3289 | 3296 | 3304 | 1 | 2 | 2 | , | 4 | 5 | | | , | | | 34 | 3102 | 2.0 | 3251 | 3258 | 3266 | 3273 | -3261 | 1365 | 3373 | 3381 | 1 | 2 | 2 | 3 | 4 | 5 | 5 | 6 | | | | 51 | 3730 | 320 | 3327 | 3334 | 3342 | 3350 | | | 3451 | 3459 | 4. | 2 | 2 | 3 | 4 | 5 | 6 | 0 | 7 | | | .52 | 3311 | 3315 | 3404 | 3412 | 3420 | 3428 | 3436 | 3443 | 3532 | 3540 | 1 | 2 | 2 | 3 | 4 | 5 | 6 | 6 | 7 | | | | | 3396 | 1 | | 3499 | 3508 | 3516 | 3524 | | 3622 | ÷ | 2 | 2 | 1 | 4 | 5 | 6 | 7 | 7 | | ı | | 3467 | | | 3573 | 3581 | 3589 | 3597 | 3606 | 3614 | 3707 | lì | 2 | 3 | 1 3 | 4 | 5 | | 7 | • | | | 33 | 3548 | | | 3656 | 3664 | 3673 | 3681 | | 3698 | | i | 2 | 3 | 3 | 4 | 5 | 6 | . 7 | | | ı | _56 | 3631 | 3639 | | 3741 | 3750 | 3758 | 3767 | 3776 | 3784 | 3793 | | 2 | 3 | 4 | 4 | 5 | 6 | 7 | | | | | | 3724 | 1 | 3828 | 3837 | 3846 | 3855 | 3864 | 3873 | 3882 | 1 | 2 | 3 | 4 | 5 | 5 | 6 | 7 | | | | | 3802 | 3811 | | 3917 | 3926 | 3936 | 3945 | 3954 | 3963 | 3972 | ÷ | _ | ; | 4 | 3 | 6 | 6 | 7 | Ħ | | ì | _59 | 3890 | 3899 | | 4000 | 4018 | 4027 | 4036 | 4046 | 4055 | 4064 | 1 | 2 | | | 5 | | 1 | | • | | | | | 3990 | | 4102 | 4111 | 4121 | 4130 | 4140 | 4150 | 4159 | 1 | 2 | 3 | • | | | 1 | | , | | | | | - | 4188 | 4194 | 4207 | 4217 | 4227 | 4236 | 4246 | 4256 | 1 | 2 | 3 | 4 | .5 | 6 | | | | | | 62 | (169 | 4176 | | 4295 | 4305 | 4315 | 4325 | 4335 | 4345 | 4355 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | 9 | | | | | 4276 | 4283 | | 4406 | 4416 | 4426 | 4436 | 4446 | 4457 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 1 | 9 | | | | | | ob | 4395 | 450 | 45:9 | 4527 | 4539 | 455 | 4560 | 1 | 2 | , | 4 | : | 6 | 7 | | 9 | | | 45 | | | 4467 | 4400 | | | 4634 | 4645 | 4656 | 4667 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | * | 10 | | | 56 5 | 671 | 1381 | Q12 | 4603 | 4613 | 4624 | | 4753 | 4764 | 4775 | | 2 | 3 | | 5 | 7 | | | 10 | | | 574 | 577 | 1668 | 4699 | 4710 | 4721 | 4732 | 4742 | | 4875 | 4887 | lî. | 2 | 3 | 4 | 6 | 7 | | 9 | 10 | | | .68 4 | 786 | | 4804 | 4819 | 4831 | 4842 | 4253 | 4864 | | | 1: | 2 | 3 | , | 6 | 7 | | | 10 | | | 494 | | | 4920 | 4932 | 4943 | 4955 | 4966 | 4977 | 4989 | 5000 | ÷ | 2 | 4 | 5 | • | 7 | H | ÷ | iii | | | | | Sept 1 | | 5047 | 5058 | 5070 | 5042 | 5093 | 5105 | 5117 | ! | 2 | : | , | | , | 13 | 10 | ii I | | | .71 5 | 29 5 | 140 | | 5164 | 5176 | 8118 | 5200 | 5212 | 5224 | 5236 | | | - | 5 | | , | 1: | 10 | ii I | | | .72 5 | 148 | 250 | 5272 | 5284 | 5297 | 5309 | 5321 | 5333 | 5346 | 5358 | | 2 | 4 | | 6 | | 1: | | | | | | | 5383 | | 5406 | 5420 | 5433 | 5445 | 5458 | 5470 | 5483 | 1 | | 4 | 5 | 6 | | ! | 10 | 11 | | | .74 5 | 195 | 1300 | 5521 | 5534 | 5546 | 5559 | 5572 | 5585 | 5598 | 5610 | _ | 3 | 4 | 5 | 6 | | , | 10 | 11 | | | .:5 5 | 520 5 | 5636 | 5649 | 5662 | 5675 | 5689 | 5702 | 5715 | 5728 | 5741 | 1 | 3 | 4 | 5 | 7 | | 9 | 10 | 12 | | | 1.76 5 | 154 | 5768 | 5781 | 5794 | 5800 | 5821 | 5834 | 5848 | 5861 | 5875 | 1 | 3 | 4 | 5 | 7 | . 8 | 1 9 | 16 | 12 | | | 1.77 5 | == | 5902 | 5916 | 5929 | 5943 | 5957 | 5970 | 5984 | 5998 | 6012 | 1 | 3 | 4 | 5 | 7 | | 10 | 11 | 12 | | | .72 6 | 226 | 6039 | 6053 | 6067 | 6081 | 6095 | 6109 | 6124 | 6138 | 6152 | 1 | 3 | 4 | 6 | 7 | | 10 | 11 | 15 | | | .79 6 | 166 | 6180 | 6194 | 6209 | 6223 | 6237 | 6252 | 6266 | 6281 | 6295 | 1- | 3 | 4 | 6 | 7 | | 10 | 11 | .13 | | 100 | 20 6 | 310 | 6324 | 6339 | 6353 | 6368 | 6383 | 6397 | 6412 | 6427 | 6442 | 7 | 3 | 4 | 6 | 7 | • | 10 | 12 | 13 | | 8 | 316 | 457 | 6471 | 6486 | 6501 | 6516 | 6531 | 6546 | 6561 | 6577 | 6592 | 2 | 3 1- | -5 | 6 | | , |
hi | 12 | 14 | | | .82 6 | 607 | 6622 | 6637 | 6653 | 6668 | 6643 | 6699 | 6714 | 6730 | 6745 | 2 | | | _6 | | | lii | 12 | 14 | | | | | 6776 | | 6808 | 6823 | 6839 | 6255 | 6871 | 6887 | 6902 | 2 | 3 | 3 | 6 | | • | lii | 13 | 14 | | | | | 6934 | | 6966 | 6982 | 6998 | 7015 | 7031 | 7047 | 7063 | ź | 3 | 5 | 6 | | 10 | lii. | 13 | 15 | | | | | 7094 | | 7129 | 7145 | 7161 | 7178 | 7194 | 7211 | 7228 | 2 | 3 | 5 | 7 | ÷ | _ | | | | | | | | 7261 | | 7295 | 7111 | 7328 | 7345 | 7362 | 7379 | 7396 | | | | | | 10 | 12 | -13 | 15 | | | 877 | | 7430 | | 7464 | 7482 | 7499 | 7510 | 7534 | 7551 | | 2 | . 3 | 5 | ! | | 10 | 12 | 13 | 15 | | | | | 7603 | | | 7636 | 7674 | 7691 | 7709 | 7727 | 7568 | 2 | 3. | 5 | 7 | | 10 | 12 | -14 | 16 | | | | | | 7791 | 7816 | | 7852 | 7270 | | | 7745 | 2 | 4 | 5 | 7 | 9 | 11 | 12 | 14 | 16 | | | | | 7942 | | 7994 | 8017 | | | 7889 | 7907 | 7925 | 2 | 4 | 5 | 7 | 9 | 11 | 13 | 14 | 16 | | | | | 8147 | | 8185 | 8204 | 8035
8222 | 8054 | 2072 | 1608 | 8110 | 2 | 4 | • | 7 | 9 | 11 | 13 | 15 | 17 | | | | | 8337 | | 8375 | | | \$241 | 2260 | 8279 | 8299 | 2 | 4 | 6 | | 9 | 11 | 13 | 15 | 17 | | | | | 2531 | | 8373
8570 | | 8414 | H33 | 8453 | 8472 | 8492 | 2 | 4 | 6 | | 10 | 12 | 14 | 15 | 17 | | | | | 1730 | | | | 2610 | No. | R650 | B670 | 8690 | 2 | 4 | 6 | | 10 | 12 | 14 | 16 | 10 | | | .95 M | | | 8750
8954 | 8770 | | 2810 | \$831 | Z451 | RE72 | 2892 | 2 | 4 | 6 | | 10 | 12 | 114 | 16 | 10 | | | | | 9141 | | 8974 | 1995 | 9016 | 9036 | 9057 | 9078 | 9099 | 2 | 4 | 6 | | 10 | 12 | 15 | 17 | 19 | | | 97 91 | | | | 9183 | 9204 | 9226 | 9247 | 9262 | 9290 | 9311 | 2 | 4 | 6 | | 11 | 13 | 15 | 17 | | | 1 | .98 95 | | | | 9397 | 9419 | 941 | 9462 | 4484 | 9506 | 9528 | 2 | | , | | 11 | 13 | 15 | | 19 | | | | | | | 9616 | 9638 | 9661 | 968,1 | 9705 | 9727 | 9750 | 2 | | 7 | ů | | | 100 | 17 | 20 | | | .99 97 | 1-19 | 795 | 9817 | 9840 | 9463 | 9886 | 2708 | 9931 | 9954 | 9977 | | - | | | 11 | 13 | 16 | IX | 20 | 14. | | (6) | (; |) (2 | (3) | (4) | (%) | (%) | (2) | (A) | (8) | | |--|---|--|--|--|--|---|--|--|---|--|---| | • | 1 | | 1 | | 1 | 13/ | 10/ | \7, | (%) | (5) | (10) | | 2 | -10 | 1 2 | | | | | | | 1 | 100 | _ | | 3 | 1 | '3 | 3 | 1 | | | | | | | | | 4 | . 1 | 4 | 6 | 4 | 1 | | | | | | 1 | | 5 | 1 | 5 | 10 | 10 | 5 | 1 | | | | | | | ا ؟ | 1 | 6 | 15 | 20 | 15 | ÷ | 1 | | 3 | | | | ? | 1 | 7 | 21 | 35 | 35 | 21 | , | 1 | | | | | • | - 1 | ; | 28 | 56 | 70 | 56 | 28 | | - 1 | | | | 10 | i | 10 | 45 | 120 | 126 | 126 | 84 | 36 | , | 1 | | | 11 | . 1 | 11 | 55 | 165 | 210
330 | 252 | 210 | 120 | 45 | 10 | 1 | | 12 | 1 | 12 | 66 | 220 | 495 | 462
792 | 924 | 330 | 165 | 55 | 11 | | 13 | 1 | 13 | 78 | 286 | 715 | 1287 | 1716 | 1716 | 495 | 220 | " | | 14 | 1 | 14 | 91 | 364 | 1001 | 2002 | 3003 | 3432 | 1287 | 715 | 1001 | | 15 | 1 | 15 | 105 | 455 | 1365 | 3003 | 5005 | 6435 | 6435 | 3005 | 3003 | | 17 | 1 | 16 | 136 | 560 | 1820 | 4368 | 8006 | 11440 | 12870 | 11440 | 8000 | | 18 | i | 18 | 153 | 680
816 | 2380
3060 | 6188 | 12376 | 19448 | 24310 | 24310 | 1944 | | 19 | 1 | 19 | 171 | 369 | | 11628 | 18564 | | 43758 | | 43750 | | 20 | -1 | 20 | 190 | 1140 | 4845 | | | 77520 | 75582 | 72378 | 92370 | | | (V | OL | UEO | Fe-m | (For C | ompu | ting Po | esion | | | | | | _ | 1 | 1 | 2 | 3 | 0 <m< th=""><th>5</th><th>6</th><th>7</th><th>8</th><th>,</th></m<> | 5 | 6 | 7 | 8 | , | | - | 0 | | | | | + | | 9418 | 9324 | 9231 | 9139 | | - | - | _ | 9900 | 9808 | | | | | | | 7637 | | 00 | 1'000 | 0 | 9900
8958 | 9808 | 9704 | 1608 | 9512 | | | | 127 | | 00 | 1.000 | 0 | | 9808
9860
9025 | 8781
7945 | 9608
8694
7866 | 9512
8697
77%8 | 2521
7711 | 8437
7634 | 8353
7558 | | | 00
01
02
.03 | 1 000
0 904
0 818
0 740 | 8 7 6 | 8958
8106
7334 | 18860
18025
17261 | 7945
7189 | 7866
7118 | 7748
7748
7017 | 8521
7711
6970 | 7634
1634 | 18353
17558
16839 | 748 | | 00
01
0.2
.0.3 | 1'000
0'904
0'818
0'740
0'670 | 8 7 8 | 8958
8106
7334
6636 | 8860
8025
7261
6570 | 8781
7945
7189
6505 | 7866
7118
6440 | 8697
7798
7047
6376 | 8521
7711
6970
6313 | 18437
17634
16907
16250 | 8353
7558
6839
6188 | 14E | | 00
01
0.2
.0.3
0.4 | 1'000
0'904
0'818
0'740
0'670 | 0 8 7 6 3 5 | 8958
8106
7334
6636
6005 | 9860
9025
7261
6570
5945 | 8781
7945
7189
6505
5886 | 7866
7118
6440
5827 | 86477
77348
7047
6376
5770 | 8521
7711
6970
6313
5712 | 8437
7634
6907
6250
5655 | 18353
17558
16839
16188
15399 | '617
'612
'554 | | 00
01
0.2
.0.3
0.4
0.5
0.6 | 1'000
0'904
0'818
0'740
0'670
0'606 | 8 7 8 3 5 8 | 8958
8106
7334
6636
6005
5434 | 18860
18025
17261
16570
15945
15379 | 8781
7945
7189
6505
5886
5326 | 7866
7118
6440
5827
5278 | 8647
7748
7047
6376
5770
5220 | 7711
6970
6313
5712
5160 | 7634
7634
6907
6250
5655
51127 | 18353
17558
16839
16188
15359
15066 | 746
677
612
554
501 | | 00
01
0.2
.0.3
0.4
0.5
0.6
0.7 | 1'000
0'904
0'818
0'740
0'670
0'606
0'544 | 0 8 7 8 3 5 8 6 | 8958
8106
7334
6636
6005
5434
4916 | *8860
*8025
*7261
*6570
*5945
*5379
*4868 | 8781
7945
7189
6505
5886
5326
4810 | 8694
7866
7118
6440
5827
5278
4771 | 8647
7738
7047
6376
5770
5220
4724 | 8521
7711
6970
6313
5712
5160
4670 | 7634
16907
16250
15655
151127
14630 | *8353
*7558
*6839
*61,88
*5339
*5066
*4584 | 746
677
612
554
501
453 | | 00
01
0.2
.0.3
0.4
0.5
0.6 | 1'000
0'904
0'818
0'740
0'670
0'606 | 0 8 7 6 3 5 8 6 13 | 8958
8106
7334
6636
6005
5434 | 18860
18025
17261
16570
15945
15379 | 8781
7945
7189
6505
5886
5326 | 7866
7118
6440
5827
5278 | 8647
7748
7047
6376
5770
5220 | 7711
6970
6313
5712
5160 | 7634
7634
6907
6250
5655
51127 | 18353
17558
16839
16188
15359
15066 | 7463
6771
6123
5544
5010
453
410 | | 00
01
0.2
.0.3
0.4
0.5
0.6
0.7
0.8 | 1'000
0'904
0'818
0'740
0'670
0'606
0'544 | 0 8 7 6 3 5 8 6 13 | 8958
8106
7334
6636
6005
5434
4916
4449 | 8860
8025
7261
6570
5945
5379
4868
4404 | 8781
7945
7189
6505
5886
5326
4810
4360
3946 | 3694
7866
7118
6440
5827
5278
4771 | 8617
7718
7047
6376
5770
5220
4724
4274
3867 | 8521
7711
6970
6313
5712
5160
4670 | 9437
7634
6907
6250
5655
51127
4630
4190 | 8353
7559
6839
6188
5339
5066
4584
4148
3753 | 746.
677:
612:
554:
501:
453:
410:
371 | | 00
01
0.2
.0.3
0.4
0.5
0.6
0.7
0.8 | 1'000
0'904
0'818
0'740
0'670
0'606
0'544 | 0
8
8
7
6
6
3
3
5
8
6
6
13 | 8958
8106
7334
6636
6605
5434
4916
4449
4025 | 8860
8025
7261
6570
5945
5379
4868
4404 | 8781
7945
7189
6505
5886
5326
4810
4360
3946 | ************************************** | 86/07
77/48
7047
6376
5770
5220
472A
4274
3867 | 8521
7711
6970
6313
5712
5160
4670
4232 | 8437
7634
6907
6250
5633
51127
'4630
'4190
3791 | 8353
7559
6839
6188
5339
5066
4584
4148
3753 | 7467
677
612
554
501
453
410
371 | # CRITICAL VALUES OF STUDENT'S ADISTRIBUTION | 1 | test | for two-tailed | of significance | Level | | _ | |----------|--------|----------------|-----------------|-------|-------|----------| | d. | 0.01 | 0.02 | 0.05 | 0.10 | 0.20 | d.1 | | | test | for one-tailed | of significance | Level | - | | | 1 | 0.005 | 0.01 | 0.025 | 0.05 | 0.10 | | | | 63.657 | 31.821 | 12.706 | 6.314 | 3.078 | 1 | | | 9.925 | 6.965 | 4.303 | 2.920 | 1.886 | 2 | | | 5.841 | 4.541 | 3.182 | 2.353 | 1,638 | 3 | | 1 | 4.604 | 3.747 | 2.776 | 2.132 | 1.533 | 4 5 | | | 4.032 | 3.365 | 2.571 | 2.015 | 1.476 | 5 | | | 3.707 | 3.143 | 2.447 | 1.943 | 1.440 | 6 | | | 3.499 | 2.998 | 2.365 | 1.895 | 1.415 | 7 | | | 3.355 | 2.896 | 2.306 | 1.860 | 1.397 | . 8 | | 11 3 | 3.250 | 2.821 | 2.262 | 1.833 | 1.383 | 9 | | 10 | 3.169 | 2.764 | 2.228 | 1.812 | 1.372 | 10 | | 1 | 3.106 | 2.718 | 2.201 | 1.796 | 1.363 | 11 | | 12 | 3.055 | 2.681 | 2.179 | 1.782 | 1.356 | 12 | | 13 | 3.012 | 2.650 | 2.160 | 1.771 | 1.350 | 13
14 | | 14 | 2.977 | 2.624 | 2.145 | 1.761 | 1.345 | 14 | | 13 | 2.947 | 2.602 | 2.731 | 1.753 | 1.341 | 15 | | 10 | 2.921 | 2.583 | 2.120 | 1.746 | 1.337 | 16 | | 17 | 2.898 | 2.567 | 2.110 | 1.740 | 1.333 | 17 | | 18 | 2.878 | 2.552 | 2.101 | 1.734 | 1.330 | 18 | | 15 | 2.861 | 2.539 | 2.093 | 1.729 | 1.328 | 19 | | 20 | 2.845
 2.528 | 2.086 | 1.725 | 1.325 | 20 | | 21 | 2.831 | 2.518 | 2.080 | 1.721 | 1.323 | 21 | | - 22 | 2.819 | 2.508 | 2.074 | 1.717 | 1.321 | 22 | | . 23 | 2.807 | 2.500 | 2.069 | 1.714 | 1.319 | 23 | | 24 | 2.797 | 2.492 | 2.064 | 1.711 | 1.318 | 24 | | 25 | 2.787 | 2.485 | 2.060 | 1.708 | 1.316 | 25 | | 26 | 2.779 | 2.479 | 2.056 | 1.706 | 1.315 | 26 | | 27 | 2.771 | 2.473 | 2.052 | 1.703 | .314 | 27 | | 28 | 2.763 | 2.467 | 2.048 | 1.701 | .313 | 28 | | | 2.756 | 2.462 | 2.045 | 1.699 | .311 | 29 | | 29 | | 2.326 | 1.960 | 1.645 | .282 | nfinity | | Infinity | 2.576 | 2.320 | , | | | | Values of F for F Distribution at 5% Points Degrees of freedom for numerator 23.9 6.004 6.0 55,575 655,656 12,712,8 88,631 13,563,8 68,603,8 68,613,8 -US48 00805 -USE45 50808 228228 84881 | | 2 | 3 3 | 362 | 5.74 | 248 | 3.69 | 3.25 | 28 28 | 2.55 | 2.52 | 46.00 | 2.2 | -61 | 2.5 | |----------------------------------|---------------|-----------------------|------|---------------------|------|-------|------|-------|-------|------|---|------|-------|------| | | 5 | - | 13.7 | | | | 3.18 | 2.91 | 27.2 | 261 | 250 | 2.36 | 1207 | 99.1 | | | 9 | - | 9.29 | 5.05 | 4.57 | 3.86 | 3 27 | 3.02 | 287 | 2.69 | 2.58 | 2.45 | 2.5 | 1.76 | | | 30 | 99.5 | 13.8 | 5.23 | 4.65 | 3.94 | 333 | 3.10 | 25.5 | 2.78 | 292 | 2.53 | 202 | 1.86 | | | 77 | 6,235
99.5
26.6 | 9.47 | 6.07
5.28 | 4.33 | 3.78 | 3.43 | 87.5 | 386 | 2.80 | 222 | 2.62 | 2.12 | 1.79 | | Degrees of freedom for numerator | 92 | 99.4
26.7 | 9 55 | 536 | 24 | 3.86 | 3.51 | 3.26 | 88 | 2.94 | 200 2 | 2.70 | 237 | 1.88 | | erator | × 5 | 26.9 | 9.72 | 2525 | 2.56 | 2.0.1 | 258 | 3.4 | 133 | 3.03 | 2.93 | 2.85 | 2.52 | 707 | | L URE | 2 8 | 27.1 | 9.89 | 5.67 | 4.71 | 25.8 | 3.80 | 3.55 | 330 | 3.17 | 303 | 2.84 | 200 | 507 | | Ju for | 01 9909 | 27.2 | 10.1 | 5.81 | 4.85 | 0.4 | 3.80 | 3.69 | 3.43 | 331 | 3.21 | 2.98 | 2.63 | 2.32 | | freede | 6,023 | 14734 | 10.2 | 5.91 | 4.63 | 4.19 | 3.89 | 3.78 | 3.50 | 3.40 | 3330 | 3.07 | 27.72 | 241 | | es of | 5,982 | 27.5 | 10.3 | 2004 | 5.06 | 35 | 18 | 3.89 | 1.63 | 3.51 | 334 | 3.17 | 223 | 152 | | Degrees of freedom for numerator | | 27.7 | | S - 2 | | 24 | 1 | 3.93 | | | 200 | | 2.95 | | | ۰ | | 15.2 | | 5.80 | | | | 000 | | | 1.52 | | 21.5 | S DS | | 'n | $\overline{}$ | 15.5 | | 683 | | | | 444 | | | 3.94 | 36 | 3.39 | - 10 | | 4 | - | 16.0 | . 31 | 5.92 | | 5.21 | | 169 | | | 222 | | 3.65 | | | | | 16.7 | | 6.99 | | 5.74 | | 200 | | - | 4.76 | 3 | 363 | | | 2 | | 13.3 | | 8.02
7.56
6.6 | - | | | F.10- | 500 | | | | | _ | | - | | | | | 30 | 6.70 | 101 | 900 | | | 2 | B | 24.4 | | | | - | 24.N
Y 25 | _ | 100 | | | | 2.5 | 00 00 | 2.6 | 7.82
7.82
7.7 | 7.5 | 20.9 | 9.9 | | - 1 | | | PERCENTAC | PERCENTAGE POINTS OF X' DISTRIBUTION | X2 DISTRIBU | TION | 1 | A X | 1 | |-----|--------------|------------|-------------|--------------------------------------|-------------|----------|---------|---------|---| | 8 | 395 | 066 | 57.6. | .950 | , 050 | .025 | 010 | \$000 | | | _ | 392704×10-10 | 157088×10* | 982069×10-° | 393214×10-* | 3.84146 | 5.02389 | 6 63490 | 7 87944 | L | | 7 | .0100251 | ,0201007 | .0506356 | 102587 | 5.99147 | 7.37776 | 921034 | 10 5966 | | | ·. | .0717212 | .114832 | .215795 | ,351846 | 7.81473 | 9.34840 | 11.3449 | 12.8381 | | | 4 | .206990 | 297110 | 484419 | .710721 | 9.48773 | 11.1433 | 13,2767 | 14.8602 | | | 2 | .411740 | .554300 | .831211 | 1.145476 | 11.0705 | 12.8325 | 15.0863 | 16.7496 | | | . 9 | 1675727 | .872085 | 1.237347 | 1.63539 | 12.5916 | 14.4494 | 16.8119 | 18.5476 | | | 1 | 989268 | 1.239043 | 1.68987 | 2.16745 | 14.0671 | 16.0128 | 18.4753 | 20.2777 | | | × | 1 144419 | 1.646482 | 2,17973 | 2,73264 | 15.5073 | 17.5346 | 20.0902 | 21.9550 | | | 0 | 1.734926 | 2.087912 | 2.70039 | 3.32511 | 16.9190 | 10 0228 | 21.6660 | 23.5893 | | | 2 | 2 15585 | 2.55821 | 3.24697 | 3.94030 | 18.3070 | 20.4831 | 23,2093 | 25.1882 | | | 2 : | וכנואכ | 1.05347 | 3,81575 | 4.57481 | 15.6751 | 21.9200 | 24.7250 | 20.7569 | | | : : | 3 07387 | 3 57056 | 4.40379 | 5.22603 | 21.0261 | 23 3367 | 26.2170 | 28.2995 | | | 7 . | 1 56501 | 4 10691 | 5.00874 | 5.89186 | 22.3621 | 24 7356 | 27.6883 | 29.8194 | | | 4 | 4.07468 | 4,66043 | 5.62872 | 6.57063 | 25.6848 | 26.1150 | 29.1413 | 31,3193 | | | | ****** | \$ 73036 | 6.26214 | 7,26094 | 24.9958 | 27.4884 | 30,5779 | 12 8013 | | | 2 : | 4.0004 | 60177 | A 907A | 2 96164 | 26.2962 | 28.8454 | 11.9999 | 34.2672 | | | 9 5 | 27777 | 2.0122 | 7 56418 | 8 67176 | 27.5871 | 0161 05. | 13 4087 | 35.7185 | | | - | 17/60.0 | 10100 | \$ 23025 | 0 30046 | 28,2693 | 31.5264 | 14 8053 | 37 :564 | | | 2 9 | 0.20481 | 27574 | 8 90655 | 10:170 | 30.1435. | 32 K523 | 1908 | 38 5822 | | 1 i | 040 | | | | | | |---------|----------|----------|----------|----------|-----------| | 220 | 9.59083 | 10.8508 | 31 4104 | | | | 240 | 10.28293 | 11.5913 | 30,4705 | 14 1696 | 17 5663 | | 200 | 10.9823 | 12.3380 | 33 000 | 35.4789 | 100 81 | | 1000 | 11.6885 | 13 000 6 | 4076.00 | 16.7807 | 700000 | | 8 | 12.4011 | 13 040 | 35.1725 | 18.0757 | 5667 | | | | 13.0464 | 36.4151 | 10 1641 | 41.0384 | | 40 | 13.1197 | 146114 | | / | 47.9798 | | 181 | 13.8430 | 10.00 | 37.6525 | 10.6465 | 4.314 | | 98 | 14 \$722 | 16/5:51 | 38.8852 | 41.0232 | 1410 | | , 87 | 50000 | 16.1513 | 40.1133 | 13 104 | 42.04 | | | 15.3079 | 16.9279 | 41 3373 | 1 | 46.9630 | | 200 | 16.0471 | 17 7083 | 71.00 | 44607 | 48.2782 | | | | 2001 | 45.3569 | 555 TE | 49.5879 | | 14.9555 | 16.7908 | 18.4926 | 43.7729 | 16. 6702 | | | 25 | 24.4331 | 26 5003 | 263635 | 76/6:05 | 50.8922 | | 29 | 17 3574 | 343640 | 25 / 263 | 59 3417 | 63.6907 | | KAX . | 40.00 | 24./042 | 67.5048 | 71,4202 | 76 1530 | | | 10404 | 43.1879 | 79.0819 | 2505 50 | 650100 | | 418 | 7636 08 | | | 0767 00 | ×8.3794 | | | 40.1370 | 51.7393 | 90.5312 | 95,0231 | SCA COLIN | | | 27.1332 | 60-3915 | 628:10: | 100 679 | 113 336 | | - | 65.6466 | 69.1260 | 113 145 | 201 011 | 675.71 | | 548 | 74.2219 | 77 0705 | | 13 1.30 | 124.116 | | | | | 745 +71 | 96 6 | 135 007 | | | Critical Values | of T In The Wilcoxon Ma | tched | | |-------|-----------------|--|----------|------| | | Level of
sig | nificance for one-tailed tes | 1 | | | | .025 | incance for one-tailed tes | st | | | | Level of sign | .01 | .05 | | | n | .05 | nificance for two-tailed tes | 1 .05 | | | 5 | 100 | .02 | | | | 6 | 1 | THE PERSON NAMED IN | .10 | 1 | | 7 | 2 | | 1 | 1 | | 8 9 | 4 | 0 | /2 | | | 10 | 6 | - 2
3 | 6 | | | | . 8 | 5 | 8 | | | 11 12 | 11 | 7 | - 11 | | | 13 | 14 | 10 | 14 | 1912 | | 14 | 17 21 | 13 | 17 | 1 | | r 15 | 25 | 16 | 24
26 | / | | 16. | | 20 | 30 / | | | 17 | 30 "
35 | 24// | 36 | | | 18 | 40 | 28/ | 41 | | | 19 | 46 | 33 + // | 47 / | | | 20 | 52 | 43 | 54 | | | 21 | -59 | 14 14 14 14 14 14 14 14 14 14 14 14 14 1 | / 60 | (0) | | 22 | 66 | 49 | 68 | | | 23 | 73 | 62 | 75
83 | | | 24 | 81 | 69 | 92 | | | 25 | 89 | 77 | 101 | | 2 205 0.387 0.546 0.687 0.924 1.026 1.285 1.285 1.389 1.426 USEFUL IN THE CONSTRUCTION OF CONTROL CHARTS Factors for central line 2.256 2.256 2.256 2.256 3.078 3.3258 3.3258 3.3258 3.3258 3.3258 3.3258 3.3258 3.407 3.407 3.407 3.408 1,970 1,885 1,761 1,716 1,716 1,716 1,572 1,572 1,572 1,573 1,573 1,573 1,573 1,573 1,573 1,573 1,573 1,573 1,573 1,573 1,574 Factors 0.026 0.105 0.262 0.262 0.284 0.384 0.457 0.457 0.457 0.451 0.524 Sample APPENDIX # STATISTICS FOR M.B.A. STUDENTS Descriptive Questions (Very Short Answer/Short Answer Questions) # DATA ANALYSIS - MEASURES OF CENTRAL TENDENCY - Define an average or a measure of central tendency - What is the significance of studying average? - List the characteristics (or properties) of a good average What are the essentials of an ideal average? - Give various measures of central tendency. - 5. - Write down two mathematical properties of arithmetic mean. - Define mean. Give its merits. - Explain Weighted Arithmetic Mean. - 9. Explain : Median. - 10. Explain : Mode. - Explain : Quartiles, and Percentile. 11. - Explain Geometric Mean. - Find the geometric mean of 1, 4 and 9. - Explain Harmonic Mean. 14. - Explain the relationship between meen, median and mode. - Find the missing figure : $M = Z + ? (\bar{X} Z)$. - Show graphicaly the position of $\overline{\chi}$, M and Z in a positively and negatively skewed curves. 17. - What is the relationship between $\overline{\chi}$, M and Z in a symertical distribution ? 18. - Explain the relationship between $\,\overline{\chi}$, M and Z. # MEASURES OF DISPERSION - 20. What is meant by dispersion? - 21. List the characteristics of a good measure of dispersion. - $or \;\;$ What are the essentials of a good measure of variation ? - 22. Distinguish between central value and dispersion. - or Distinguish between measures of central tendency and dispersion. - 23 Distinguish between absolute and relative measure of dispersion. - State the various methods of measuring dispersion or state the various measures of dispersion - 25. What are the merits of dispersion. or What are objects of measuring dispersion? - $_{ m VVN}$ акть маничати оемівшон $_{ m f}$ white standard deviation is considered a better method of variation as compared to mean Why standard deviation is considered a better method of variation as compared to mean $_{ m f}$ which is the standard deviation of $_{ m f}$ and $_{ m f}$ where $_{ m f}$ is the standard deviation of $_{ m f}$ and $_{ m f}$ is the standard deviation of $_{ m f}$ and $_{ m f}$ is the standard deviation of $_{ m f}$ and $_{ m f}$ is the standard deviation of in the standard deviation of $_{ m f}$ is the standard deviation of $_{ m f}$ in the standard deviation of $_{ m f}$ is the standard deviation of $_{ m f}$ is the standard deviation of $_{ m f}$ in the standard deviation of $_{ m f}$ is the standard deviation of $_{ m f}$ in the standard deviation of $_{ m f}$ is the standard deviation of $_{ m f}$ is the standard deviation of $_{ m f}$ in the standard deviation of $_{ m f}$ is the standard deviation of $_{ m f}$ is the standard deviation of $_{ m f}$ in the standard deviation of $_{ m f}$ is the standard deviation of $_{ m f}$ in the standard deviation of $_{ m f}$ is the standard deviation of $_{ m f}$ is the standard deviation of $_{ m f}$ in the standard deviation of $_{ m f}$ is the standard deviation of
$_{ m f}$ in the standard deviation of $_{ m f}$ is the standard deviation of $_{ m f}$ is the standard deviat 27. - Distinguish between mean deviation and standard deviation. - Define (i) Range and (ii) Quartile Deviation. - Define (i) Mean Deviation and (ii) Standard Deviation. - What is coefficient of variation? What purpose does it serve? what is coefficient of variation. If a constant is subtracted from each score in a series, what will be its effect on mean and - 32. standard deviation? - SKEWNESS What is skewness? - Distinguish between positive and negative skewness. - What is the significance of skewness? 35 - Distinguish between dispersion and skewness - What are the various tests of skewness? - State various measures of skewness. - What is Bowley measure of skewness? - 40. Mention the formulae of Karl Pearson and Bowley for the coefficient of skewness. - MOMENTS AND KURTOSIS - Define moments. 41. - Distinguish between central moments and raw moments. - Define Kurtosis. Give its three types used diagrams. - Distinguish between skewness and kurtosis. or Define (i) Skewness and (ii) Kurtosis. - Give formula of measuring kurtosis. - 46. Give the measures of skewness and kurtosis by using moments. ## **CORRELATION AND REGRESSION** #### CORRELATION - What is correlation? What is its significance? - 2. Explain positive and negative correlation. - Does correlation always signify cause and effect relationship between the variables ? - Define covariance. - Define Karl Pearson's Coefficient of Correlation. - State the properties of Karl Pearson's Coefficient of Correlation. (or Mention any two properties of coefficient of correlation). - What is the maximum and minimum value of the coefficient of correlation? or What are the limits of the coefficient of correlation? - What is the nature of correlation when the value of r is +1 and -1. - If r = + 1 and r = -1, what kind of relationship exist between x and y? or If r = + 1 arro 1 - - 1, what kind or relationship exist between x and y? State the formula for calculating Karl Pearson's coefficient of correlation if the deviations are - Name two methods of studying correlation. - What does the value of r = 0 imply? Define rank correlation coefficient. - Give the formula to calculate rank correlation coefficient with (a) non-repeated ranks and (b) - Define concurrent correlation. or Write a shortenote on scatter diagram. 13. 14. - Define (a) Probable Error, and (b) Standard Error. REGRESSION - Distinguish between correlation and regression. 15. - What is regression? or Define regression and explain its significance. 16. - Why are there two regression lines in general? 17. - Where do the two lines of regression of X on Y and Y on X cross each other? 18. - Under what conditions the two regression lines (a) concide and (b) intersect each 19. - or Under what condition there will be one regression line? - What is the nature of regression lines when (i) r = +1 and (ii) r = 0. - 21. What are regression coefficients? - 22. What is the significance of regression coefficient? - State the important properties of regression coefficients. - Explain the relationship between correlation coefficient and regression coefficients? or Mathematicaly, prove that $r = \sqrt{byx \cdot bxy}$ - 25. If $b_{yx} = 1.5$ and $b_{xy} = 0.2$, find correlation coefficient. - 26. If $b_{yx} = -3/2$ and $b_{yy} = -1/6$, what is the value of correlation coefficient? - 27. State the uses of regression or what is the significance of regression? - Write a brief note on standard error of estimate. - If the two lines of regression are: 4x 5y + 30 = 0 and 20x 9y 107 = 0, which of these is the line of regression of x on y? - From the following regression equations: 20x 9y = 107, 4x 8y = -33, calculate \overline{X} and \overline{Y} . - 31. Given the regression equation of y on x and x on y as y = x and 4x y = 3, find 'r'. - 32. Given two lines of regression, explain how will you find the values of $\ \overline{X}$ and $\ \overline{Y}$. # INDEX NUMBERS & TIME SERIES # Index Numbers - What are Index numbers? - What are the uses of Index numbers? - Point any two limitations of Index numbers. - Distinguish between weighted and unweighted Index numbers. - Mention any two problems in the construction of an Index numbers. - What are the desirable properties of the base period? How will you choose a base year for constucting Index numbers? Distinguish between Laspreye's and Paasche's Index. or Define (i) Laspreye's Index and (ii) Paasche's Index. - What is consumer Price Index ? What is its significance ? - What is the difference between price Index and quantity Index? - Give the formula of constructing weighted Index using (i) Fisher's method and (ii) Weighted average of relative method. - What is Fisher's ideal index ? Why is it called an ideal ? - 12 Explain: Chain Base Index. Explain how chain base index are constructed? - 13. Distinguish between CB I and FBI. - 14. Write formulae to convert (i) CBI into FBI and (II) FBI into CBI. - 15. Why are Index numbers called economic barometers? - Explain the meaning of (i) Base shifting (ii) Splicing and (iii) Deflating - 17. Explain the meaning of Splicing of Index Numbers. - What is an ideal index number? What properties should it have? - or List the characteristics of an ideal Index number. - or Explain: (i) Time Reversal Test, (ii) Factor Reversal Test and (iii) Circular Test. - Show how Fisher's formula of Index numbers satisfy TRT and FRT. - 20. Define deflating of Index number. - 21. Explain deflating. How real wages Index are computed ? - 22. What are value Index numbers? - How many types are the price Index numbers ? - 24. Write Kelley's formula of construction of Index Number. # ANALYSIS OF TIME SERIES - What is time series? Discuss its importance or utility. What is unite series: Define any one of them. 26. - What is a time series ? What are its main components ? - 28. What is meant by trend in a time seris? - Exlain Linear Trend. - What are seasonal variations? - What are cyclical variations or cyclical fluctuations? - What are irregular variations? - State additive and multiplicative models of analysing time series. 33. - What is moving average method? - What is semi-averge method? - Distinguish between secular trend and periodic variations. 36. - Distinguish between seasonal variations and cyclical variations. - Explain cyclical and irregular variations. - How would you measure trend by the method of least squares? - (a) Write the normal equations to determine the value of a and b in the trend equation y = a + bx, given the n observations. - You are given the following trend equation: Y = 45 + 5X (origin = 1990, X unit = 1 year) Shift the origin to (i) 1988 & (ii) 1993. - With what characteristic component of a time series should each of the following be - (i) A fire in a factory delaying production for three weeks. - (ii) Arena of prosperity. - (iii) Sales of a textile firm during Deepawali. - (iv) A need for increased wheat production due to constant increase in population. #### PROBABILITY & PROBABILITY DISTRIBUTIONS PROBABILITY - Define Probability. - Give classical definition of probability. - Give statistical definition of probability. - Define (i) Mutually exclusive events (ii) Independent events (iii) Dependent Events and (iv) Equally likely events (v) Non-mutually exlusive events - Define Joint Probability. - State addition theorem of probability. - State multiplication theorem of probabilty. - Explain the concept of conditional probability. - explain the concept of conditional propability. Give the statement of Bayes' Theorem. State the addition theorem of probability for two events which are (a) mutually exclusive and state the multiplication theorem of probability for the state the multiplication theorem of probability for the state the multiplication theorem of probability for the state of 9. 10. - 11. - (b) non-mutually exclusive. State the multiplication theorem of probability for two events which are (a) independent and (b) non-independent. Write the formula for the calculation of probability at least one event in case of independent (context). - independent events. State the axioms of probability. - What is mathematical expectation of a random variable? 13. - Define random variable and its expectation. 15 # PROBABILITY DISTRIBUTIONS. - What is Binomial Distribution? What is Binomial Distribution? Give properties of binomial distribution. Is there any fallacy in the statement: The mean of Binomial Distrubution is 20 and its - standard deviation is 7? - standard deviation is ℓ ℓ Discuss the conditions for the applications of Binomial Distribution. A binomial distribution has n=20 and p=0.3. What are the mean and variance of the - distribution? The mean of the Binomial Distrubution is 20 and standard deviation is 4. Calculate 21. - n n and q. What is Poisson Distribution ? - what is Poisson instruction σ . Give the properties σ characteristics of Poisson Distribution. State the conditions under which the Binomial Distribution tends to Poisson - Give six examples where Poisson Distrubution can be applied. 25. - Write the probability function of Binomial and Poisson Distributions - To which probabilty distribution, mean and variance are equal? - Comment on the following: For a Poisson distribution, Mean = 8, Variance = 7. - Define Poisson distribution and state the conditions under which this distribution is - 30. What is normal distribution? # or # Write the p.d.f. of General and Standard Normal Distribution. - 31. Explain the main properties of normal curve/normal distribution. or Give the chief characteristics of Normal Distribution. - 32. Give the applications of Normal Distribution. - 33. Give the area property of normal curve or normal distribution. - 34. Indicate the area of normal distribution covered by : (i) $\overline{\chi} \pm 1_{\sigma}$ (ii) $\overline{\chi} \pm 2_{\sigma}$ (iii) $\overline{\chi} \pm
3_{\sigma}$ - Under what conditions Poisson Distribution tends to normal distribution ? - Under what conditions Binomial Distribution will tend to normal distribution? - How does normal distribution differ from binomial distribution? # SAMPLING THEORY # SAMPLING AND SAMPLING METHODS - Explain the meaning of (i) Population (or universe) and (ii) Sample Distinguish between Census and sample methods. - Point out two uses of sampling. - Name any four well known methods of sampling. Explain anyone of them. - What is stratified random sampling? - State the situation where stratified random sampling is preferred to simple random sampling. - Distiniguish between simple random sample and stratified sampling. - Distinguish Section 2011 of the Property th - Point out any two limitations of sampling. - Discuss the two advantages of sampling over census method. - Explain the following: (i) Random Sampling (ii) Cluster Sampling and (iii) Deliberate 15. - What is sampling error? - $\label{prop:explain} Explain the meaning of sampling {\it error} {\it and} {\it non-sampling} {\it error} {\it or} {\it Distinguish} {\it between sampling} {\it error} {\it or} {\it Distinguish} {\it between sampling} {\it error} {\it or} {\it Distinguish} {\it between sampling} {\it error} {\it or} or}$ and non-sampling errors. # SAMPLING DISTRIBUTION AND STANDARD ERROR - Distiniguish between Statistics and Parameters. - Explain the concept of sampling distribution of a statistic. - Define standard error of a stastic. - Define standard error of mean. - State Central Limit Theorem. State Law of Large Numbers. - Find the number of all possibile samples of size n = 4 from a population of size N=8 where (a) sampling is with replacement and (b) sampling is without replacement. # INFERENTIAL STATISTICS # THEORY OF ESTIMATION - What is inferential statistics? or What is estimation - Distinguish between point estimation and interval estimation. - Explain the concept of interval estimation. - Explain the conept of point estimation. - Explain the important properties of a good estimator, or State the properties of a good estimator. | ··· · · · · · · · · · · · · · · | | |---------------------------------|--| - Explain the procedure for testing a hypothesis. Distinguish between large and small samples. - Distinguish between raily and small samples. Distinguish between null hypothesis and alternative hypothesis. - Define Type I and Type II errors in testing of hypothesis. - Point out the difference between one tailed and two tailed tests. Explain the term: Acceptance and Rejection (or critical) region. or Distinguish between critical region and acceptance region. Explain the term level of significance as used in the tests of significance. Explain the term 'degrees of freedom'. # PARAMETRIC TESTS - Define Fisher's Z-transformation. - Define t-test. 15 - What is F-test? or F-test of testing of hypothesis? - what is r-test ℓ or r-test or testing of high procedure ℓ is supported by the procedure for testing of the hypothesis concerning the difference between two Explain the procedure for testing of the hypothesis concerning the difference between two - population proportions based on samples taken from each of two population. What are the assumptions of ANOVA? Explain briefly. - Distinguish between paired t-test and t-test for independent samples. 19. Or - Write a brief note on paired t-tests. Describe the large sample testing procedure. - 20 Explain the procedure in testing equality of two means through t-test. #### 21. Parametric Tests - Define non-parametric tests or what are non-parametric tests? 22 - Name two non-parametric test. 23. - Explain sign test or what is a sign test? - Define Mann-Whitney U-test. 25 - What is χ^2 test of independence of attributes. 26. - Describe Yates' corrections of 2 x 2 contingency table. - 28. What is \(\gamma^2\)-test of goodness of fit ? - What is Chi-square test. Explain the uses to which χ^2 -test can be applied. 29. - 30. What are the conditions for the validity of Chisquare test? - 31. Distinguish between parametric and non-parametric tests # STATISTICAL QUALITY CONTROL - What is statistical quality control? - 2. What is a control chart? - 3 What is an O.C. curve? - How are control limits set up in C-Chart? - What is acceptance sampling? - What is the utility of statistical quality control ? 6 # KURUKSHETRA UNIVERSITY, KURUKSHETRA **Business Statistics** Paper: CP-102 MBA Ist Semester (Dec./Jan. 2009-10) Max. Marks: 70 Note: Attempt any five questions in all. Question No. 1 is compulsory. All questions carry equal marks. 1. Write brief explanation of the following: - (i) Explain inferential statistics. - (ii) Discuss the utility of diagrammatic presentation. - (iii) Which is the best average for the manufacturer of garments? - (iv) Distinguish between linear and curvilinear correlation. - (v) Central Limit Theorem. - (vi) Level of Significance. - (vii) Objectives of measuring trend. - Suppose that samples of polythene bags from two manufactures, A and B are tested by a program of the state sta | Cayer for oursing press | uie will | i me tolle | Jest Burne | ılts: | | | | 1 | |-------------------------|----------|------------|------------|-------|-------|-------|-------|-------| | Bursting | - 19 | 5.0- | 10.0- | 15.0- | 20.0- | 25.0- | 30.0- | Total | | Pressure (Lbs) | | 9.9 | 14.9 | 19.9 | 24.9 | 29.9 | 34.9 | | | Number of | A | 2 | 9 | 29 | 54 | 11 | 5 | 110 | | Bags | В | 9 | -11 | 18 | 32 | 27 | 13 | 110 | - Which set of bags has the highest average bursting pressure? Which has more uniform pressure? If prices are same, which manufacture's bags would be preferred by the buyer? Why? 3. An investment or onsultant predicts that the odds against the prices of a certain stock going up are 2:1 and the odds in favour of the prices remaining the same are 1:3. What is the probability that price of the stock will go down? - Define Poisson distribution and state the conditions under which this distribution is use business problems. - 5. (a) Discuss briefly the importance of estimation theory in decision making in the face of uncertainty. (b) Explain the regression coefficients. - (b) Explain the regression coefficients. 7+7=14 6. XYZ physical fitness centre claims that completion of their weight loss programme will result in a weight loss. To test this claim, six persons were selected at random and they were ut through the weight loss programme and their weights, before and after the programme, were recorded. Test the claim of the fitness centre at α = 0.05. The weights in pounds of these six persons recorded before and after the programme. and after the programme are as follows: | | | Weight (after) | |--------|--------------------------------|-------------------| | | Weight (before)
(in pounds) | (in pounds) | | Person | | 143 | | 1 | 145 | 190 | | 2 | 200 | 165 | | 3 | 160 | 183 | | 4 | 180 | 160 | | 5 | 164
175 | 176 | | 6 | 1/5 | the latest little | The following table gives the cost of living index numbers for different groups with their respective weights for the year, 1992. (base year, 1982) | weights for the year, 1992. (c | Cost of Living Index | Weight | |--------------------------------|----------------------|--------| | Group | 525 | 40 | | Food | 325 | 16 | | Clothing
Light and Fuel | 240 | 15 | | Rent | 180 | 20 | | Others | 200 | 9. | Calculate the overall cost of living Index Number. Mr. Bose got a salary of Rs. 550 in 1982. Determine how much he should have to receive as salary in 1992 to maintain his same standard of living as in 1982. 8. The following are the mean lengths and ranges of lengths of a finished product from 10 samples each of size 5. The specification limits for lengths are 200 ± 5 cm. Construct X and R charts and examine whether the process is under control and state your recommendations. | Sample No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | Mean X | 201 | 198 | 202 | 200 | 203 | 204 | 199 | 196 | 199 | 201 | | Range R | 5 | 0 | 7 | 3 | 4 | 7 | 2 | 8 | 5 | 6 | Assume for n = 5, $A_2 = 0.577$, $D_3 = 0$ and $D_4 = 2.115$. 14 # MAHARISHI DAYANAND UNIVERSITY, ROHTAK Quantitative Analysis Paper: 2104 MBA Ist Semester, Dec./Jan. 2009-10 Time: Three Hours Max. Marks: 70 Note: Attempt any five questions, selecting at least one question from each unit. All questions carry equal marks. Unit - I 1. Calculate mean, median and mode from the following data: | Marks | | ing data. | | |-------|-----------------|-----------|-----------------| | | No. of Students | Marks | N. co. | | 10-20 | 4 | | No. of Students | | 10-30 | 16 | 10-60 | 124 | | | 16 | 10-70 | 137 | | 10-40 | 56 | 10-80 | | | 10-50 | 95 | | 140 | | | 25 | 10-90 | 150 | $2. \ \ Define \ skewness. Explain \ briefly \ the \ different \ methods \ of \ measuring \ skewness.$ 14 Unit - II | | X | Y | |-------------------------|-----------|----| | Mean | 40 . | 60 | | Standard Deviation (SD) | 10 | 15 | | Correlation Coefficient | (r) = 0.7 | | 4. Fit a straight line trend by method of least squares to the following data: | Years: | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | -1997 | |--------|------|------|------|------|------|------|------|-------| | Sales: | 38 | 40 | 65 | 72 | 69 | 67 | 95 | 104 | # PUNJAB TECHNICAL UNIVERSITY, JALANDHAR Quantitative Techniques MBA Ist Semester, Dec. 2009 Max. Marks: 60 Time: Three Hours Instructions to candidates: (i) Section-A is compulsory (ii) Attempt any Four questions from Section-A Section -A Section -A 1. (a) Prove that $\log 2 + 2 \log 5 - \log 3 - 2 \log 7 = \log \frac{50}{147}$ (b) Find the sum of first 35 terms of an A.P. if $t_2=2$ and $t_7=22$. (c) Find Geometric mean of 2, 4, 6, 8, 10. (d) Find Mode of the data: 3, 6, 9, 12, 15, 18, 21, 12, 9, 15, 12, 6, 15. (e) Give formula of Rank's coefficient of correlation. (f) Show that the coefficient of correlation is G.M. of coefficient
of regression. (g) Give different ways in which index numbers can be constructed. (h) What is the chance that a leap year will have 53 Mondays. (j) Give 5 properties of Normal distribution. (j) Briefly explain F-test. (a) A machine depreciates in value in a year by 6% of its value at the beginning of the year. If value of new machine is Rs. 62,500, using logarithms, find its depreciated value after 7 years. (b) If α and β are the roots of $2x^2-3x-6=0$, find the equation whose roots are α^2+2 and β^2+2 . 3. (a) Find the 7th term in the expansion of $\left(3X^2 - \frac{1}{X^3}\right)$ (b) Find mean and standard deviation for the data: | Class: | 0-7 | 7-14 | 14-21 | 21-28 | 28-35 | 35-42 | 42-49 | |------------|-----|------|-------|-------|-------|-------|-------| | Frequency: | 19 | 25 | 36 | 72 | 51 | 43 | 28 | (a) Calculate first four moments about mean of the distribution: | X: | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | 4.5 | 5.0 | |----|-----|-----|-----|-----|-----|-----|-----| | f: | 5 | 38 | 65 | 92 | 70 | 40 | 10 | Also calculate β_1 and β_2 . (b) Calculate the coefficient of correlation between X and Y: | | Y: | 3 | 5 | 7 | | |------------|--------------------------|-------------------------|-----------------|------|----| | 5 | (a) If O in 4h | 8 12 | 15 | 17 8 | 10 | | <i>J</i> . | (a) If θ is the acute an | 3le between two regress | Sion lines in a | 18 | 20 | r_x, σ_x, σ_y have their usual meaning. (b) What are trend values? Fit a trend line by method of least squares to the following de | Year: | 1941 | | | | a dic1 | onowinga | ata and | |-------------------|------|------|------|------|--------|----------|---------| | Cal (1000 P.) | | 1942 | 1943 | 1944 | 1945 | | | | Sales ('000 Rs.): | 80 | 90 | 92 | 83 | | 1946 | 1947 | | | | | - | ω | 94 | 99 | 00 | 6. (a) Estimate changes in cost of living figures of 1992 as com | Expenses on | F1 | | | | | |--------------|-------------|-------------|------------------|------|---------------| | penses on | Food
35% | Rent
15% | Clothing
20 % | Fuel | Miscellaneous | | Prices 1991: | 1500 | 300 | - | 10% | 20% | | Prices 1992: | | 300 | 750 | 250 | -400 | | Prices 1992: | 2000 | 300 | 650 | 230 | 450 | | A | | | | 200 | 450 | (b) A can hit a target 4 times in 5 shots, B3 times in 4 shots and C2 times in 3 shots. They fire valley. What is the probability that at least 2 shots hit the target? (a) Fit Poisson's distribution and calculate theoretical freque | | and a requestions. | | | | | | |-----|--------------------|-----|-------|---------|--|--| | 0 - | 1 | 2 | 3 | 4 | | | | 122 | 60 | 15 | 2 | 1 | | | | | 0 - | 0 1 | 0 1 2 | 0 1 2 3 | | | (b) 5 dice were thrown 96 times and numbers 4, 5 or 6 were thrown No. of dice throwing 4, 5, or 6: 0 1 f: 19 35 Calculate χ^2 . # KURUKSHETRA UNIVERSITY, KURUKSHETRA BUSINESS STATISTICS MBA Semester-I 2012 Time Allowed: 3 Hours] [Maximum Marks: 70 Note: Attempt eight questions from Part-A of 5 marks each and three questions of 10 marks each from #### PART-A - 1. List out applications of probability in business decision making. - Explain with examples difference between classical approach and relative frequency approach of probability. - 3. Explain with example multiplication probability model. - 4. What is Central Limit Theorem? - 5. Explain the terms 'Sampling distribution' and 'standard error' of a statistic. - 6. Explain cluster sampling and simple random sampling techniques. - 7. Describes the difference between Parametric Test and Non-Parametric Test. Also explain Wilcoxon signed Test. - 8. Briefly explain statistical estimation. - 9. Describes the use of Microsoft Excel in data analysis. - $10.\,$ If two dice are thrown, what is the probability that the some of the numbers on the dice is (i) Greater than 8 and (ii) Neither 7 nor 11? ## PART-B - 11. Probability that a man will be alive 25 years hence is 0.3 and the probability that his wife will be alive $25\ \mbox{years}$ hence is 0.4. Find the Probability that $25\ \mbox{years}$ hence. - (i) Both will be alive - (ii) Only the man will be alive - (iii) Only the woman will be alive - (iv) none will be alive - (v) At least one of them will be alive. - 12. The average daily sales of 500 branch offices was $\overline{\epsilon}$ 150 thousands and the standard deviation $\overline{\epsilon}$ 15 thousand. Assuming the distribution to be normal, indicate how many branches have sales between. - (i) ₹ 120 thousands and ₹ 145 thousand. - 13. State briefly the reasons for the increasing popularity of sampling methods. Explain briefly and two (ii) ₹ 140 thousands and ₹ 165 thousand. methods of sampling which help us to obtain a representative sample. - $14.\ A \ daily \ sample \ of \ 30 \ times \ was \ taken \ over \ a \ period \ of \ 14 \ days \ in \ order \ in \ establish \ attributes \ control$. A daily sample of 30 unless was runed over a period of 17 days in order in control limits of the proportion limits. If 21 defective were found, what should be the upper and lower control limits of the proportion - 15. It is found that 35 of 250 housewives in Delhi, 22 of 220 housewives in Mumbai and 39 of 300 . R. IS IOURIU URG GO GO SEA URGENT AT LEAST ONE talk show everyday. At the 0.05 level of significance, test housewives in Chandigarh watch at least one talk show everyday. At the 0.05 level of significance, test that there is no difference between the true proportions of housewives who watch talk show in these cities. # KURUKSHETRA UNIVERSITY, KURUKSHETRA **BUSINESS STATISTICS** MBA Semester-I 2013 Time Allowed: 3 Hours] [Maximum Marks: 70 Note: Attempt any eight questions from Part-A of 5 marks each and three questions of 10 marks each from - $1. \quad \text{What is the importance of Probability in business decision making ?} \\$ - 2. State the Multiplicative theorem of Probability. - Explain Bayes's theorem. - 4. What do you mean by Non-sampling error? - 5. What is Central Limit Theorem? - 6. Define Statistical estimation. - In test of hypothesis, how p-value is interpreted? - 8. Explain the concept of Standard error. - 9. What do you understand by Non-parametric methods? - 10. Explain how hypothesis testing is useful to decision-makers. #### PART_R - 11. How does a Normal distribution differ from Binomial distribution? What are the important properties of normal distribution and how are they useful in business decision-making ? - $12. \ \ How would you plan \ a survey to study the employment pattern of MBA students of your university?$ Draft a Questionnaire giving at least 10 questions. - 13. A production supervisor is interested in knowing if number of breakdowns on four machines is independent of the shift using the machines. Test this hypothesis based on the following sample information: | Shift | Machine | | | | | |---------|---------|----|----|----|--| | | A | В | С | D | | | Morning | 15 | 10 | 18 | 12 | | | Evening | 12 | 8 | 15 | 10 | | 14. A company manufactures tyres. A quality control engineer is responsible to ensure that the tyres turned out are fit for use up to 40,000 km. He monitors the life of the output from the production process. From each of the 10 batches of 900 tyres, he has tested 5 tyres and recorded the following | data, wi | th and m | easured | in thousa | nas or kir | U SER | 1 | 7 | 8 | 9 | 10 | |----------|----------|---------|-----------|------------|-------|------|------|------|------|-------------| | Batch | 1 | 2 | 3 | 4 | 5 | 6 | 107 | 39.2 | 38.9 | 41.9 | | - Datch | 40.2 | 43.1 | 42.4 | 39.8 | 43.1 | 41.5 | 40.7 | 37.2 | 10 | in the same | | X | 40.2 | 1.5 | 18 | 0.6 | 2.1 | 1.4 | 1.6 | 1.1 | 1.3 | 1.5 | Construct an chart using the above data. Do you think that the production process is in control? Explain. Write a detailed note on SPSS for the purpose of descriptive analysis of the data. # KURUKSHETRA UNIVERSITY, KURUKSHETRA **BUSINESS STATISTICS** MBA Semester-I 2014 Time Allowed: 3 Hours Maximum Marks: 70 Note: Attempt any eight questions from Part A of 5 marks each and three questions of 10 marks each from #### PART-A - 1. Explain the use of probability distributions in Business decision-making. - 2. Describe Addition Probability theorem by giving example. - 3. Explain Baye's theorem with example. - 4. What are sampling errors and non-sampling errors? - Explain meaning and characteristics of sampling distribution of sample mean. - 6. Show the difference between Point estimation and Interval estimation of Population mean. - 7. Write a note on Kruskal-Wallis test. - 8. Write down properties and applications of T-Test and F-Test. - 9. What are the uses of SPSS software in Data analysis? - 10. Explain the purpose and logic of constructing Quality Control Charts. ## PART-B - $11. \ \ Explain \ probability \ sampling \ methods \ and \ non-probability \ sampling \ methods.$ - 12. Suppose the waist measurements W of $800\ \text{Girls}$ are normally distributed with mean $66\ \text{cms}$ and standard deviation 5 cms. Find the number N of Girls with waists: - (a) Between 65 and 70 cms - (b) Greater than or equal to 72 cms. - 13. A problem in Statistics is given to two Students A and B. The odds in Favour of A solving the problem are 6 to 9 against B solving the problem are 12 to 10. If both A and B attempt, find the probability of the problem being solved. 14. Two Researchers adopted different sampling techniques while investigating the same group of Two Researchers adopted different sampling techniques while investigating the same group of students to find the number of students falling in different intelligence levels. The results are as | follows | | | udents is each level | | Total | |---------|---------------|---------------|----------------------|------------|---------------------| | Researc | her | | Above average | Genuine | 200 | | | Below average | Average
60 | 44 | 10 | 100 | | х: | 86 | 33 | 25 | 2 | 300 | | Υ: | 40 | 93 | <u>69</u> | 12 | | | Total | 126 | 200 | |
Researcher | s are signification | Would you say that the sampling techniques adopted by the two Researchers are significantly different? (Given 5% values of χ^2 for 3 d.f. and 4 d.f. are 7.82 and 9.49 respectively). $15. \ An inspection of 10 samples of size 400 each from 10 lots revealed the following number of defective$ units: 17, 15, 14, 26, 9, 4, 19, 12, 9, 15 Calculate control limits for the number of defective units. Plot the control limits and the observations and state whether the process is under control or not. # KURUKSHETRA UNIVERSITY, KURUKSHETRA BUSINESS STATISTICS MBA 2015 Time: 3 Hours Time: 3 Froms Maximum Marks: 70 Note: Attempt any five questions in all. Question No. 1 is compulsory. All questions carry equal Compulsory Questions 1. Explain briefly of the following: - (a) Descriptive Statistics. - (b) Mutually Exclusive events - (c) Conditional Probability (d) Range - (e) Random sampling - (f) Type-II error - (g) Concept of Splicing. - $2. \quad Explain the concept of Conditional Probability. Also give proof of Baye's theorem.\\$ - Explain the concept of conduction and a collection. Also discuss sampling and non-sampling Explain various sampling methods used for Data collection. Also discuss sampling and non-sampling 14 - 4. Write notes on the following: - (a) Interval Estimation - (b) Statistical Quality Control 14 - 5. Write notes on the following: - $\label{eq:constraint} \mbox{(a) Differentiate Correlation and Regression. Also write the properties of Regression coefficients.}$ - (b) Write a note on Coefficient of Determination. - 6. Samples of two different types of bubls were tested for length of life and the following data were obtained: | | Type I | Type II | |-------------|-----------|-----------| | Sample Size | 8 | 7 | | Sample Mean | 1234 hrs. | 1136 hrs. | | Sample S.D. | 36 hrs. | 40 hrs. | Is the difference in Mean life of two bubls significant? - 7. Write notes on the following: - (a) Index numbers, uses and problems of Index numbers? - (b) Method of moving average for the determination of trend in a time series. - 8. Comprehensively explain various types of Control Charts related to Variables and Attributes. 14 14