Solution: $$byx = 1.2, \text{ If } u = \frac{X}{2} \text{ and } v = \frac{X}{3}, \text{ In a order}$$ $$byx = \frac{\sum (X - \overline{X})(Y - \overline{Y})}{\sum (X - \overline{X})^2}$$ $$u = \frac{X - 100}{2}$$ $$v = \frac{Y - 1}{3}$$ $$\Rightarrow X = 2u + 100$$ $$\overline{X} = 2u + 100$$ $$\therefore \qquad (Y - \overline{Y}) = 3(\nu - \overline{\nu})$$ $\overline{Y} = 3\overline{\nu} + 100$ $$\therefore (X - \overline{X}) = 2(u - \overline{u}) \qquad \therefore (Y)$$ Now, $$byx = \frac{2 \times 3 \sum (u - \overline{u})(v - \overline{v})}{4 \cdot \sum (u - \overline{u})^2} = 1.5 bvu$$ So, $$bvu = \frac{byx}{1.5}$$ $bvu = \frac{1.2}{1.5} = 0.8$ ### **EXERCISE 2.5** 1. The following data relate to marks in English and Maths: | Mean marks in English | THE PARTY OF | 39.5 | |--------------------------|--------------|------| | Mean marks in Maths | | 47.6 | | S.D. of marks in English | 1.7 | 10.8 | | S.D. of marks in Maths | - F | 16.9 | - (i) Obtain the two regression equations. - (ii) Calculate the expected average marks in Maths of candidates who received 50 marks in [Ans. X = 0.268Y + 26.73, Y = 0.657X + 21.64, 54.5] English. - [Ans. X = 0.268Y + 26.73, Y = 0.65/X + 2.602] 2. There are two series of index numbers, P for price index and S for stock commodities. The mean and standard deviation of P are 100 and 8 respectively and S are 103 and 4. The correlation coefficient between the correlation coefficient between the control of the lines. correlation coefficient between the two series is 0.4. With this data work out a line equation to read off values of B. 8. equation to read off values of P for various values of S. Can the same equation be used to read off the values of S for different various values of S. read off the values of S for different values of P? If not, give the appropriate equation. [Ans. P = 0.8S + 17.6; No; S = 0.2P + 8] The following results were worked out from marks in Statistics and Mathematics in a certain examination: | xamilia | Marks in Statistics (X) | Marks in Maths | |---------|----------------------------------|----------------| | A.M. | 39.5 | (Y) | | S.D. | 10.8- | 47.5 | | 0.24 | Coefficient of correlation = 0.4 | 17.8 | - (i) Find the two regression equations. (i) Find the two regression Y when X = 50 and X, when Y = 30. (ii) Estimate the value of Y when X = 50 and X, when Y = 30. [Ans. (i) Y = 0.6922X + 20.1581, X = 0.2548Y + 27.397; (ii) 54.76, 35.04] You are given the following data about sales and advertisement e | | Sales
(Rs. crore) | Adv. Expenditure
(Rs. crore) | |---------------------|----------------------|---------------------------------| | Arithmetic Mean: | 50 | 10 | | Standard Deviation: | 10 | 2 | - (i) Calculate the two regression equations. - (ii) Estimate the likely sales for a proposed advertisement expenditure of Rs. 13.5 crore. - (iii) What should be the advertisement budget if the company wants to achieve a sales target [Ans. (i) X = 4.5Y + 5, Y = 0.18X + 1, (ii) 65.75 crores, (iii) 13.6 crores] Given the following data, what would be the possible yield when rainfall is 29"? | and ser its by | Rainfall | Yield per acre | | | |----------------------|--|----------------|--|--| | Mean | 25" | 40 | | | | Variance | 9" | 36 | | | | AL LESS MICHAEL BILL | 9" jent of correlation between rainfall and pr | 36 | | | [Ans. 46.4] For a given set of bivariate data, the following results were obtained: $\overline{X} = 53.2, \overline{Y} = 27.9$, regression coefficient of Y on X = -1.5Regression coefficient of X on Y = -0.2. Find the most probable value of Y when X = 60. Also find the coefficient of correlation. [Ans. $Y_{60} = 17.7, r = -0.548$] 7. If $$\overline{X} = 45$$, $\sigma_x = 2.5$, $\overline{Y} = 60$, $\sigma_y = 2.2$, $r = 0.75$ Estimate (i) Value of Y when $X = 35$ (ii) Value of X when Y = 20. [Ans. (i) 53.4, (ii) 10.92] [Ans. $r^2 = 1.75 \Rightarrow r = 1.32 \Rightarrow 1$, Inconsistent values] [Ans. 18.75] [Ans. 0.52] [Ans. r=0.8] [Ans. r=0.87] The covariance between X and Y is 15, Estimate the value of X when Y = 9. [Ans. $X = 0.6Y + 5.2, X_9 = 10.6$] 9. If $\overline{Y} = 15$, $\overline{X} = 3.5$, $b_{yx} = 2.5$ Obtain estimate of Y when X = 5. Comment on these values. 10. If $\sigma_x^2 = 0.75$, $\sigma_y^2 = 1.2$, $r_{xy} = 0.65$, find b_{xy} . 11. If $\sigma_x^2 = 25$, $\sigma_y^2 = 625$, bxy = 0.16, find 'r'. 12. If byx = 0.50, bxy = 1.5, find r. If byx = 0.50, bxy = 1.3, find r. A group of 20 students was observed for weight (X) and height (Y). The variance of height was found to be 9 cm and that of weight 1600 gm. If the correlation coefficient between was found to be 9 cm and that of weight 1600 gm. If the correlation coefficient between was found to be 9 cm and that of weight 1600 gm. was found to be 9 cm and that of weight 1000 gm. It also constituted to efficient between height and weight was 0.5, obtain an average absolute increase in weight in response to height. [Hint: Find bxy] 14. In a regression analysis, the following two regression coefficients were obtained bxy = 3.5 and byx = 0.5 ## TO OBTAIN REGRESSION EQUATIONS IN CASE OF GROUPED DATA For obtaining regression equations from grouped data, first of all we have to construct a correlation table. After that, we find out \overline{X} , \overline{Y} and the regression coefficients by x and bx y. Special adjustment must be made while calculating the value of regression coefficients because regression coefficients are independent of change of origin but not of scale. In grouped data, the regression coefficients (byx and bxy) are computed by using the following formulae: (i) $$bxy = \frac{N \times \Sigma f dx dy - \Sigma f dx \cdot \Sigma f dy}{N \times \Sigma f dy^2 - (\Sigma f dy)^2} \times \frac{i_x}{i_y}$$ $$(ii) \ byx = \frac{N \cdot \Sigma f dx dy - \Sigma f dx \cdot \Sigma f dy}{N \cdot \Sigma f dx^2 - \left(\Sigma f dx\right)^2} \times \frac{i_y}{i_x}$$ Where, i_x = Common factor of X-variable i_y = Common factor of Y-variable. The following examples makes the computation of regression equations more clear: Linear Regression Analysis in the two regression equations from the following La | | | g bivariate frequency distrib | |-------|------|-------------------------------| | Y | 0—20 |)_40 | | 10-25 | 10 | 40—60 | | 25-40 | 4 | 40 3 | | 40—55 | 6 | 8 | Also compute Karl Pearsons' coefficient correlation from two regression coefficients. (Table Given at Page 120) le Given at Page 120) $$\overline{X} = A + \frac{\Sigma f dx}{N} \times i_x$$ $$= 30 + \frac{6}{100} \times 20$$ $$= 30 + \frac{120}{100}$$ $$= 30 + 1.2 = 31.2$$ $$\overline{Y} = A + \frac{\Sigma f dy}{N} \times i_y$$ $$= 32.5 + \frac{12}{100} \times 15$$ $$= 32.5 + 1.8 = 34.3$$ $$bxy = \frac{N \times \Sigma f dx dy - \Sigma f dx \cdot \Sigma f dy}{N \times \Sigma f dy^2 - (\Sigma f dy)^2} \times \frac{i_x}{i_y}$$ $$= \frac{(100)(16) - (6)(12)}{(100)(48) - (12)^2} \times \frac{20}{15}$$ $$= \frac{1600 - 72}{4800 - 144} \times \frac{20}{15} = \frac{1528}{4656} \times \frac{20}{15}$$ $$= \frac{30560}{69840} = + 0.43$$ $$byx = \frac{N \cdot \Sigma f dx dy - \Sigma f dx \cdot \Sigma f dy}{N \cdot \Sigma f dx^2 - (\Sigma f dx)^2} \times \frac{i_y}{i_x}$$ $$= \frac{(100)(16) - (6)(12)}{(100)(46) - (6)^2} \times \frac{15}{20}$$ $$= \frac{1600 - 72}{4600 - 36} \times \frac{15}{20} = \frac{1528}{4564} \times \frac{15}{20}$$ 2<u>2920</u> = + 0.25 91280 $\Sigma f dx dy$ = 16 fdxdy $\sum f dy^2 = 48$ 30 18 fdy $\sum_{n=0}^{\infty} f dy$ +30 -18 fdy N = 100 $\sum fdx^2 = 46$ $\sum fdxdy$ = 16 $\sum fdx = 6$ 52 30 18 +26 56 +26 12 15 +20 20 20—40 0 24 0 0 30 40 20 -20 20 10 -20 0 Ŧ +15 47.5 40-55 Linear Regression Ar faxay fdx, fdx sion Equation of Y on X $$Y - \overline{Y} = bpx (X - \overline{X})$$ $$Y - 34.3 = 0.25(X - 31.2)$$ $$Y - 34.3 = 0.25X - 7.8$$ $$Y = 0.25X + 26.5$$ Regression Equation of X on Y $$X - \overline{X} = bxy (Y - \overline{Y})$$ $$X - 31.2 = 0.43 (Y - 34.3)$$ $$X - 31.2 = 0.43Y - 14.749$$ $$X = 0.43Y + 16.451$$ Coefficient of Correlation (r) $$r = \sqrt{bxy \cdot byx} \\ = \sqrt{(+0.43)(+0.25)}$$ $\therefore r = +0.33 \text{ approx.}$ r can also be computed by using the formula: $$= \frac{N \cdot \Sigma f dx dy - \Sigma f dx \cdot \Sigma f dy}{\sqrt{N \cdot \Sigma f dx^2 - (\Sigma f dx)^2} \sqrt{N \cdot \Sigma f dy^2 - (\Sigma f dy)^2}}$$ $$= \frac{100 \times 16 - (6)(+12)}{\sqrt{100 \times 46 - (6)^2} \sqrt{100 \times 48 - (12)^2}}$$ $$\frac{1600 - 72}{\sqrt{4600 - 36} \sqrt{4800 - 144}} = \frac{1528}{\sqrt{4564} \sqrt{4656}}$$ $$=\frac{1528}{4609.77}=0.33$$ Example 31. Following is the distribution of students according to their height and weight: | Height | Weight (in lbs.) | | | | | | | | |-------------|------------------|---------|---------|---------|--|--|--|--| | (in inches) | 90—100 | 100—110 | 110—120 | 120—130 | | | | | | 50—55 | 4 | 7 | 5 . | 2 | | | | | | 5560 | 6 | 10 | 7 | 4 | | | | | | 60—65 | 6 | 12 | 10 | . \ 7 | | | | | | 65—70 | 3 6 | 8 | 6 | 3 | | | | | Calculate: (i) the two regression coefficients. (ii) the two regression equations. (iii) coefficient of determination. (Table given at page 122) Let X denote height and Y denote weight. Solution 30. Let $dt = \frac{X-30}{20}$, $dy = \frac{Y-32.5}{15}$ M.V. 7 17.5 10-25 0 0 25-40 | | | | | | v | | Linear | Regn | essio | n An: | ah | X | Regression A | nalysi | |------------|---------------|--------|-----------|------|-------|---------|--------------|-------|-------|-------|-------|--------|-------------------|--------| | | _ | | fdxdy | ۴ | 0 | 18 | Book Vol | 31 | 1 | | ysis | Linear | (i) I | Regres | | | | | fdx³ | 81 | 0 | 35 | 80 | 133 | \ | \ | 4 | ı | | | | | | | fdx | -18 | 0 | 35 | 40 | 57 | | | | 1 | (ii) []] | Regres | | | | | , | 81 | 27 | 35 | 20 | N=100 | 041 | 1111 | 31 | | | | | 120—130 | 125 | +20 | +5 | -2 2 | 0 4 | 2 7 14 | 4
3 | 16 | . 32 | 64 | 22 | ı | | | | 110—120 13 | 115 | +10 | Ŧ | 1-15 | | 1 10 10 | 2
6
12 | 28 | +28 | 28 |
17 | | | Calcu | | 100-110 | 105 | 0 | 0 | 7 | | 0 12 0 | 0 8 | 37 | 0 | .0 | 0 | 1 | | | | 001-06 | 95 | -10 | 7 | 0 4 | 9 | . 10 | 3 6 | 19 | -19 | 61 | 89 | | | | | | M.V. | | dy dy | 7 | 0 | Ŧ | +2 | 1/24 | fdy | fdy3 | fdxdy | | | Regre | | | ↑
x | / | | ٨ | 0 | ţ. | +10 | | | | | | | | | | / | /
× | ↓
M.V. | 52.5 | 57.5 | 62.5 | 67.5 | 2 | | | | | | Regr | | | | т, | r e | 5055 | 55—60 | 9-09 | 65—70 | i i | T | | | | |) fire | (i) Regression Coefficient of Y on X $byx = \frac{N \cdot \Sigma f dx dy - \Sigma f dx \cdot \Sigma f dy}{N \cdot \Sigma f dx^{2} - (\Sigma f dx)^{2}} \times \frac{i_{y}}{i_{x}}$ $byx = \frac{100 \times 31 - (57)(41)}{100 \times 133 - (57)^2} \times \frac{10}{5}$ $= \frac{3100 - 2337}{13300 - 3249} \times \frac{2}{1} = \frac{763}{10051} \times 2 = \frac{1526}{10051} = 0.151 = 0.15$ (ii) Regression Coefficient of X on Y Coefficient of x on x $bxy = \frac{N \times \Sigma f dx dy - \Sigma f dx \cdot \Sigma f dy}{N \times \Sigma f dy^2 - (\Sigma f dy)^2} \times \frac{i_z}{i_y}$ $= \frac{100 \times 31 - (57)(41)}{100 \times 111 - (41)^2} \times \frac{5}{10} = \frac{3100 - 2337}{11100 - 1681} \times \frac{1}{2}$ $= \frac{763}{9419} \times \frac{1}{2} = \frac{763}{18838} = 0.040 \approx 0.04$ Calculation of \overline{X} and \overline{Y} Figure 105 $$X$$ and Y $$\overline{X} = A + \frac{\sum f dx}{N} \times i_x$$ $$= 57.5 + \frac{57}{100} \times 5 = 57.5 + \frac{285}{100}$$ $$= 57.5 + 2.85 = 60.35$$ $$\overline{Y} = A + \frac{\sum f dy}{N} \times i_y$$ $$= 105 + \frac{41}{100} \times 10 = 105 + \frac{410}{100}$$ $$= 105 + 4.10 = 109.10$$ Session Equation of Y on X Regression Equation of Y on X $$Y - \overline{Y} = byx(X - \overline{X})$$ $Y - 109.10 = 0.15(X - 60.35)$ $Y = 0.15X - 9.0525 + 109.10$ $Y = 0.15X + 100.04$ Regression Equation of X on Y $$X - \overline{X} = bxy (Y - \overline{Y})$$ $$X - 60.35 = 0.04(Y - 109.10)$$ $$X - 60.35 = 0.04Y - 4.364$$ $$X = 0.04Y + 55.98$$ (iii) Correlation Coefficient (r) $$r = \sqrt{byx \cdot bx}$$ $$r = \sqrt{byx \cdot bxy}$$ $$r = \sqrt{byx \cdot bxy}$$ $$= \sqrt{0.15 \times 0.04} = \sqrt{0.006} = 0.077$$ Thus, Coefficient of Determination = $r^2 = (0.077)^2 = 0.006$ Thus, Coefficient of December 12. From the following grouped data, find two regression equations and correlation for experiments. | o-efficient. | | Husban | d's Age | 111 | |--------------|-------|--------|---------|----------| | Wife's | 20—25 | 25—30 | 30—35 | 35-40 | | Age | 20-23 | 10 | 3 | 2 | | 15—20 | 4 | 28 | 6 | 4 | | 20—25 | | 5 | 11 | Ser Land | | 25—30 | | | 2 | _ | | 30—35 | | - | 4 - | 5 | Solution: (Table Given at Page 125) Regression Coefficient of X on Y Efficient of X on Y $$bxy = \frac{N \times \Sigma f dx dy}{N \times \Sigma f dx} - \frac{\Sigma f dx}{2} \times \frac{\Sigma f dy}{1} \times \frac{i_x}{i_y}$$ $$= \frac{100(138) - (-80)(-100)}{100(204) - (-100)^2} \times \frac{5}{5}$$ $$= \frac{13800 - 8000}{20400 - 10000} = \frac{5800}{10400} = 0.558$$ $$bxy = 0.558$$ Regression Coefficient of Y on X $$byx = \frac{N \cdot \Sigma f dx dy - \Sigma f dx \cdot \Sigma f dy}{N \cdot \Sigma f dx^2 - (\Sigma f dx)^2} \times \frac{i_y}{i_x}$$ $$= \frac{100(138) - (-80)(-100)}{100(150) - (-80)^2} \times \frac{5}{5}$$ $$= \frac{13800 - 8000}{15000 - 6400} = \frac{5800}{8600} = 0.674$$ $$yx = 0.674$$ $$\overline{X} = A + \frac{\Sigma f dx}{N} \times i_x = 32.5 + \left(\frac{-80}{100}\right)(5) = 28.5$$ $$\bar{Y} = A + \frac{\sum f dy}{N} \times i_y = 27.5 + \left(\frac{-100}{100}\right)(5) = 22.5$$ | × | | | fdy² | 140 | 42 | 0 | 7 | 20 | 204 | | \ | | | |-------|------------|------------|-------|---------------|-------|--------|-------|-----|----------|----|------|------|------| | , | | | fdy | 0/- | 42 | 0 | 2 | 10 | -100 | | | / | | | | | Sea > 5 | , J | 35 | 42 | 91 | 2 | 8 | 001 = 10 | 1 | | +138 | 1 | | 35—40 | 37.5 | . 5 | 1 | -2
2 .4 | 4 4 | 1 I | 1 | 2 5 | 2 | 1 | + | = , | 17.7 | | 30—35 | 32.5 | 0 | 0 | 0 3 0 | 0 6 0 | 0 11 0 | 0 2 0 | _ | | 22 | 0 | _ | 0 | | 25—30 | 27.5 | -5- | 7 | 2
10
20 | 28 28 | 5 0 | 1 | | | 43 | 43 | 43 | 48 | | 20—25 | 22.5 | -10 | 7-7 | 20 80 | 4 8 | 11 | ī | | ١ | 24 | 48 | 96 | 88 | | | M.V. | 1 | dy at | (Y) es | res T | 0 | - | | 7 | | , de | Cdr. | 1 | | | ↑ x | / | | -10 | ٠ ٣ | 0 | ţ | | +10 | | | | | | | / | X - | M.V. | 17.5 | 22.5 | 27.5 | 32.5 | 3 | 37.5 | | | | | | 1 | | a iy | L AL | -20 | -25 | 30 | 35 | 7 | 40 | 1 | | | | Regression Equation of X on Y $X - \overline{X} = bxy(Y - \overline{Y})$ X - 28.5 = 0.558(Y - 22.5) $\begin{array}{c} X - 28.5 = 0.558Y - 12.555 \\ X - 28.5 = 0.558Y - 12.555 \end{array}$ X = 15.945 + 0.558YRegression Equation of Y on X $Y - \overline{Y} = byx(X - \overline{X})$ Y - 22.5 = 0.674(X - 28.5) Y - 22.5 = 0.674X - 19.209Y = 0.674X - 19.209 + 22.5 Y = 3.291 + 0.674X Now $r = \sqrt{bxy \times byx}$ $= \sqrt{0.558 \times 0.674} = +0.613$ 1. Obtain two regression equations for the following grouped data: | Sales | Advertisement Exp. (Rs. '000) (X) | | | | | | | |-------------------|-----------------------------------|-------|---------------|-------|--|--|--| | (Rs. '000)
(Y) | 5—15 | 15—25 | 25—35 | 35—45 | | | | | 75—125 | 4 | 1 . | 1 - 1 1 1 1 1 | 1 -1 | | | | | 125—175 | 7 | 6 | 2 | 1 | | | | | 175—225 | 1 | 3 | 4 | 2 | | | | | 225_275 | 1 | -1 8 | 3 | 4 | | | | Also find coefficient of correlation. [Ans. X = 0.134Y - 1.45, where X denotes Adv. Exp. Y = 2.65X + 119.13 where Y denotes sales, r = +0.595] 2. Obtain the regression equations from the following data: | Tarks in | | Marks in Statistics (Y) | | | | | | | |------------|-------|-------------------------|-------|-------|-------|--|--|--| | nglish (X) | 10-20 | 20—30 | 30-40 | 40—50 | 50—60 | | | | | 10—20 | 6 | 3 | - | 4 | - I | | | | | 20—30 | 3 | 16 | 10 | | (54) | | | | | 80—40 | _ | 10 | 15 | 7 | 1-1 | | | | | 0—50 | 4 | - | 7 | 10 | 4 | | | | | 0—60 | _ | | | 4 | 5 | | | | | otal | 9 | 29 | 32 | 21 | 9 | | | | Also find coefficient of determination. [Ans. X = 6.77 + 0.802Y; Y = 6.77 + 0.802X, Linear Regression Analysis to following table shows the frequency distribution of 50 couples classified | The long | 3. | - | F. 03 C1455 | uled according to | |-------------------------------|----------|--------------------|-------------|-------------------| | their ages. Age of Wives (X) | | Age of Husband (Y) | | 1 | | Age of Will | 20—25 | 25—30 | 30—35 | Total | | 16-20 | 9 | 14 | 30—35 | | | | 6 | 11 | , | 23 | | 20-24 | _ | | 3 | 20 | | 24—28 | 15 | 25 | 7 | . 7 | | Total | 01 1 1 1 | | 10 | 50 | Total Estimate (i) the age of husband when wife's age is 20 years and (ii) the age of wife when husband's age is 30 years. [Ans. X = 0.47Y + 8.03; Y = 0.72X + 12.02; Y = 26.42 years; X = 22.13 years] Find regression equations from the following data: | Marks in | 100 | Marks in | Economics | - T | Total | |------------|-----|----------|-----------|-------|-------| | Statistics | 4—8 | 8—12 | 12—16 | 16—20 | lotai | | 8—14 | 11 | 6 | 2 | 1 | - 20 | | 14-20 | 5 | 12 | 15 | 8 | 40 | | 20—26 | | 2 | 3 | 15 | 20 | | Total | 16 | 20 | 20 | . 24 | 80 | [Ans. X = 0.67Y + 1.27; Y = 0.611X + 9.3] 127 5. Find coefficient of correlation and regression equations from the following data: | | | | | and annu. | |-------|---------------|-------|-------|-----------| | Y. X | 5—15 | 15—25 | 25—35 | 35—45 | | 0—10 | 1 | 11 | _ | _ | | 10-20 | 3 | 6 ' | 5 | 1 | | 20—30 | 1 | 8 | 9 | 2 . | | 30—40 | AT MANAGEMENT | 3 | 9 | 3 | | 40—50 | | | 4 | 4 | [Ans. r = +0.53; X = 15.58 + 0.42Y; Y = 8.91 + 0.67X] ## TO OBTAIN THE MEAN VALUES AND CORRELATION COEFFICIENT FROM THE REGRESSION EQUATIONS (1) To Find the Mean Values from the Regression Equations: Two regression lines intersect which the Mean Values from the Regression Equations: Two regression lines intersect whicher at mean values $(\overline{X} \text{ and } \overline{Y})$ points. In other words, the point of intersection of the two lines belowing give the mean values of both X and Y variables, i.e., \overline{X} and \overline{Y} . This is clear from the lowing diagram: The above diagram makes it clear that two regression lines Y on X and X on Y intersect each the above diagram makes it clear that if both regression lines/regression equation. The above diagram makes it clear that two regression times Y on X and X on Y intersect each other at \overline{X} and \overline{Y} points. Therefore, it is clear that if both regression lines/regression equations are known, then solving them out gives the mean values X and Y series, i.e., \overline{X} and \overline{Y} . own, then solving them out gives are mean. (2) To Find the Coefficient of Correlation from two Regression Equations: Correlation (2) To Find the Coefficient of Correlation from two Regression Equations: Correlation (2) To Find the Coefficient of Correlation Holls (Total Say and byx. From the regression coefficient can be worked out from the regression coefficient of Y on X, we can find out byx and from the regression equation of Y on X, we can find out byx and from the regression equation of Y on X, we can find out byx and from the regression equation of Y on X, we can find out by and from the regression equation of Y on X, we can find out by and from the regression equation of Y on X. equation of A of 1, we can into our asy and from the logical state by and then correlation coefficient r can be derived as $r = \sqrt{byx \cdot bxy}$. then correlation contains the regression equations are given in such way that by inspection, it is But sometimes the regression equation of X on Y and which one is Y on difficult to make out which one is the regression equation of X on Y, is used to compute X. In such a case, any of them, taken as a regression equation of X on Y, is used to compute by. Similarly, with the help of other equation b_{XY} is computed. If the product of b_{XY} are b_{XY} is Similarly, with the help of other equation b_{XY} is computed. If the product of b_{XY} is in the product of
b_{XY} is the product of b_{XY} in the product of b_{XY} is the product of b_{XY} in the product of b_{XY} is the product of b_{XY} in the product of b_{XY} is the product of b_{XY} in the product of b_{XY} is the product of b_{XY} in the product of b_{XY} is the product of b_{XY} in the product of b_{XY} is the product of b_{XY} in the product of b_{XY} is the product of b_{XY} in the product of b_{XY} is the product of b_{XY} in the product of b_{XY} is the product of b_{XY} in the product of b_{XY} is the product of b_{XY} in the product of b_{XY} is the product of b_{XY} in the product of b_{XY} is the product of b_{XY} in th bxy. Similarly, with the nelp of ouner equation ∂y_i is computed. If the product of by_i and by_i yields more than unity (1), then this follows that our supposition is wrong, because; i cannot exceed unity. That means we have to change our supposition. This time we have to make the supposition other way round, i.e.i, previously taken to be X on Y should now be taken for Y on X. Thus, the product of regression coefficients shall not exceed unity and our regular like horses. our results will be correct. Alternative Method: To find out which regression equation is X on Y and which is Y on X, the following alternative method can also be applied: Suppose two regression equations are as follows: $$(1) a_1 x + b_1 y + c_1 = 0$$ (2) $$a_2x + b_2y + c_2 = 0$$ (i) If $a_1 \ b_2 \le a_2 \ b_1$ (in magnitude, i.e., ignoring signs), then $a_1x + b_1y + c_1 = 0$ is the regression of Y on X and $a_2x + b_2y + c_2 = 0$ is the regression of X on Y. (ii) If $a_1 b_2 > a_2 b_1$ (in magnitude), then $a_1x + b_1y + c_1 = 0$ is the regression of X on Y and $a_2x + b_2y + c_2 = 0$ is the regression of Y on X. Example 33. From the following two regression equations, identify which one is of X on Y on Y. which one is of Y on X: $$2X + 3Y = 42$$ $$X + 2Y = 26$$ Linear Regression Analysis In the absence of any clear cut indication, let us assume that equation first to be Y on A constitution second to be of X on Y. In the absence of any clear cut indication, X and equation second to be of X on Y. X and equation first be regression equation of Y on X $$2X + 3Y = 42$$ $$3Y = 42 - 2X$$ $$Y = \frac{42}{3} - \frac{2X}{3}$$ From this it follows that by x = Coefficient of X in (i) = $$\frac{-2}{3}$$ Now, equation (ii) be regression equation of X on Y X + 2Y = 26 $$X=26-2Y$$...(ii) From this it follows that bxy = Coefficient of Y in (ii) = -2 Now, we calculate 'r' on the basis of the above values of two regression coefficient, we get $$r^2 = byx \cdot bxy = \frac{-2}{3} \times -2 = \frac{4}{3} > 1$$ Here, $r^2 > 1$ which is impossible as $r^2 \le 1$. So, our assumption is wrong. We now choose equation (i) as regression of X on Y and (ii) as regression equation of Y on X: Assuming the first equation as of X on Y, we have $$2X + 3Y = 42$$ $$2X = 42 - 3Y$$ $$X = \frac{42}{2} - \frac{3Y}{2}$$...(iii) From this, it follows that $$bxy = \text{Coefficient of Y in (iii)} = \frac{-3}{2}$$ Now, assuming the second equation as Y on X, we have $$X + 2Y = 26$$ $$2Y = 26 - X$$ $$\Rightarrow \qquad \qquad 26 \quad 1$$ $$\frac{26}{2} - \frac{1}{2}X$$...(iv) From this it follows that $$byx = \text{Coefficient of } X \text{ in } (iv) = -\frac{1}{2}$$ $$r^2 = bxy \cdot byx = -\frac{3}{2} \times \frac{-1}{2} = \frac{3}{4} = 0.75$$ Here, $r^2 < 1$ which is possible. r^2 is within the limit, i.e., $r^2 \le 1$. Here, $r^2 < 1$ which is possible. r^{-18} with the first equation is of X on Y and the second equation is of Y equation. on X. Aliter: 2X + 3Y = 42X + 2Y = 26 As 2×2>3×1 2X + 3Y = 42 is the regression of X on Y and X + 2Y = 26 is the regression of Y on X. Example 34. Given the regression equations: 3X + 4Y = 44 5X + 8Y = 80 Variance of X = 30Find \overline{X} , \overline{Y} , r and σ_y Calculation of \overline{X} and \overline{Y} Solution: The regression equations are: $$3X + 4Y = 44$$ $$5X + 8Y = 80$$ Multiply (i) by 2 and substracting (ii) from it 6X + 8Y = 88 5X + 8Y = 80 $$X=8$$ or $\overline{X}=8$ Substituting the value of X = 8 in (i), we get $$3(8) + 4Y = 44$$ $$24 + ^{A}Y = 44$$ 4Y = 20 $$Y=5$$ or $\overline{Y}=$ $\vec{X} = 8, \ \vec{Y} = 5$ ## Calculation of Correlation Coefficient Suppose (i) be regression of Y on X $$3X + 4Y = 44$$ $$4Y = 44 - 3X$$ $$44 = 3$$ ···(ii) Linear Regression Analysis $byx = \text{Coefficient of } X \text{ in (iii)} = -\frac{3}{2}$ Let equation (ii) be regression of X on Y $$5X + 8Y = 80$$ $$5X = 80 - 8Y$$ $$X = \frac{80}{5} - \frac{8}{5}Y$$ $bxy = \text{Coefficient of } Y \text{ in } (iv) = -\frac{8}{5}$ $r^2 = byx \cdot bxy = -\frac{3}{4} \times \frac{-8}{5} = \frac{24}{20} > 1$ Now This is impossible as $r^2 \le 1$. So our assumption is wrong. We now choose equation (i) as regression of X on $^{\vee}$ and (ii) as the regression of Y on X. Let equation (i) be regression equation of X on Y $$3X + 4Y = 44$$ $$3X = 44 - 4Y$$ $$X = \frac{44}{3} - \frac{4}{3}Y$$ $$X = \frac{1}{3} - \frac{1}{3}Y$$ $$bxy = -\frac{4}{3} \qquad ...(iii)$$ Equation (ii) be regression equation of Y on X $$5X + 8Y = 80$$ $$8Y = 80 - 5X$$ $$Y = \frac{80}{9} - \frac{5}{9}X$$ $$r = -\sqrt{bxy \cdot byx} = -\sqrt{\left(\frac{-4}{3}\right) \times \left(\frac{-5}{8}\right)}$$ $$= -\sqrt{\frac{5}{6}} = -\sqrt{0.8333} = -0.912 = -0.91$$ Calculation of o, $$xy = r \cdot \frac{\sigma_x}{\sigma_x}$$ $$bxy = r$$, $\frac{\sigma_x}{\sigma_y}$ $bxy = \frac{-4}{3}$, $r = -0.91$, $\sigma_x^2 = 30 \Rightarrow \sigma_x = \sqrt{30} = 5.47$ 131 ...(iv) ...(i) ...(ii) ...(i) Substituting the given values in the formula of bxy, we get Example 35. In a partially destroyed laboratory record of an analysis of correlation data, the following results are legible: Variance of X = 9 Regression equations $$8X - 10Y + 66 = 0$$ $$40X - 18Y = 214$$ Find (i) \overline{X} and \overline{Y} (ii) r_{xy} (iii) S.D. of Y. Solution: (i) Calculation of \overline{X} and \overline{Y} $$8X - 10Y + 66 = 0$$ $$8X - 10Y = -66$$ $$40X - 18Y = 214$$ Multiplying equation (i) by 5 and subtracting (ii) from it $$40X - 50Y = -330$$ $$40X - 18Y = 214$$ $$-32Y = -544$$ $$Y = \frac{544}{32} = 17$$ or $\overline{Y} = 17$ By putting the value of Y = 17 in equation (i) $$8X - 10(17) = -66$$ $$8X = -66 + 170$$ $$\begin{array}{ccc} \therefore & X=13 \text{ or } \overline{X}=13 \\ \therefore & \overline{X}=13, \ \overline{Y}=17 \end{array}$$ ## (ii) Calculation of Coefficient of Correlation (r_{xy}) Let us assume that the first equation be regression equation of Y on X. $$8X - 10Y + 66 = 0$$ $$-10Y = -66 - 8X$$.. $$-10Y = -66 - 8X$$ $10Y = 66 + 8X$ $Y = \frac{66}{10} + \frac{8}{10} X$ Y = 6.6 + 0.8Xbyx = 0.8 Assuming second equation as regression equation of X on Y. $$40X - 18Y = 214$$ $$40X = 214 + 18Y$$ $$X = \frac{214}{40} + \frac{18}{40} Y$$ $$X = 5.35 + 0.45Y$$ $$bxy = +0.45$$ Now, $$r = \sqrt{bxy \cdot byx}$$ $$=\sqrt{0.45\times0.8}=+0.6$$ (iii) Calculation of σ, Linear Regression Analysis Given, variance of $X = \sigma_x^2 = 9 \implies \sigma_x = 3$ $$bxy = 0.45, r = +0.6$$ We know, $$bxy = r \cdot \frac{\sigma_x}{\sigma_y}$$ Substituting the values, we get $$0.45 = 0.6 \times \frac{3}{\sigma_y}$$ $$\Rightarrow \qquad \sigma_y = \frac{1.8}{0.45} = 4$$ Hence, $\overline{X} = 13, \overline{Y} = 17, r = +0.6, \sigma_y = 4.$ Example 36. The two lines of regression are given as follows: Find (i) Y when $$X = 3$$ and X when $Y = 3$ (ii) r_{xy} Given, $Y = -4 + \frac{2}{3}X$ $Y = -4 + \frac{2}{3}X$ Find (i) Y when $$X = 3$$ and X when $Y = 3$ (ii) r $$Y = -4 + \frac{2}{3}X$$ $$Y = -5 + \frac{5}{2}Y$$...(ii) $X = -5 + \frac{5}{3}Y$ Let equation (i) as regression of Y on X. $Y = -4 + \frac{2}{3}X$ $$Y = -4 + \frac{2}{3}X$$ $$byx = \frac{2}{3}$$ Taking equation (ii) as regression of X on Y $$X = -5 + \frac{5}{2}Y$$ $$\therefore bxy = \frac{5}{2}$$ $$r^2 = \frac{2}{3} \times \frac{5}{3} = \frac{10}{9} = 1.1 > 1.1$$ Here,
$r^2 > 1$ which is impossible as $r^2 \le 1$. So our assumption is wrong. Reversing the assumption and taking equation (i) as regression of X on Y $$Y = -4 + \frac{2}{3}X \implies 3Y = -12 + 2X$$ $$\Rightarrow 2X = 3Y + 12$$ $$\Rightarrow X = \frac{3}{2}Y + 6$$ $$\therefore bxy = \frac{3}{2}$$ Taking equation (ii) as regression of Y on X $$X = -5 + \frac{5}{3}Y$$ or $3X = -15 + 5Y$ $$\Rightarrow 5Y = 3X + 15$$ $$\Rightarrow Y = \frac{5}{5}X + 3$$ $$\therefore bvx = \frac{3}{2}$$ $$\therefore r^2 = bxy \cdot byx = \frac{3}{2} \times \frac{3}{5} = \frac{9}{10} = 0.9$$ Since, $r^2 < 1$, our supposition that equation (i) is the line of regression of X on Y and equation (ii) is the line of regression of Y on X is true. (i) To obtain an estimate of Y when X = 3, we use the line of regression of Y on X viz., (ii) or (iv). Thus, from (*iv*), $Y = \frac{3}{5}X + 3$ Put $$X = 3$$, $Y = \frac{3}{5}(3) + 3 = \frac{9}{5} + 3 = \frac{24}{5} = 4.8$ To obtain an estimate of X when Y = 3, we use the line of regression of X on Y viz. (i) or (iii). viz. (i) or (iii). Lineal Regression Analys Thus, from (iii), $X = \frac{3}{2}Y + 6$ Put $$Y = 3$$, $X = \frac{3}{2} \times 3 + 6 = \frac{9}{2} + 6 = \frac{21}{2} = 10.5$ (ii) $$r_{xy} = \sqrt{bxy \cdot byx} = \sqrt{\frac{3}{2} \times \frac{3}{5}} = \sqrt{\frac{9}{10}} = \sqrt{0.9} = 0.948$$ From ple 37. A student obtained the following regression equations. Do you agree with him? 6X = 15Y + 216X = 15Y + 21 $$21X + 14Y = 56$$ Here we have two possibilities: Case I: Treating equation (i) as regression equation of X on Y: $$6X = 15Y + 21$$ $$X = \frac{15}{6}Y + \frac{21}{6}$$...(i) Clearly, $$bxy = \frac{15}{6}$$...(iii) ...(iv) Equation (ii) as regression equation of Y on X: or $$14Y = 56 - 21X$$ or $$Y = \frac{56}{1100} - \frac{21}{1100} X$$ $$\therefore byx = -\frac{2x}{14}$$ $$byx = -\frac{21}{14}$$ Now, $r^2 = bxy$. $byx = \frac{15}{6} \times \frac{-21}{14} < 0$. Here $r^2 < 0$ which is impossible as $r^2 \ge 0$ Case II: Treating equation (i) as regression equation of Y on X: $$6X = 15Y + 21$$ $$15Y = 6X - 21$$ $$Y = \frac{6X}{1} - \frac{21}{1}$$ $$byx = \frac{6}{}$$ Equation (ii) as regression equation of X on Y $$21X + 14Y = 56$$ $$21X = 56 - 14Y$$ $$21X = 56 - 14Y$$ $$X = \frac{56}{21} - \frac{14}{21}Y$$ $$bxy = -\frac{14}{21}$$ $$c. bxy = -\frac{14}{21}$$ Now, $r^2 = byx \cdot bxy = \frac{2}{15} \times \frac{-14}{21} < 0$. Here $r^2 < 0$ which is impossible as $r^2 \ge 0$ Now, $r = uy_s \cdot w_s = 15 - 21$ Here, $r^2 < 0$ which is impossible as $r^2 \ge 0$. Hence, calculations done by the students are wrong. Example 38. If the regression coefficient of X on Y is -1/6 and that of Y on X is -3/2. What is the value of correlation coefficient between X and Y? Given, $bxy = \frac{-1}{6}$, $byx = \frac{-3}{2}$ $$r = -\sqrt{bxy \cdot byx}$$ $$= -\sqrt{\left(\frac{-1}{6}\right)\left(\frac{-3}{2}\right)} = -\sqrt{\frac{1}{4}} = -\frac{1}{2} = -0.3$$ Hence, r = -0.5 ## IMPORTANT TYPICAL EXAMPLE Example 39. The regression equation of profits (X) on sales (Y) of a certain firm is 6Y - 10X + 210=0. The average sales of the firm were Rs. 88,000 and the variance of profits is $\frac{16}{25}$ th of the variance of sales. Find the average profits and the coefficient of correlation between sales and profits. Regression equation of profits (X) on sales (Y) is: Solution: $$6Y - 10X + 210 = 0$$ The average profits can be obtained by putting Y = 88,000 in the regression equation of X on Y as follows: $$6 \times 88,000 - 10X + 210 = 0 \rightarrow 10X = 5,28,210$$ $$X = 52,821$$ or $\overline{X} = 52,821$ Also we are given: Variance of profits (σ_x^2) = $\frac{16}{25}$ variance of sales (σ_y^2) $$\Rightarrow \frac{\sigma_x}{\sigma_y} = \frac{\sigma_x}{\sigma_y}$$ 6Y - 10X + 210 = 0 is the regression of X on Y -10X = -210 - 6Y $$10X = 210 = 6Y$$ $$X = \frac{210 + 6Y}{10} + \frac{6}{10}Y$$ $bxy = \text{regression coefficient of } X \text{ on } Y = \frac{3}{2}$ Since $$bxy = r \cdot \frac{\sigma_x}{\sigma_y}$$ $$\frac{3}{5} = r \times \frac{4}{5}$$ Thus, $$r = \frac{3}{4} = 0.75$$ Hence, $$\bar{X}$$ =52, 821, r = 0.75 ## EXERCISE 2.7 Linear Regression Analysis 1. From the following regression equations: 20X - 9Y = 107 4X - 5Y = -33Calculate \overline{X} , \overline{Y} and r. $$20X - 9Y = 10$$ $$4X - 5Y = -$$ [Ans. $\overline{X} = 13, \overline{Y} = 17, r = 0.6$] Regression equations of two variables X and Y are as follows: $$2Y - X - 50 = 0$$ $$3Y - 2X - 10 = 0$$ (i) Identify which of the two can be called regression of Y on X and X on Y. (ii) Find the means as well as coefficient of correlation between X and Y. [Ans. (i) (1) Y on X and (2) X on Y; (ii) $\overline{X} = 130, \overline{Y} = 90, r = 0.866$] [Ans. (i) (1) Y on X The two regression lines are given by: $$Y = \frac{40}{18}X - \frac{214}{18} \text{ and } X = \frac{10}{8}Y - \frac{66}{8}$$ Find (i) Correlation coefficient between X (i) Correlation coefficient between X and Y - (ii) Y, when X = 10 - (iii) X, when Y = 10 (iv) σ_{y} , if $\sigma_{x}^{2} = 9$ [Ans. (i) r = 0.6, (ii) 14.6, (iii) 9.85, (iv) $\sigma_{y} = 4$] The lines of regression of a bivariate population are: $$12X - 15Y + 99 = 0$$ 64X - 27Y = 373The variance of X is 9. Find: (i) the mean value of X and Y (ii) Correlation coefficient between X and Y, and (iii) the Standard deviation of Y. [Ans. (i) $\overline{X} = 13$, $\overline{Y} = 17$, (ii) r = +0.58, (iii) $\sigma_y = 4.138$] 5. For certain data, the following regression equations were obtained : 4X - 5Y + 33 = 0 20X - 9Y - 107 = 0Estimate Y when X = 20 and X when Y = 20. [Ans. $Y_{20} = 22.6, X_{20} = [4.35]$ [Hint: See Example 64] 6. Given the regression lines as: 3X + 2Y = 26 and 6X + Y = 31, find their point of intersection intersect Given the regression lines as: 2A + 21 - 20 and 0A + 1 - 31, find their and interpret it. Also find the correlation coefficient between X and Y. o find the correlation coefficients of the lines of regression gives the mean values $(\overline{X} = A \text{ and } \overline{Y})$. $(\overline{X} = 4 \text{ and } \overline{Y} = 7); r_{xy} = -0.25]$ 7. The two regression lines obtained from certain data were: Y = X + 5 and 16X = 9Y - 94, Find 7. The two regression lines obtained from certain data were: Y = X + 5 and 16X = 9Y - 94, Find The two regression lines obtained from certain uata were (1 - A + 3) and (16X = 9Y - 94). The two regression lines obtained from certain uata were (1 - A + 3) and (16X = 9Y - 94). The two regression lines obtained from certain uata were (1 - A + 3) and (16X = 9Y - 94). The two regression lines obtained from certain uata were (1 - A + 3) and (16X = 9Y - 94). The two regression lines obtained from certain uata were (1 - A + 3) and (16X = 9Y - 94). The two regression lines obtained from certain uata were (1 - A + 3) and (16X = 9Y - 94). [Ans. $\sigma_x = 3$; Cov $(X, Y) = r\sigma_x \sigma_y = 9$] 8. The line of regression of marks in Statistics (X) on marks in Economics (Y) for a class of 50 boys is 3Y - 5X + 180 = 0. Average marks in Economics = 44 and variance of marks in Statistics is $\frac{9}{16}$ th of variance of marks in Economics. Find (1) average marks in statistics [Ans. (i) $\overline{X} = 62.4$, (ii) r = 0.8] (ii) Coefficient of correlation between X and Y. 9. Equations of two regression lines in a regression analysis are as follows: 3X + 2Y = 26 and 6X + Y = 31A student obtained the mean values $\overline{X} = 7$, $\overline{Y} = 4$ and the value of the correlation coefficient r = +0.5. Do you agree with him? If not, suggest your results. [Ans. (i) $\overline{X} = 4$, $\overline{Y} = 7$, (ii) r = -0.5] 10. For a set of 10 pairs of values of X and Y, the regression line of X on Y is X-2Y+12=0, mean and standard deviation of Y being 8 and 2 respectively. Later it is known that a pair (X=3,Y=8)was wrongly recorded and the correct pair detected is (X = 8, Y = 3). Find the correct regression line of X on Y. [K-Y=X.snA] F = 40 Y - 214 grad Y = 18 [Hint: See Example 62] 11. A student obtained the two regression equations as 2X - 5Y - 7 = 0 and 3X + 2Y - 8 = 0 Do you agree with him? [Ans. (i) $$byx = \frac{2}{5}$$, $byx = -\frac{2}{3}$ (ii) $byx = \frac{5}{2}$, $bxy = -\frac{2}{3}$ \therefore Equations obtained are wrong] 12. The two lines of regression are given as follows: 5X - 6Y + 90 = 0, 15X - 8Y - 130 = 0 (i) Find \overline{X} and \overline{Y} (ii) Find r_{xy} (iii) Estimate Y when X = 10 (iv) Estimate X when Y = 20. [Ans. $\overline{X} = 30$, $\overline{Y} = 40$, r = 0.67, Y = 23.33, X = 19.31] STANDARD ERROR OF ESTIMATE STANDARU The value of independent variable, we estimate the value of dependent in regression, given the value of dependent on the value of dependent of the value of dependent on the value of dependent of the value of dependent of the value 1 SIM: In regression, given the value of incependent variable, we estimate the value of dependent in regression, given the value of dependent in regression, given the value of dependent in regression, given the value of dependent in regression. If we want to make sure that to what extent the estimate made by us are accurate with some properties of the value va billosisble, then this can be described by a ser accurate a service of estimate. By using standard error of estimate, we can check the reliability of our estimates. Standard error of estimate shows that to a service of estimate shows that to of similarle, we can calculate values by regression line are closer to actual values. Standard error of est what extern the estimated values by regression of X on V and B description of X on Y and Regression of X on Y and Regression of Y on X), there are two standard error of estimates: dard error of Estimate of Y on X (S_{yx}) (i) Standard Error of Estimate of X on Y (S_{xy}) (ii) Standard Error of Estimate of Y on X: It is denoted by S_{yx} . Its computation is made by the following formulae: First formula: $$S_{yx} = \sqrt{\frac{\sum (Y -
Y_c)^2}{N}}$$ Here, Y = Actual values, Y_c = Estimated values. Second formula: $$S_{yx} = \sqrt{\frac{\sum Y^2 - a \sum Y - b \sum XY}{N}}$$ Where, a and b are to be obtained from normal equations and a = intercept, b = slope of line. Third formula: $$S_{yx} = \sigma_y \sqrt{1 - r^2}$$ Where, $\sigma_y = SD$ of Y; r = coefficient of correlation between X and Y. The third formula is suitable for use when we are given the values of correlation coefficient (r) and standard deviations (σ_x and σ_y). (ii) Standard Error of Estimate of X on Y: It is denoted by S_{xy} . Its computation is done by the following formulae: First formula: $$S_{xy} = \sqrt{\frac{\sum (X - X_c)^2}{N}}$$ Here, X = Actual values, $X_c = Estimated$ values Second formula: $$S_{xy} = \sqrt{\frac{\sum X^2 - a\sum X - b\sum XY}{N}}$$ Where, a and b are to be obtained from normal equations and a = intercept, b = slope of line. Third formula: $$S_{xy} = \sigma_x \sqrt{1 - r^2}$$ Where, $\sigma_x = SD$ of Y; r = coefficient of correlation between X and Y. Where, $\sigma_x = SD$ of Y; r = coefficient of the third formula is suitable for use when we are given the values of correlation coefficient (s). The third formula is suitable for $\sigma_x = \sigma_x =$ and standard deviations (σ_x and σ_y). and standard deviations (O_x and O_y). The following examples make the computation of standard error of estimate more clear. Example 40. Find the 'standard error of the estimates'. Find the standard error $$\sigma_x = 4.4, \sigma_y = 2.2, r = 0.8$$ Given, r = 0.8, $\sigma_x = 4.4$, $\sigma_y = 2.2$ Given, r = 0.05, xAs 'r', σ_x and σ_y are known, the following formulae are used to find the 'standard $$S_{yx} = \sigma_y \sqrt{1 - r^2} \qquad ...(i)$$ $$S_{xy} = \sigma_x \sqrt{1 - r^2} \qquad ...(ii)$$ Putting the given values in (i) and (ii), we get ting the given values in $$\sqrt{1 - (0.8)^2} = 2.2 \times \sqrt{1 - 0.64}$$ $= 2.2 \times \sqrt{0.36} = 2.2 \times 0.6 = 1.32$ $S_{xy} = 4.4 \times \sqrt{1 - (0.8)^2} = 4.4 \times \sqrt{1 - 0.64}$ $= 4.4 \times \sqrt{0.36} = 4.4 \times 0.6 = 2.64$ Example 41. For a set of 10 pairs of reading on X and Y, the coefficient of correlation is 0.856 and the standard deviation of Y is 5.54. Find the standard error of estimate of Y on X. Solution: We are given: $$r = 0.856$$, $\sigma_y = 5.54$ The standard error of estimate (S_{yx}) is given by $$S_{yz} = \sigma_y \sqrt{1 - r^2}$$ $$= 5.54 \sqrt{1 - (0.856)^2} = 5.54 \sqrt{1 - 0.7327}$$ $$= 5.54 \sqrt{0.2673} = 5.54 \times 0.5170 = 2.864$$ Example 42. From the data given below: | X: | 6 | 2 | 10 | a limital 4 F F | 127 | |----|---|----|----|-----------------|-----| | Y: | 9 | 11 | | shere ged bet | 200 | Compute two regression equations and calculate the standard error of the estin $(S_{yx} \text{ and } S_{xy}).$ ## Calculation of Regression Equations $\overline{X} = \underline{6}$ $(X - \overline{X})$ 0 0 16 11 16 -12 8 $\Sigma x^2 = 40$ $\Sigma x = 0$ $\Sigma Y = 40$ We have, $$\overline{X} = \frac{30}{5} = 6$$ $\overline{Y} = \frac{40}{5} = 8$ $$bxy = \frac{\Sigma xy}{\Sigma y^2} = \frac{-26}{20} = -1.3$$ $$byx = \frac{\Sigma xy}{\Sigma x^2} = \frac{-26}{40} = -0.65$$ ### Regression Equation of Y on X Linear Regression Analysis $$Y - \overline{Y} = byx (X - \overline{X})$$ $$Y - 8 = -0.65(X - 6)$$ $$Y - 8 = -0.65X + 3.9$$ $$Y = -0.65X + 11.9$$ $$Y = -0.65X + 11.9$$ $Y = 11.9 - 0.65X$ ### Regression Equation of X on Y $$X - \overline{X} = bxy(Y - \overline{Y})$$ $$X-6=-1.3(Y-8)$$ $$X-6=-1.3Y+10.4$$ $$X = -1.3Y + 10.4 + 6$$ $$X = -1.3Y + 16.4$$ $X = 16.4 - 1.3Y$ Thus, the two regression equations are: $$Y = 11.9 - 0.65X$$ $$X = 16.4 - 1.3Y$$ ## Calculation of Standard Error of Estimates From the regression equation of Y on X ($Y_c = 11.9 - 0.65X$) for various values of X, we can find out the corresponding value of Y_c values and from the equation of X on Y ($X_c = 16.4$). Y ($X_c = 16.4 - 1.3$ Y), we can find X_c . These values are: 143 Regression Equation of Y on X $Y - \overline{Y} = byx (X - \overline{X})$ Y - 11 = 1.033(x - 1.5) Y - 11 = 1.033X - 1.5495 Y = 9.4505 + 1.033X (ii) Standard error of estimate (S yx) is given by $$S_{yx} = \sqrt{\frac{\Sigma Y^2 - a \, \Sigma Y - b \, \Sigma XY}{N}}$$ $$= \sqrt{\frac{3200 - (9.45)(110) - (1.033)(400)}{10}}$$ $$= \sqrt{\frac{3200 - 1039.5 - 413.2}{10}} = \sqrt{\frac{1747.3}{10}}$$ $$= 13.21$$ nle 44. From the following data, find the standard error of the estimate of X on Y and Y on X: | [| X: | 1 | 2 | 3 | 4 | | |-----|----|---|---|---|---|---| | - 1 | Y: | 6 | 8 | 7 | 6 | 8 | | L | | | | | | 0 | | Х | (X-X̄)
x | x ² | Y | (Y-\bar{Y}) | y ² | xy | |-----------------|-------------|---------------------|-----------------|-------------|------------------|--------| | 1 | -2 | 4 | 6 | -1 | 1 | 2 - | | 2 | -1 | 1 | 8 | +1 | 1 | -1 | | 3 | 0 | 0 | 7 | 0 | 0 | 0 | | 4 | 1 | 1 | 6 | -1 | -1 | -1 | | 5 | 2 | 4 | 8 | +1 | 1 | 2 | | $\Sigma X = 15$ | Ala III | Σr ² =10 | $\Sigma Y = 35$ | | $\Sigma y^2 = 4$ | Σxy= 2 | $$\frac{1}{5} = \frac{35}{5} = 7$$ $$\sigma_x = \sqrt{\frac{\Sigma x^2}{N}} = \sqrt{\frac{10}{5}} = 1414$$ $$\sigma_y = \sqrt{\frac{\Sigma y^2}{N}} = \sqrt{\frac{4}{5}} = 0.894$$ $$r = \frac{\sum xy}{N \cdot \sigma_x \cdot \sigma_y}$$ $$r = \frac{2}{5 \times 1,414 \times 0.894} = \frac{2}{6.321} = 0.316$$ ## tation of Standard Error of Estimate | X _c | $(Y-Y_c)^2$ | $(X-X_c)^2$ | |----------------|-----------------------------|---| | 4.7 | 1.00 | 1.69 | | 2.1 | 0.16 | 0.01 | | 9.9 | 0.16 | 0.01 | | 6.0 | 1.69 | 4.00 | | 7.3 | 0.09 | 0.49 | | | $\Sigma (Y - Y_c)^2 = 3.10$ | $\Sigma (X - X_c)^2 = 6.20$ | | | 4.7
2.1
9.9
6.0 | X _c (Y-Y _c) 4.7 1.00 2.1 0.16 9.9 0.16 6.0 1.69 7.3 0.09 | $$S_{yx} = \sqrt{\frac{\sum (Y - Y_c)^2}{N}} = \sqrt{\frac{3.10}{5}} = +0.7874$$ $$S_{yz} = \sqrt{\frac{\sum (X - X_c)^2}{N}} = \sqrt{\frac{6.20}{5}} = +1.11$$ Standard Error of Estimates: $$S_{yz} = \sqrt{\frac{\Sigma(Y - Y_c)^2}{N}} = \sqrt{\frac{3.10}{5}} = +0.7874$$ $$S_{xy} = \sqrt{\frac{\Sigma(X - X_c)^2}{N}} = \sqrt{\frac{6.20}{5}} = +1.11$$ Aliter: S_{yz} and S_{xy} can also be calculated as: $$\sigma_y = \sqrt{\frac{\Sigma(Y - \overline{Y})^2}{N}} = \sqrt{\frac{\Sigma y^2}{N}} = \sqrt{\frac{20}{5}} = \sqrt{4} = 2$$ $$\sigma_z = \sqrt{\frac{\Sigma(X - \overline{X})^2}{N}} = \sqrt{\frac{\Sigma x^2}{N}} = \sqrt{\frac{40}{5}} = \sqrt{8} = 2.828$$ $$r = \frac{\Sigma x}{\sqrt{\Sigma x^2} \sqrt{\Sigma y^2}} = \frac{-26}{\sqrt{20 \times 40}} = \frac{-26}{\sqrt{800}} = \frac{-26}{28.28} = -0.919$$ $$S_{yz} = \sigma_y \sqrt{1 - r^2} = 2\sqrt{1 - (-0.919)^2} = 2 \times \sqrt{0.155} = 0.7874$$ $$S_{xy} = \sigma_z \sqrt{1 - r^2} = 2.828\sqrt{1 - (0.919)^2} = 2.828 \times \sqrt{0.155} = 1.11$$ Example 43. Given that $$\Sigma X = 15$$, $\Sigma Y = 110$, $\Sigma XY = 400$, $\Sigma X^2 = 250$, $\Sigma Y^2 = 3200$, $N = 10$ (i) Compute the regression equation of Y on X Solution: (i) Compute the regression equation of Y on X (ii) Standard Error of Estimate $$S_{yx}$$. (i) byx or $b = \frac{N \sum XY - (\sum X)(\sum Y)}{N \cdot \sum X^2 - (\sum X)^2}$ $$= \frac{10(400) - (15)(110)}{10(250) - (15)^2} = 1.033$$ $$\overline{X} = \frac{15}{10} = 1.5, \ \overline{Y} = \frac{110}{10} = 11$$ Linear Regression Analysis $$S_{xy} = \sigma_x \sqrt{1 - r^2}$$ = 1.414\sqrt{1 - (0.316)^2} = 1.414 \times 0.949 = 1.342 $$S_{yx} = \sigma_y \sqrt{1 - r^2}$$ = 0.894\sqrt{1 - (0.316)^2} = 0.894 \times 0.949 = 0.848 = 0.894 yr (X) and supply (Y) the following data were obtained: Example 45. For 10 observations on price (X) and supply (Y) the following data were obtained: $\Sigma X = 130, \ \Sigma Y = 220, \ \Sigma X^2 = 2288$ $$\Sigma X = 130, \ \Sigma Y = 224,$$ $\Sigma Y^2 = 5506, \ \Sigma XY = 3467, \ N = 10$ Obtain the standard error of estimate of X on Y and Y on X. Given, N = 10, $\Sigma X = 130$, $\Sigma Y = 220$, $\Sigma X^2 = 2288$ Solution: $$\Sigma Y^2 = 5506, \ \Sigma XY = 3467$$ (Formula of S.D.) $$=\sqrt{\frac{2288}{10} - \left(\frac{130}{10}\right)^2} = \sqrt{228.8 - 169} = \sqrt{59.8} = 7.73$$ $$\sigma_y = \sqrt{\frac{\Sigma Y^2}{N} - \left(\frac{\Sigma Y}{N}\right)^2}$$ $$=\sqrt{\frac{5506}{10} - \left(\frac{220}{10}\right)^2} = \sqrt{550.6 - 484} = \sqrt{66.6} = 8.16$$ $$r = \frac{N.\Sigma XY - \Sigma X.\Sigma Y}{\left[V.\Sigma Y^{2} - \left(\Sigma Y\right)^{2}\right] \left[V.\Sigma Y^{2} - \left(\Sigma Y\right)^{2}\right]}$$ $$r = \frac{1}{\sqrt{N.\Sigma X^2 - (\Sigma X)^2}} \sqrt{N.\Sigma Y^2 - (\Sigma Y)^2}$$ $$10 \times 3467 - (130)(220)$$ $$=\frac{10\times3467-(130)(220)}{\sqrt{10\times2288-(130)^2}\sqrt{10\times5506-(220)^2}}$$ $$= \frac{6070}{\sqrt{5980}\sqrt{6660}} = \frac{6070}{6310.84} = 0.961$$ Standard Error of Y on X $$S_{yx} = \sigma_y \sqrt{1 - r^2} = 8.16 \sqrt{1 - (0.961)^2}$$ = $8.16 \sqrt{0.07647} = 2.256$ linear Regression Analysis Standard Error of X on Y $$S_{xy} = \sigma_x \sqrt{1 - r^2}$$ $$=7.73\sqrt{1-(0.961)^2}$$ $$=7.73\sqrt{0.07647}$$ EXERCISE 2.8 1. Find the standard error of estimates: $\sigma_x = 1.414$, $\sigma_y = 0.894$, r = 0.316 [Ans. S_{yx} =.848, S_{xy} =1.342] 2. For a set of 8 pair reading on X and Y, the coefficient of correlation is 0.65 and the standard deviation of Y series is 4.2. Find the standard error of Y on X. [Ans. S_{yx}=3.1917] 3. From the following data, compute standard error of estimate of the regression of Y on X: $\Sigma x^2 = 10$, $\Sigma y^2 = 4$, $\Sigma xy = 2$, N=5, where $x = X - \overline{X}$, $y = Y - \overline{Y}$ Given the following data: | X: | 1 | 2 | 3 | 4 | 5 | |----|---|---|---|---|---| | Y: | 2 | 4 | 5 | 3 | 6 | Obtain the two regression equations and calculate the standard error of estimates. [Ans. X = 0.74Y + 0.2, Y = 0.7 + 1.9, $S_{xy} = 1.01$, $S_{yx} = 1.01$] 5. Family income and its percentage spent on food in
the case of hundred families gave the following bivariate frequency distribution. | Food
Expenditure | the of the work to | eloculo el fi | 4 1 | | | |---------------------|--------------------|---------------|---------|---------|---------| | (in %) | 200—300 | 300—400 | 400-500 | 500—600 | 600—700 | | 10—15 | | - T | _ | 3 | 7 | | 15—20 | Faker in | stor 4 . | 9 | 4 | 3 | | 20—25 | X Way Low | 6 | 12 | 5 | - | | 25—30 | 3 | 10 | 19 | 8 | _ | Obtain the equations of the two lines of regression. Also compute the standard error of the estimates [Hint: See Example 55] [Ans. Y = -0.02X + 31.5; X = -9.6Y + 666; $S_{yx} = 4.494$, $S_{xy} = 98.47$] Explained and Unexplained Variation The total variation in the dependent variable Y can be split into two: The total variation in the dependent variation in Y which is explained by the variation in X is called explained variation in Y. (b) Unexplained Variation: The variation in Y which is unexplained by the variation in variable X and is due to some other factors (variables) is called unexplained variation in Y. Symbolically, Total variation in Y = Explained variation in Y + Unexplained variation in Y = Explained va Total variation in Y = Explained variation in Y $$\Sigma (Y - \overline{Y})^2 = \Sigma (Y_c - \overline{Y})^2 + \Sigma (Y - Y_c)^2$$ $$\Sigma (Y - \overline{Y})^2 = \Sigma (Y_c - \overline{Y})^2 + \Sigma (Y - Y_c)^2$$ Where, $Y_c = \text{computed}$ (or estimated) value of Y on the basis of regression equation \overline{Y} = Mean value of Y series Y = Original value of Y series. A similar relationship we may have for X variable (Dependent) in terms of Y: $$\Sigma (X - \overline{X})^2 = \Sigma (X_c - \overline{X})^2 + \Sigma (X - X_c)^2$$ Coefficient of Determination: Based on the above expression, the coefficient of determination (r^2) is defined as the ratio of the explained variation to total variation, i.e., $$r^{2} = \frac{\text{Explained variation}}{\text{Total variation}} = \frac{\Sigma (Y_{c} - \overline{Y})^{2}}{\Sigma (Y - \overline{Y})^{2}}$$ It is clear that the object of coefficient of determination is to determine the percentage variation in Y which is explained by variation in X. For example, let us suppose that the correlation coefficient between X and Y is +0.8, then coefficient of determination $(r^2) = (0.8)^2 = 0.64$. It means that 64% variations in Y are due to variation in X and 36% variations are due to other factors. Thus, explained variations are 64% and unexplained variations are 36%. Coefficient of Non-Determination: The proportion of unexplained variation to total variation is termed as coefficient of non-determination. It is denoted by k^2 , where $k^2 = 1 - r^2$. It is also written as: $$k^2 = \frac{\text{Unxplained variation}}{\text{Total variation}} = 1 - r^2$$ The square root of k^2 is termed as coefficient of alientation, i.e., $k = \sqrt{k^2} = \sqrt{1 - r^2}$ Standard Error of Estimate: Standard error of estimates of Y on X and X on Y can also be $$S_{yx} = \sqrt{\frac{\sum(Y - Y_c)^2}{N}} = \sqrt{\frac{\text{Unexplained variation in } Y}{N}}$$ $$S_{yy} = \sqrt{\frac{\sum(X - X_c)^2}{N}} = \sqrt{\frac{\text{Unexplained variation in } X}{N}}$$ Linear Regression Analysis Explained variation = 19.22 Example, 46. Given: Unexplained variation = 19.70 Determine the coefficient of correlation. Total variation = Explained variation + Unexplained variation = 19.22 + 19.70 = 38.92 Coefficient of Determination ($$r^2$$) = Explained variation $\frac{19.22}{38.92} = 0.4938$ $$\Rightarrow$$ Coefficient of Correlation $(r) = \sqrt{0.4938} = 0.70$ In fitting of a regression of Y on X to a bivariate distribution consisting of 9 observations, In fitting of a regression of 1 of the activation unusual consisting of 9 observations, the explained and unexplained variations were computed as 24 and 36 respectively. Find: (1) coefficient of determination, and (ii) standard error of estimate of Y on X. Total variation in Y = Explained variation in Y + Unexplained variation in Y Coefficient of Determination $$(r^2) = \frac{\text{Explained variation}}{\text{Total variation}} = \frac{24}{r} = \frac{4}{r} = 0.40$$ Total variation in $$r + U$$ constraints an in $r + U$ constraint $r + U$ constraints in $r + U$ constraints constraint Example 48., Given the following data: | X: | 1. | 2 | 3 | 4 | 5 . | |----|---------|----|----|----|-----| | Y: | / 10 // | 20 | 30 | 50 | 40 | Calculate: - (i) Regression equation of Y on X. - (ii) Total variation in Y. - (iii) Unexplained variation in Y. - (iv) Explained variation in Y. (v) Standard error of estimate. - (vi) Coefficient of determination. | X | $x=X-\overline{X}$ | x2 | Y | $y = Y - \overline{Y}$ | y ² | ху | |-----------------------|--------------------|-------------------|----------|------------------------|---------------------|------------------| | 1 | -2 | 4 | 10 | -20 | 400 | 40 | | 2 | -1 | 1 | 20 | -10 | 100 | 10 | | 3 | 0 | 0 | 30 | 0 | 0 | . 0 | | 4 | | · APPLICATE | 50 | 20 | 400 | 20 | | 5 | 2 | 70 1 4 DA | 40 | 10 | 100 | - 20 | | $\sum X = 15$ $N = 5$ | $\Sigma x = 0$ | $\Sigma x^2 = 10$ | ΣY = 150 | $\Sigma y = 0$ | $\Sigma y^2 = 1000$ | $\Sigma xy = 90$ | 147 $$\overline{X} = \frac{\Sigma X}{N} = \frac{15}{5} = 3$$ $$b_{1}x = \frac{\Sigma xy}{\Sigma x^{2}} = \frac{90}{10} = 9$$ (i) Regression Equation of Y on X Regression Equation of $$Y - \overline{Y} = byx(X - \overline{X})$$ $Y - \overline{Y} = byx(X - \overline{X})$ $Y - 30 = 9(X - 3)$ $Y - 30 = 9X - 27$ $Y = 9X + 3$ (ii) Total variation in $Y = \Sigma(Y - \overline{Y})^2 = \Sigma y^2 = 1000$ (iii) Unexplained variation in Y: | nexplained (| v v | $Y_c = 9X + 3$ | $Y - Y_c$ | (Y-Y) ² | |--------------|-----|----------------|-----------|-----------------------| | <u> </u> | 10 | 12 | -2 | 4 | | 2 | 20 | 21 | -1 | 1 | | 3 | 30 | 30 | 0 | 0 | | 4 | 50 | 39 | 11 | 121 | | 5 | 40 | 48 | -8 | 64 | | | | | | $\Sigma(Y-Y_c)^2=190$ | Unexplained variation = $\Sigma (Y - Y_c)^2 = 190$ (iv) Explained variation in Y = Total variation – Unexplained variation = 1000 - 190 = 810 (v) Standard error of estimate $$(S_{yx}) = \sqrt{\frac{\Sigma(Y - Y_c)^2}{N}} = \sqrt{\frac{190}{5}} = 6.164$$ (vi) Coefficient of determination (r^2) = $\frac{\text{Explained variation}}{\text{Total variation}} = \frac{810}{1000} = 0.81$ Example 49. From the following data: | 1 | Trom the following da | a. | | | | | | Total L. Y. | 1 1 | | $\overline{}$ | |---|-------------------------|----|----|----|----|----|----|-------------|-----|----|---------------| | | Age of husband (years): | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | | | Age of wife (years): | 17 | 17 | 18 | 18 | 18 | 19 | 19 | 20 | 21 | 21 | Obtain the following: - (i) The regression of age of husband on the age of wife. - (ii) Total variation in the age of husband. - (iii) The magnitude of variation in age of the husband, explained by the regression equation. - (iv) Standard error of the estimate of age of husband. v denote age of husband and X denote age of | Y | A = 23
dy | dy ² | X | A = 19
dx | dx ² | dxdy | |--|------------------|--------------------|--|------------------|--------------------|--------------------| | 18 | -5 | 25 | 17 | -2 | | | | 19 | -4 | 16 | 17 | -2 | 4 | 10 | | 20 | -3 | 9 | 18 | -1 | 4 | 8 | | 21 | -2 | 4 | 18 | | 1 | 3 | | | -1 | 1 | 18 | -1 | 1 | 2 . | | 22 | - 0 | . 0 | | -1 | 1 | 11 | | 23 = A | | | 19 = A | 0 | 0 | 0 | | 24 | +1 | 1 | 19 | 0 | 0 | 0 | | 25 | +2 | 4 | 20 | +1 | | 2 | | 26 | +3 | 9 | 21 | +2 | 4 | 6 | | 27 | +4 | 16 | 21 | +2 | 4 | 8 | | $\Sigma Y = 225$ $N = 10$ $\therefore \overline{Y} = 22.5$ | $\Sigma dy = -5$ | $\Sigma dy^2 = 85$ | $\Sigma X = 188$ $N = 10$ $\therefore \overline{X} = 18.8$ | $\Sigma dx = -2$ | $\Sigma dx^2 = 20$ | $\Sigma dxdy = 40$ | (i) $$byx = \frac{N.\Sigma dxdy - \Sigma dx.\Sigma dy}{N.\Sigma dx^2 - (\Sigma dx)^2}$$ $$= \frac{10 \times 40 - (-2)(-5)}{10 \times 20 - (-2)^2} = \frac{400 - 10}{200 - 4} = \frac{390}{196} = 1.989 = 1.99$$ $$\sigma_y^2 = \frac{\Sigma dy^2}{N} - \left(\frac{\Sigma dy}{N}\right)^2$$ $$= \frac{85}{10} - \left(\frac{-5}{10}\right)^2$$ $$= 8.5 - 0.25 = 8.25$$ Regression Equation of Y on X $$Y - \overline{Y} = byx(X - \overline{X})$$ $Y - 22.5 = 1.99(X - 18.8)$ $$Y-22.5=1.99X-37.412$$ $Y=1.99X-14.912$ (ii) Total variation in $Y = \Sigma (Y - \overline{Y})^2 = N \cdot \sigma_y^2$ $$= 10 \times 8.25 = 82.5$$ | - lains | d variati | on in 1 . | $Y_c - \overline{Y}$ | 1 | |----------------|-----------|--------------------------|----------------------|---| | (iii) Explaine | | $Y_c = (1.99X - 14.912)$ | r _c -r | $(Y_c - \overline{Y})^2$ | | X | 1 | 18.9 | -3.6 | 12.96 | | 17 | 18 | 18.9 | -3.6 | | | 17 | 19 | 20.9 | -1.6 | 12.96 | | 18 | 20 | 20.9 | - 1.6 | 2.56 | | 18 | 21 | 20.9 | -1.6 | 2.56 | | 18 | 22 | 22.9 | 0.4 | 0.16 | | 19 | 23 | 22.9 | 0.4 | 0.16 | | 19 | 24 | 24.9 | 2.4 | 7 | | 20 | 25 | 26.9 | 4.4 | 5.76 | | 21 | 26 | | | 19.36 | | 21 | 27 | 26.9 | | 19.36 | | | | | | $\Sigma (Y_c - \overline{Y})^2 = 78.40$ | Explained variation in Y = 78.40 Magnitude of variation in age of husband (Y) explained by the regression equation = 78.40 Unexplained variation in Y = Total variation - Explained variation = 82.5 - 78.40 = 4.1 (iv) Standard Error of Estimate (Syx) $$S_{yx} = \sqrt{\frac{\Sigma(Y - Y_c)^2}{N}} = \sqrt{\frac{\text{Unexplained Variation}}{N}} = \sqrt{\frac{4.1}{10}} = 0.64$$ ### **EXERCISE 2.9** - The coefficient of correlation (r) between two variables X and Y is + 0.95. What percent variation in Y (dependent variable) remains unexplained by the variation in X (the independent variable). - [Hint: $r^2 = 0.9025$, Explained variation = 90.25%] - [Ans. Unexplained variation = 9.75%] 2. If the explained variation is 15.24 and the unexplained variation is 27.09, find the coefficient of determination [Hint: r^2 = Explained
Variation + Total Variation] 3. Given the bivariate data | | | | Total Control of | | | 5 | 1 | X: | |--------------|---|---|------------------|-----|---|---|---|----| | v. 6 3 2 1 1 | 1 | 1 | 1 | 2 : | 3 | | | v. | Obtain: (i) Regression equation of Y on X (ii) Total variation in Y, and Linear Regression Analysis (iii) Explained variation in Y (iv) Standard error of estimate of Y on X. ate of Y on A. [Ans. (i) Y = 2.874 - 0.304X (ii) 38 (iii) 3.042 (iv) 2.0299] The coefficient of correlation (r) between consumption expenditure (C) and disposable income (Y) in a study was found to be +0.8. What percentage of variation in C are explained by variations in Y? | 5
r = 0.806 V = 1.33 | .3 | 8 | 7 | |-------------------------|------------------|--------------------|--| | | | | \/ | | | (+1.1, | | | | | 6% variations ar | re explained by th | e regression line.] | | | | | $r^2 = 0.6496 \Rightarrow 64.96\%$ variations are explained by the second $r^2 = 0.6496 \Rightarrow 64.96\%$ variations are explained by the second $r^2 = 0.6496 \Rightarrow 64.96\%$ variations are explained by the second $r^2 = 0.6496 \Rightarrow 64.96\%$ variations are explained by the second $r^2 = 0.6496 \Rightarrow 64.96\%$ variations are explained by the second $r^2 = 0.6496 \Rightarrow 64.96\%$ variations are explained by the second $r^2 = 0.6496 \Rightarrow 64.96\%$ variations are explained by the second $r^2 = 0.6496 \Rightarrow 64.96\%$ variations are explained by the second $r^2 = 0.6496 \Rightarrow 64.96\%$ variations are explained by the second $r^2 = 0.6496 \Rightarrow 64.96\%$ variations are explained by the second $r^2 = 0.6496 \Rightarrow 64.96\%$ variations are explained by the second $r^2 = 0.6496 \Rightarrow 64.96\%$ variations are explained by the second $r^2 = 0.6496 \Rightarrow 64.96\%$ variations are explained by the second $r^2 = 0.6496 \Rightarrow 64.96\%$ variations are explained by the second $r^2 = 0.6496 \Rightarrow 64.96\%$ variations are explained by the second $r^2 = 0.6496 \Rightarrow 64.96\%$ variations are explained by the second $r^2 = 0.0496 \Rightarrow 64.96\%$ variations are explained by the second $r^2 = 0.0496 \Rightarrow 64.96\%$ variations are explained by the second $r^2 = 0.0496 \Rightarrow 64.96\%$ variations are explained by the second $r^2 = 0.0496 \Rightarrow 64.96\%$ variations are explained by the second $r^2 = 0.0496 \Rightarrow 64.96\%$ variations are explained by the second $r^2 = 0.0496 \Rightarrow 64.96\%$ variations are explained by the second $r^2 = 0.0496 \Rightarrow 64.96\%$ variations are explained by the second $r^2 = 0.0496 \Rightarrow 64.96\%$ variations are explained by the second $r^2 = 0.0496 \Rightarrow 64.96\%$ variations are explained by the second $r^2 = 0.0496 \Rightarrow 64.96\%$ variations are explained by the second $r^2 = 0.0496 \Rightarrow 64.96\%$ variations are explained by the second $r^2 = 0.0496 \Rightarrow 64.96\%$ variations are explained by the second $r^2 = 0.0496 \Rightarrow 64.96\%$ variations are explained by the second $r^2 = 0.0496 \Rightarrow 64.06\%$ | 6. Given the following data: $S_{yx} = 35$, $\Sigma Y^2 = 800$, $\overline{Y} = 5$, N = 20 Find (i) total variation in Y which are unexplained and explained by X (ii) coefficient of determination and (iii) coefficient of non-determination. [Ans. (i) 300, 245, 55, (ii) 0.1833, (iii) 0.8167] ## MISCELLANEOUS SOLVED EXAMPLES |
T TOTAL CAL | 1 | ing dutin, | ootuni t | ile two i | egi casiui | i equatio | us. | | | |-----------------|---|------------|----------|-----------|------------|-----------|-----|----|----| | X: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | Y: | 9 | - 8 | 10 | 12 | 11 | 13 | 14 | 16 | 15 | Verify that the coefficient of correlation is the geometric mean of the two regression coefficients. Calculation of Regression Equations | X | X=5 | x ² | Y | γ=12
y | y ² | ху | |-----------------|----------------|-------------------|--------|----------------|----------------|--------| | 1 | 4 | 16 | 9' | -3 | 9 | +12 | | 2 | -3 | 9 | 8 | -4 | 16 | ,+12 | | 3 | -2 | 4 | 10 | -2 | 4 | +4 | | 4 | -1 | | 12 | . 0 | 0 | 0 | | 5 1 | 0 | 0 | 11 | -1 | 1 | 0 | | 6 1/ | / +1 | gra -1 sta | 13 | +1 | No. 1 | +1 | | 7/1 | +2 | 4 . | 14 | +2 | 4 | +4 | | 8 | +3 | 049avs | 16 | +4. | 16 | +12 | | 9 | +4 | 16 | 15 | +3 | 9 - | +12 | | $\Sigma X = 45$ | $\Sigma x = 0$ | $\Sigma x^2 = 60$ | ΣY=108 | $\Sigma y = 0$ | Σχ2=.60 | Exy=57 | $$\overline{Y} = \frac{\Sigma Y}{N} = \frac{108}{9} = 12$$ $X = \frac{1}{N} - \frac{1}{9}$ Since the actual means of X and Y are whole numbers, therefore we should take the deviations from \overline{X} and \overline{Y} . and $$\overline{Y}$$. $bxy = \frac{\sum xy}{\sum y^2} = \frac{57}{60} = +0.95$ $$byx = \frac{\sum xy}{\sum x^2} = \frac{57}{60} = +0.95$$ Regression Equation of Y on X $$Y - \overline{Y} = byx (X - \overline{X})$$ $$Y-12=+0.95(X-5)$$ $$Y - 12 = 0.95X - 4.75$$ $$Y = 0.95X + 7.25$$ Regression Equation of X on Y $$X - \overline{X} = bxy (Y - \overline{Y})$$ $$X-5=+0.95(Y-12)$$ $$X - 5 = 0.95Y - 11.4$$ $$X = 0.95Y - 6.4$$ $$X = 0.937 - 0.4$$ Calculation of Coefficient of Correlation r = $$\frac{\sum xy}{\sqrt{\sum x^2} \sqrt{\sum y^2}}$$ = $\frac{57}{\sqrt{60}\sqrt{60}}$ = +0.95 Verification: $$r = \sqrt{bxy \cdot byx}$$ $$=\sqrt{0.95\times0.95}$$ Hence the result is verified. Example 51. The following table gives the | | Tollowing tal | ole giv | es the | ages ar | id bloo | d press | sure of | 10 wo | men. | 100 | |-----|---------------|---------|--------|---------|---------|---------|---------|-------|------|-----| | Ag | e: | 56 | 42 | 36 | 47 | 49 | 42 | 60 | 72 | | | Blo | ood Pressure: | 147 | 125 | 118 | 128 | 145 | 140 | 155 | 160 | | Estimate the blood pressure of a woman whose age is 45 years. Let age be denoted by X and blood pressure be denoted by V | | A = 49 | dx2 | | Thoted by | Y. | | |------------------|------------------|----------------------|-------------------|-----------|-----------------|------------------| | X | dx | the Balleton | Y | A = 140 | dy ² | dxdy | | 56 | +7 | 49 | 147 | dy | - | actay. | | 42 | 10-74 | 49 | 125 | +7 | 49 | +49 | | 36 | -13 | 169 | 118 | -15 | 225 | +105 | | 47 | -2 | 4 (10) | 128 | -22 | 484 | +286 | | 49 = A | 0 | 0 | 145 | -12 | 144 | +24 | | | -7 | 49 | | +5 | 25 | 0 | | 42 | 2 (B2+11 lo | 121 | 140 = A | 0 | 0 | 0 | | 60 - | | | 155 | +15 | 225 | +165 | | .72 | +23 | 529 | 160 | +20 | 400 | +460 | | 63 | +14 | 196 | 149 | +9 . | 81 | +126 | | 55 | +6 | 36 | 150 | +10 | 100 | | | $\Sigma X = 522$ | $\Sigma dx = 32$ | $\Sigma dx^2 = 1202$ | $\Sigma Y = 1417$ | Σdy= 17 | - | 60
Σdxdy=127: | For estimating the blood pressure of a woman whose age is 45, we fit a regression equation of Y on X: $$\overline{X} = \frac{\Sigma X}{N} = \frac{522}{10} = 52.2$$ $\overline{Y} = \frac{\Sigma N}{N} = \frac{1417}{10} = 141.7$ $$byx = \frac{N \cdot \Sigma dx dy - \Sigma dx \cdot \Sigma dy}{N \cdot \Sigma dx^2 - (\Sigma dx)^2}$$ $$= \frac{10 \times 1275 - (32)(17)}{10 \times 1202 - (32)^2} = \frac{12750 - 544}{12020 - 1024} = \frac{12206}{10996} = 1.11$$ Regression Equation of Y on X $$Y - \overline{Y} = byx(X - \overline{X})$$ $$Y-141.7=1.11(X-52.2)$$ $$Y - 141.7 = 1.11X - 57.942$$ For $$X = 45$$, $Y = 1.11X + 83.758$ $Y = 1.11 (45) + 83.758$ $$X = 45$$, $Y = 1.11 (45) + 83.758$ = $49.95 + 83.758 = 133.708$ Thus, the blood pressure of a woman whose age is 45 = 134. 52. On each of 30 items, two measurements on X and Y are made. The following summations are given: $$\Sigma X = 15$$, $\Sigma Y = -6$, $\Sigma XY = 56$, $\Sigma X^2 = 61$ and $\Sigma Y^2 = 90$. Calculate the product moment correlation coefficient and the slope of the regression $X - \frac{1}{2}$ line of Y on X. How would your results be affected if X is replaced by $U = \frac{X - 1}{2}$ Solution: (i) Coefficient of
Correlation 1770 $30 \times 56 + 15 \times 6$ $= \frac{1}{\sqrt{1605} \times \sqrt{2664}} = 0.856$ $r = \frac{30 \times 30 \times 10^{-2}}{\sqrt{30 \times 61 - (15)^2} \sqrt{30 \times 90 - (-6)^2}}$ $\sqrt{30 \times 61 - (13)}$ volume Since r is independent or enange of scale and of enange of origin remain same even after making the above mentioned transformation. (ii) Regression Coefficient of Y on X $$byx = \frac{1770}{1605} = 1.10$$ We know that byx is independent of change of origin but not of change of scale. We know that by x is interpolation to f Y on X and by u denote regression coefficient of Y on X and by u denote regression coefficient of y on u where, $u = \frac{X - A}{h}$ and $v = \frac{Y - B}{k}$, we know that by $x = \frac{k}{h} b u$ or $$bvu = \frac{h}{k}by$$ In the example, it is given that h=2 and k=1, i.e., bvu=2byx. In the example, it is given that T. Hence, the new regression coefficient will be two times the old regression Y = 1. Hence, the new regression coefficient with c the distribution of C on C and C in regression coefficient of C on C on C on C is equal to 2×1.10, i.e., 2.20. Example 53. For certain data, 3X+2Y-26=0 and 6X+Y-31=0 are the two regression equations. Find the values of means and coefficient of correlation. Calculation of \overline{X} and \overline{Y} Solution: $$3X + 2Y - 26 = 0$$...(i) Multiplying (ii) by 2 and subtracting (i) from (ii) $$12X + 2Y - 62 = 0$$ $$3X+2Y-26=0$$ $$-$$ + $9X - 36 = 0$ 9X = 36 X = 4 or $\overline{X} = 4$ Putting the value of X = 4 in (i) $$3(4) + 2Y - 26 = 0$$ $$12 + 2Y - 26 = 0$$ $$2Y = 14$$ $$Y = 7$$ or $\overline{Y} = 7$ $$\therefore \ \overline{X} = 4, \ \overline{Y} = 7$$ Linear Regression Analysis Calculation of Coefficient of Correlation Let us take equation (i) as Y on X and (ii) as X on Y Regression Equation of Y on X $$3X + 2Y - 26 = 0$$ $$2Y = 26 - 3X$$ $$Y = \frac{26}{2} - \frac{3}{2}X$$ Regression Equation of X on Y $$6X + Y - 31 = 0$$ $$6X = 31 - Y$$ $$X = \frac{31}{6} - \frac{1}{6}Y$$ $$bxy = -\frac{1}{6}$$ $r = \sqrt{byx \cdot bxy}$ $$=-\sqrt{\left(\frac{-3}{2}\right)\left(\frac{-1}{6}\right)}=-\sqrt{\left(\frac{3}{12}\right)}=-\sqrt{\left(\frac{1}{4}\right)}=\frac{-1}{2}=-0.50$$ Example 54. The following results were worked out from the scores in Statistics and Mathematics in a certain examination: | | Score in Statistics (X) | Score in Mathematics (Y) | |---------------------|-------------------------|--------------------------| | Mean: | 39.5 | 47.5 | | Standard Deviation: | 10.8 | 17.8 | Find both the regression equations. Use these regressions to estimate the value of Y for X=50 and also estimate the value of X for Y=30. Given, $$\overline{X} = 39.5$$, $\overline{Y} = 47.5$, $\sigma_x = 10.8$, $\sigma_y = 17.8$, $r = +0.42$ (i) Regression Equation of X on Y $$X - \overline{X} = r \cdot \frac{\sigma_x}{\sigma_y} (Y - \overline{Y})$$ $$X - 39.5 = 0.42 \times \frac{10.8}{17.8} (Y - 47.5)$$ $$X - 39.5 = 0.42 \times \frac{(Y - 47.5)}{17.8}$$ $$X - 39.5 = 0.25(Y - 47.5) \implies X = 0.25Y + 27.625$$ Regression Equation of Y on X $y - \overline{Y} = r \cdot \frac{\sigma_y}{\sigma_x} (X - \overline{X})$ $y - 47.5 = +0.42 \times \frac{17.8}{10.8} (X - 39.5)$ Y-47.5 = 0.69 (X-39.5) \Rightarrow Y = 0.69 X + 20.245(ii) For X = 50, Y = 0.69 (50) + 20.245 = 54.745 For Y = 30, X = 0.25(30) + 27.625 = 35.125For 1 - 30, A - 3.22 (2) Example 55. Family income and its percentage spent on food in case of hundred families gave the following bivariate distribution: Family Income (Rs) Food Expenditure (in %) 200-300 300-400 400-500--600 10—15 15-20 12 20-25 19 10 Obtain the equations of two lines of regression. Also compute standard error of estimate (Landscape Table Given at Page 157) Solution: Let $dx = \frac{X - 450}{100}$ and $dy = \frac{Y - 17.5}{5}$ Regression Coefficient of Y and X resiston Coefficient of 1 and x $byx = \frac{N \cdot \Sigma f dx dy - \Sigma f dx \cdot \Sigma f dy}{N \cdot \Sigma f dx^2 - (\Sigma f dx)^2} \times \frac{i_y}{i_x}$ $= \frac{100(-48) - 0 \times 100}{100 \times 120 - (0)^2} \times \frac{5}{100} = \frac{-4800}{12000} \times \frac{1}{20} = \frac{-2}{100} = -0.02$ Regression Coefficient of X on Y bxy = $\frac{N \cdot \Sigma f dx dy - \Sigma f dx}{N \cdot \Sigma f dy^2 - (\Sigma f dy)^2} \times \frac{i_x}{i_y}$ = $\frac{100(-48) - 0 \times 100}{100 \times 200 - (100)^2} \times \frac{100}{5} = \frac{-4800 - 0}{20000 - 10000} \times 20$ $100 \times 200 - (100)$ $= \frac{-4800}{10000} \times 20 = \frac{-48}{5} = -9.6$ $\overline{X} = A + \frac{\sum f dx}{N} \times i_x = 450 + \frac{0}{100} \times 100 = 450$ $\overline{Y} = A + \frac{\sum f dy}{N} \times i_y = 17.5 + \frac{100}{100} \times 5 = 22.5$ Linear Regression Analysis | near F | Regr | essio | on An | aly | - A | 7 | | - | | | | | 1 | 57 | |--------|---------|----------------------|-------|----------|-------|----------------|---------|--------|-------|---------|-----|------|------|------| | | | | | | fdxdy | 11 - | 0 | - 15 | 91 - | - 48 | / | | | | | | | | | | fdy² | 01 | 0 | 30 | 091 | 200 | \ | \ | | | | | | Ø. | | | fdy | -10 | 0 | 30 | 80 | 100 | | ' | / | | | | * | 1 | 191 | | | 10 | 20 | 30 | 40 | 001 = N | 0 | 120 | | - 48 | | | 002-009 | 650 | 200 | 8 | 2 | -2
7
-14 | 3 0 | - [| 1 | 01 | 20 | 5 | + | - 14 | | L | 200 600 | 550 | 100 | 180 | | –1
3
–3 | 4 0 | 5 5 | 8 8 | 20 | 90 | | 20 | 18 | | | 400—500 | 450 | 0 | | 0 | l | 0 6 0 | 0 12 0 | 0 19 | 9 | 2 0 | , | 0 | 0 | | | 300—400 | 350 | - 100 | | -1 | - 1 | 4 0 | 9 7 | | -20 | 707 | - 20 | 20 | - 26 | | | 200-300 | 250 | -200 | | - 2 | pinel list. | Date La | -2 7 | _ | -12 | 0 | -20 | 40 | 3% | | | | $X \rightarrow M.V.$ | | | 中 | T T | 0 | Ŧ | +2 | | ` | Sdx | 7.77 | 1 | | | | × | ' | / | | J. | 0 | \$+ | 10 | | | | | | | | | / | / | . | M.V. | 12.5 | 17.5 | 22.5 | 27.5 | | | | | | | 6 | / | _ | | 1 | | I I I | 15—20 | 20—25 | 25—30 | # J- | | | | | $S_{xy} = \sigma_x \sqrt{1 - r^2} = 109.545 \times \sqrt{1 - 0.192} = 109.545 \times \sqrt{0.808} = 98.47$ Example 56. Find the means of X and Y variables and the coefficient of correlation between them from the following two regression equations: $$2Y - X - 50 = 0$$ $$3Y - 2X - 10 = 0$$ Also calculate the standard error of estimate of Y on X, given that the standard deviation of X is 3. Solution: (a) Calculation of \overline{X} and \overline{Y} Multiplying (i) by 2 and subtracting (ii) from it, Putting the value of Y in (i) 2(90) - X - 50 = 0180 - X - 50 = 0 $\therefore X = 130 \text{ or } \overline{X} = 130$ $\therefore \ \overline{X} = 130, \ \overline{Y} = 90$ Bar Regression Analysis (b) Calculation of Correlation Coefficient Let us assume equation (i) as Y on X and equation (ii) as X on Y. Let us assume (ii) as X or Regression of Y on X Regression of X on Y 2Y - X - 50 = 03Y - 2X - 10 = 02Y = 50 + X $Y = 25 + \frac{1}{2}X$ 3Y - 10 = 2X2X = 3Y - 10 $r^2 = byx \cdot bxy = \frac{1}{2} \times \frac{3}{2}$ $r = \sqrt{\frac{3}{4}} = \sqrt{0.75} = +0.866$ (c) We know that $byx = r \cdot \frac{\sigma_y}{\sigma_x}$ $\Rightarrow \frac{1}{2} = 0.866 \cdot \frac{\sigma_y}{3}$ [: $\sigma_x = 3$ given] $\sigma_y = 1.732$ Standard error of estimate of Y on X is $S_{yx} = \sigma_y \sqrt{1 - r^2}$ or $$S_{yx} = \sigma_y \sqrt{1 - r^2}$$ or $S_{yx} = 1.732 \sqrt{1 - \frac{3}{4}} = 1.732 \times \frac{1}{2} = 0.866$ ple 57. A departmental store gives in-service training to its salesmen which is followed by a test. It is considering whether it should terminate the service of any salesmen who does not do well in the test. The following data give the test scores and sales made by nine salesmen during a certain | | ing a c | citati p | criou . | | | | | | | |-----------------|---------|----------|---------|----|----|----|----|------|----| | Test Scores | 14 | 19 | 24 | 21 | 26 | 22 | 15 | 20 ' | 19 | | Sales ('00 Rs.) | 31 | 36 | 48 | 37 | 50 | 45 | 33 | 41 | 39 | Calculate the coefficient of correlation between the test scores and the sales. Does it indicate that the termination of services of low test scores is justified? If the firm wants a minimum sales volume of Rs. 3,000, what is the minimum test score that will ensure ensure continuation of service ? Also estimate the most probable sales volume of a salesman. salesman making a score of 28. 9 Solution: Let X denote the test scores of the salesmen and Y denote their corresponding to (in '00 Rs.) Calculations for Regression I in- | | | Calculati | ons for reeg | Lession Lir | ies | |---------|------------------|-----------------------------------|-----------------------------------|--------------------|--------------------| | X | Y | $x = X - \overline{X}$ $= X - 20$ | $y = Y - \overline{Y}$ $= Y - 40$ | x ² | y ² | | 14 | 31 | -6 | -9 | 36 | 81 | | 19 | 36 | -1 | -4 | 1 | 16 | | 24 | 48 | 4 | 8 | 16 | 64 | | 21 | 37 | 1 | -3 | 1 | 9 | | 26 | 50 | 6 | 10 | 36 | 100 | | 22 | 45 | 2 | 5 | 4 | 25 | | 15 | 33 | -5 | -7 | 25 | 49 | | 20 | 41 | 0 | 1 | . 0 | 1. | | 19 | 39 | -1 | -1 | 1 | 1 | | (= 180 | $\Sigma Y = 360$ | $\Sigma x = 0$ | $\Sigma y = 0$ | $\Sigma x^2 = 120$ | $\Sigma y^2 = 346$ | $$\overline{X} = \frac{\Sigma X}{N} = \frac{180}{9} = 20$$ $$b_{JX} = \text{Coefficient of regression of } Y \text{ on } X$$ $$= \frac{\Sigma xy}{\Sigma x^2} = \frac{193}{120} = 1.6083$$ $$b_{JX} = \text{Coefficient of regression of } X \text{ on } Y$$ $$= \frac{\Sigma xy}{\Sigma y^2} = \frac{193}{346} = 0.5578$$ Karl Pearson's correlation coefficient r between x and y is given by: $$r^{2} = byx \cdot bxy = 1.6083 \times 0.5578 = 0.8971$$ $$\Rightarrow r = \pm \sqrt{0.8971} = \pm 0.9471$$ Since, the regression coefficients are positive, r is also positive. $$r = +0.9471$$ $$r_{xy} = \frac{\Sigma_{xy}}{\sqrt{\Sigma x^2 \cdot \Sigma y^2}} = \frac{193}{\sqrt{120 \times 346}} = \frac{193}{\sqrt{41520}}$$ $$= \frac{193}{203.7646} = 0.9471$$ Thus, we see that there is a very high degree of positive correlation between the scores (X) and the self-cities are the termination. scores (X) and the sales
('00 Rs.) (Y). This justifies the proposal for the terminate service of those with law the sales ('00 Rs.) (Y). service of those with low test scores. Regression Eq. (X) for given sales (Y), we use the equation of the line of X on Y. regression of X on Y. The equation of line of regression of X on Y is: $$X - \overline{X} = bxy (Y - \overline{Y})$$ $$X - 20 = 0.5578 (Y - 40) = 0.5578Y - 22.312$$ $$X = 0.5578Y - 22.312 + 20$$ $$X = 0.5578Y - 2.312$$ Hence, to ensure the continuation of service, the minimum test score (X) corresponding to a minimum sales volume (Y) of Rs. 3,000 = 30 ('00 Rs.) is obtained on putting $$X = 0.5578 \times 30 - 2.312 = 16.734 - 2.312$$ To estimate the sales volume (Y) of a salesman with given test score (X), we use the line of regression of Y on X, which is given by: $$Y - \overline{Y} = byx(X - \overline{X})$$ ⇒ $Y - 40 = 1.6083(X - 20) = 1.6083X - 32.1660$ ⇒ $Y = 1.6083X - 32.1660 + 40$ ⇒ $Y = 1.6083X + 7.8340$ Hence, the estimated sales volume of a salesman with test score of 28 is (in '00 Rs.) $$Y = 1.6083 \times 28 + 7.8340$$ = $45.0324 + 7.8340$ = 52.8664 (°00 Rs.) = Rs. 5286.64 Example 58. In the estimation of regression equation of two variables X and Y, the following results were obtained: $\overline{X} = 90$, $\overline{Y} = 70$, N = 10, $\Sigma x^2 = 6360$, $\Sigma y^2 = 2860$, $\Sigma xy = 3900$, where, x and y are deviations from their respective means. Obtain the two lines of regression. Given, $$N = 10$$, $\overline{X} = 90$, $\overline{Y} = 70$, $\Sigma x^2 = 6360$, $\Sigma y^2 = 2860$, $\Sigma xy = 3900$ $$byx = \frac{\Sigma xy}{\Sigma x^2} = \frac{3900}{6360} = +0.61 \text{ Where, } x = X - \overline{X}; \ y = Y - \overline{Y}$$ $$bxy = \frac{\Sigma xy}{\Sigma y^2} = \frac{3900}{2860} = 1.36$$ Regression Equation of Y on X $$Y - \overline{Y} = byx (X - \overline{X})$$ $Y - 70 = 0.61 (X - 90)$ $$Y-70 = 0.61X-54.9$$ $Y = 0.61X+15.1$ Regression Equation of X on Y $$X - \overline{X} = bxy(Y - \overline{Y})$$ $$X - X = 0.35$$ $X - 90 = 1.36 (Y - 70)$ $$X-90 = 1.36Y-95.2$$ $$X = 1.36Y - 5.2$$ Example 59. From the following data, find out (i) correlation coefficient, (ii) linear regression line | of Y on X. Also find ou | t the percentage of v | an lation expit | inica by the re | gression line | |-------------------------|-----------------------|-----------------|-----------------|---------------| | V 1 | 2 | 3 | 4 | 5 | | X: 2 | 5 | 3 | 8 | - | Solution: | Calc | lations of C | orrelation | Coefficien | t and Regre | ssion Equat | ions | |------|----------------------|----------------|------------|--------------------|------------------|------| | X | $\overline{X} = 3$. | x ² | Y | $\overline{Y} = 5$ | y ² [| ху | | 1 | -2 | 4 | 2 | -3 | 9 | 6 | | 2 | -1 | 1 | 5 | 0 | 0 . | 0 | | 3 | 0 | - 0 | 3 | -2 | 4 | 0 | | 1 | +1 | 1 | 8 | +3 | 9 | . 3 | | - | 12 | 4 | 7 | +2 | 4 | 4 | $\Sigma y = 0$ $\Sigma y^2 = 26$ Σxy = 13 $$\overline{X} = \frac{15}{5} = 3, \overline{Y} = \frac{25}{5} = 5$$ Since the actual means of X and Y are whole numbers, we should take deviations from actual means of X and Y to simplify the calculations. (i) Calculation of Correlation Coefficient $$r = \frac{\sum xy}{\sqrt{\sum x^2 \times \sum y^2}} = \frac{13}{\sqrt{10 \times 26}} = \frac{13}{16.12} = 0.806$$ (ii) Calculation of Regression Equations $$byx = \frac{\sum xy}{\sum x^2} = \frac{13}{10} = 1.3$$ $$bxy = \frac{\sum xy}{\sum x^2} = \frac{13}{26} = 0.5$$ Regression Equation of Y on X $$Y - \overline{Y} = byx (X - \overline{X})$$ $$Y-5=1.3(X-3)$$ $$Y-5 = 1.3X-3.9$$ \Rightarrow $Y = 1.3X+1.1$ Linear Regression Analysis Regression Equation of X on Y $$X - \overline{X} = bxy (Y - \overline{Y})$$ $$X-3=0.5(Y-5)$$ $$X-3 = 0.5Y-2.5$$ $\Rightarrow X = 0.5Y+0.5$ Calculation of r2 $$r^2$$ = Coefficient of Determination $$= (0.806)^2 = 0.6496 = 64.96\%$$ This implies that 64.96% variations in Y are explained by the regression line of Y on X correlation coefficient and (ii) standard deviation of y. (i) Regression equation of Y on X is Y = 2X $$\Rightarrow b_{yx} = 2$$ Regression equation of X on Y is $$6X - Y = 4$$ $\Rightarrow b_{yx} = 2$ $\Rightarrow X = \frac{1}{6}Y + \frac{4}{6} \Rightarrow b_{xy} = \frac{1}{6}$ $$r = \sqrt{2 \times \frac{1}{6}} = \sqrt{0.3333} = 0.578$$ (ii) Second moment of X about origin = 3 (given) $$\frac{\Sigma X^2}{N} = 3$$ moment of X about origin = 3 (given) $$\frac{\Sigma X^2}{N} = 3$$ $$\sigma_x^2 = \frac{\Sigma X^2}{N} - \left(\frac{\Sigma X}{N}\right)^2 = 3 - (\overline{X})^2$$ the two regression equations, we get \overline{X} Solving the two regression equations, we get $\overline{X} = 1$, $\overline{Y} = 2$ \therefore $\sigma_x^2 = 3 - 1 = 2$ \therefore $\sigma_x = \sqrt{2} = 1.414$ $$\sigma_x^2 = 3 - 1 = 2$$.. $\sigma_x = \sqrt{2} = 1.414$ $$b_{yx} = r \frac{\sigma_y}{\sigma_x}$$ i.e., $$\sigma_x$$ i.e., $\sigma_y = \frac{2\sqrt{2}}{0.578} = \frac{2.828}{0.578} = 4.89$ Example 61. Find the 'standard error of the estimates' Solution: $$\sigma_x = 1.414, \ \sigma_y = 8.94, \ r = 0.316$$ Given, $r = 0.316, \ \sigma_x = 1.414, \ \sigma_y = 8.94$ (i) $$S_{xy} = \sigma_x \cdot \sqrt{1 - r^2} = 1.414 \sqrt{1 - (0.316)^2} = 1.414 \times 0.949 = 1.342$$ (ii) $$S_{yx} = \sigma_y \cdot \sqrt{1 - r^2} = 0.894 \sqrt{1 - (0.316)^2} = 0.894 \times 0.949 = 0.848$$ Example 62. For a set of 10 pairs of values of X and Y, the regression line of X on Y is X-2Y+12=0, mean and standard deviation of Y being 8 and 2 respectively. Later it is known that a pair (X=3, Y=8) was wrongly recorded and the correct pair detected is (X=8, Y=3). Find the correct regression line of X on Y. In the usual notations we are given, N = 10, $\overline{Y} = 8$, $\sigma_y = 2$ The equation of the line of regression of X on Y is : X - 2Y + 12 = 0 (given). Since the lines of regression pass through the point $(\overline{X}, \overline{Y})$, we get Solution: of regression pass through the point $$(X, T)$$, we get $$\overline{X} = 2\overline{Y} - 12 = 2 \times 8 - 12 = 4 \\ X - 2\overline{Y} + 12 = 0 \Rightarrow X = 2Y - 12 \Rightarrow bxy = 2$$ $$\underline{\Sigma XY} - \overline{XY} = 2 \times 2^2 - 2 = 2$$ $$\underline{\Sigma XY} - \overline{XY} = 2 \times 2^2 - 2 = 2$$ $$\frac{\sum XY}{bxy} - \frac{\overline{XY}}{N} - \overline{XY}$$ $$bxy = \frac{N}{N} - \frac{N}{N} = 2 \implies \frac{\sum XY}{N} - \frac{N}{N} = 2 \times 2^2 = 8$$ $$\sum XY \qquad \forall \overline{Y} = 8 \qquad \Rightarrow \qquad \sum XY = 10[8 + 4 \times 8] = 10$$ $$\Rightarrow \frac{\Sigma XY}{N} - \overline{XY} = 8 \qquad \Rightarrow \qquad \Sigma XY = 10[8 + 4 \times 8] = 10 \times 40 = 400$$ $$\sigma_y^2 = \frac{\Sigma Y^2}{N} - (\overline{Y})^2 \qquad \Rightarrow \qquad \Sigma Y^2 = N[\sigma_y^2 + \overline{Y}^2] = 10 + 4 \times 8^2 = 680$$ We have $\overline{X} = 4$, $\overline{Y} = 8$, $\Sigma Y^2 = 680$, $\Sigma XY = 400$ Wrong pair = (X = 3, Y = 8); Correct pair = (X = 8, Y = 3) Calculation of Correct Values valation of Correct Values $$\overline{X} = \frac{\Sigma X}{N}$$ \Rightarrow $4 = \frac{\Sigma X}{10}$ \Rightarrow $\Sigma X = 40$ Corrected $\Sigma X = 40 - 3 + 8 = 45$ \Rightarrow Corrected $\overline{X} = \frac{45}{10} = 4.5$ $\overline{Y} = \frac{\Sigma Y}{N}$ \Rightarrow $8 = \frac{\Sigma Y}{10}$ \Rightarrow $\Sigma Y = 80$ Corrected $\Sigma Y = 80 - 8 + 3 = 75$ \Rightarrow Corrected $\overline{Y} = \frac{75}{10} = 7.5$ Corrected $$\Sigma X = 40 - 3 + 8 = 45$$ \Rightarrow Corrected $\overline{X} = \frac{45}{10} = 4.5$ $$\overline{Y} = \frac{\Sigma Y}{N}$$ \Rightarrow $8 = \frac{\Sigma Y}{10}$ \Rightarrow $\Sigma Y = 80$ Corrected $$\Sigma Y = 80 - 8 + 3 = 75$$ \Rightarrow Corrected $\overline{Y} = \frac{75}{10} = 7.5$ Corrected $$\sigma_y^2 = \frac{\Sigma Y^2}{V} - (\overline{Y})^2 = \frac{625}{10} - (7.5)^2 = 6.25$$ Corrected $$\Sigma Y = 80 - 8 + 3 = 75$$ \Longrightarrow Corrected $Y = 15$ Corrected $\Sigma Y^2 = 680 - 8^2 + 3^2 = 625$ Corrected $\Sigma Y^2 = 680 - 8^2 + 3^2 = 625$ Corrected $\Sigma Y = 400 - 24 + 24 = 400$ $$\frac{\Sigma XY}{N} - \frac{XY}{XY} = \frac{400}{10} - (4.5)(7.5) = 1$$ Corrected $\Sigma XY = 400 - 24 + 24 = 400$ Corrected $\Sigma XY = 400 - 24 + 24 = 400$ $\Sigma XY = 400 - 24 + 24 = 400$ Corrected $\Sigma XY = 400 - 24 + 24 = 400$ Corrected $\Sigma XY = 400 - 24 + 24 = 400$ Corrected $\Sigma XY = 400 - 24 + 24 = 400$ $\Sigma XY = 400 - 24 + 24 = 400$ Corrected $\Sigma XY = 400 - 24 + 24 = 400$ $\Sigma XY = 400 - 24 + 24 = 400$ Corrected $\Sigma XY = 400 - 24 + 24 = 400$ $\Sigma XY = 400 - 24 + 24 = 400$ Corrected $\Sigma XY = 400 - 24 + 24 = 400$ $\Sigma XY = 400 - 24 + 24 = 400$ $\Sigma XY = 400 - 24 + 24 = 400$ Corrected $\Sigma XY = 400 - 24 + 24 = 400$ $\Sigma XY = 400 - 24 + 24 = 400$ $\Sigma XY = 400 - 24 + 24 = 400$ Corrected $\Sigma XY = 400 - 24 + 24 = 400$ $\Sigma XY =
400 - 24 + 24 = 400$ $\Sigma XY = 400 - 24 + 24 = 400$ $\Sigma XY = 400 - 24 + 24 = 400$ $\Sigma XY = 400 - 24 + 24 = 400$ Corrected line of regression of X on Y becomes $$X - \overline{X} = bxy(Y - \overline{Y})$$ $$X-4.5 = 1(Y-7.5)$$ $$X = Y - 7.5 + 4.5 \qquad \Rightarrow \qquad X = Y - 3$$ Unear Regression Analysis The data in the following table relates the weekly maintenance cost (in Rs.) to the age (in months) of ten machines of similar type in a manufacturing company of the sage regression line of maintenance. The data in the following a constant size weekly maintenance cost (in Rs.) to the age (in months) of ten machines of similar type in a manufacturing company. Find the least squares regression line of maintenance cost on age and use to predict the maintenance cost for a machine of this type which is 40 months old. | mainte | 1 | 2 | 3 | 4 | 5 | 6 | monul | s old. | | | |-----------|-----|-----|--------|--------|-----|-----|-------|--------|-----|-----| | Machine: | 5 | 10 | 15 | 20 | 30 | 30 | 7 | 8 | 9' | 10 | | Age (X): | 190 | 240 | 250 | 300 | 310 | 335 | 30 | 50 | 50 | 60 | | Cost (Y): | - | -11 | -3 - 1 | B * DM | | 333 | 300 | 300 | 350 | 395 | Computation of Regression Equation | x | Y | $X - \overline{X} = x$ | $Y - \overline{Y} = y$ | 10002 | | |------------------|--------------------|------------------------|----------------------------|----------------------|-------------| | - 5 | 190 | -25 | - 107 | 625 | ху | | 10 | 240 | - 20 | -57 | 400 | 2,675 | | 15 | 250 | - 15 | -47 | 225 | 1,140 | | 20 | 300 | -10 | 3 | 100 | 705
- 30 | | 30 | 310 | 0 | 13 | 0 | -30 | | 30 . | 335 | 0 | 38 | 0 | 0 | | 30 | 300 | 0 | 3 | 0 | 3 O | | 50 | 300 | 20 | 3 | 400 | 60 | | - 50 | 350 | 20 | 53 | 400 | 1,060 | | 60 | 395 | 30 . | 98 | 900 | 2,940 | | $\Sigma X = 300$ | $\Sigma Y = 2,970$ | $\Sigma x = 0$ | $\Sigma_{\mathcal{V}} = 0$ | $\Sigma x^2 = 3.050$ | Σrv = 8.550 | $$\overline{X} = \frac{300}{10} = 30; \quad \overline{Y} = \frac{2970}{10} = 297$$ Since both means are integers deviations have been taken from actual means. Regression Coefficient of Y on X $$byx = \frac{\sum xy}{\sum x^2} = \frac{8,550}{3,050} = 2.8033$$ Regression Equation of You X is $$Y - \overline{Y} = byx (X - \overline{X})$$ $$y-297 = 2.8033(X-30) = 2.8033X-84.099$$ $$Y = 2.8033X + 212.901$$ For $$X = 40$$, $Y = 2.8033 \times 40 + 212.901$ 644. For certain data, the following regression equations were obtained: $$4X - 5Y + 33 = 0$$ $$20X - 9Y - 107 = 0$$ Estimate Y when X = 20 and X when Y = 20. Let 4X-5Y+33=0 be the regression equation of Y on X, while 20X-9Y-107=0 be the regression equation of X on Y, From (i) $$Y = \frac{4}{5}X + \frac{33}{5} \Rightarrow byx = \frac{9}{5} \text{ and}$$ $$X = \frac{9}{20}Y + \frac{107}{20} \Rightarrow bxy = \frac{9}{20}$$ So our assumption is correct. So our assumption is correct. $$\therefore \text{ When } X = 20, Y_{20} = \frac{4}{5} \times 20 + \frac{33}{5} = \frac{113}{5} = 22.6 \text{ and}$$ $$\text{When } Y = 20, X_{20} = \frac{9}{20} \times 20 + \frac{107}{20} = \frac{287}{20} = 14.35.$$ Example 65. Given the following data, find what will be (a) the height of a policeman whose weight is 200 pounds, (b) the weight of a policeman who is 6 ft. tall. weight is 200 pounds, (o) also nogate weight = 150 pounds, coefficient of correlation between height and weight = 0.6, S.D. of heights = 2.5 inches, S.D. of weights = 20.5 o Let height of policeman be denoted by X and weight of policeman by Y Solution: We are given: $$\overline{X} = 68''$$, $\overline{Y} = 150 \text{ lbs}$, $\sigma_x = 2.5''$, $\sigma_y = 20 \text{ lbs}$, $r_{xy} = 0.6$ (i) For estimating the height of a policeman whose weight is 200 lbs, we use regression of X on Y as follows: $$X - \overline{X} = r \cdot \frac{\sigma_x}{\sigma_y} (Y - \overline{Y})$$ $$X - 68 = 0.6 \times \frac{2.5}{20} (Y - 150)$$ $$X - 68 = 0.075 (Y - 150)$$ $$X - 68 = 0.075 Y - 11.25$$ $$X = 0.075 Y + 56.75$$ When Y = 200, X = 0.075 (200) + 56.75 = 71.75 Thus, the height of a policeman whose weight is 200 lbs shall be 71.75". (ii) For estimating the weight of a policeman whose height is 72" (i.e., 6 ft), we use regression of Year V. 6 th. regression of Y on X as follows: $$Y - \overline{Y} = r \cdot \frac{\sigma_y}{\sigma_x} (X - \overline{X})$$ Linear Regression Analysis $Y-150 = 0.6 \times \frac{20}{2.5}(X-68)$ $$Y-150 = 4.8 (X-68)$$ $Y-150 = 4.8 X-326.4$ $$Y-150 = 4.8 X - 326.4$$ $$Y = 4.8 X - 176.4$$ When X = 72, Y = 4.8(72) - 176.4 = 169.2 Thus, the weight of a policeman who is 6 ft. tall should be 169.2 lbs. Frample 66. Prove that regression coefficients are independent of the change of origin but not of scale. change the X and Y variables into new variables in the following manner: angle in the following manner: $$U = \frac{x-a}{h}, V = \frac{y-b}{k}$$ $$bxy = \frac{\Sigma(X-\overline{X})(Y-\overline{Y})}{\Sigma(Y-\overline{Y})^2}$$...(i $$X = hu + a$$ $$\Sigma X = h\Sigma u + \Sigma a$$ $$\Sigma X = h\Sigma u + na$$ $$\Sigma X = h\Sigma u + na$$ $$\Sigma X = h\Sigma u + na$$ $$\Sigma X = h \Sigma u + na$$ $$\Sigma X = h \Sigma u + na$$ $$\Sigma X = h \Sigma u + na$$ $$\Sigma Y = k \Sigma v + nb$$ $$\Sigma$$ $$bxy = \frac{\sum h(u - \overline{u}) \cdot k \cdot (v - \overline{v})}{\sum k^2 (v - \overline{v})^2} = \frac{hk}{k^2} \cdot \frac{\sum (u - \overline{u})(v - \overline{v})}{\sum (v - \overline{v})^2}$$ $$bxy = \frac{h}{k} \cdot \frac{\sum (u - \overline{u})(v - \overline{v})}{\sum (v - \overline{v})^2} = \frac{h}{k} \cdot buv$$ $$bxy = \frac{h}{k} \cdot \frac{\sum (u - \overline{u})(v - \overline{v})}{\sum (v - \overline{v})^2} = \frac{h}{k} \cdot buv$$ Hence the result is proved. Similarly, we can prove for $byx = \frac{k}{h}bvu$ Liample 67. Prove that the mean of two regression coefficients is always greater than the coefficient of correlation. We have to prove $$\frac{\sigma_y x + \rho_x y}{2} > r$$ $$r \cdot \frac{\sigma_y}{\sigma_x} + r \cdot \frac{\sigma_x}{\sigma_x}$$ $$\Rightarrow \frac{r\left(\frac{\sigma_y}{\sigma_x} + \frac{\sigma_x}{\sigma_y}\right)}{2} > r$$ or $$\frac{\frac{\sigma_y}{\sigma_x} + \frac{\sigma_x}{\sigma_y}}{\frac{2}{2} + 1} \Rightarrow \frac{\sigma^2_y + \sigma^2_x}{2\sigma_x \cdot \sigma_y} > 1$$ Multiplying both sides by $2\sigma_x \cdot \sigma_y$ $\Rightarrow \qquad \qquad \sigma^2_x + \sigma^2_y > 2\sigma_x \cdot \sigma_y$ $\Rightarrow \sigma^2_x + \sigma^2_y - 2\sigma_x \cdot \sigma_y \ge 0 \Rightarrow$ [$\sigma_x > 0, \sigma_y > 0$] $(\sigma_x - \sigma_y)^2 \ge 0$ As the square of real numbers can never be less than zero. Hence the arithmetic mean of the two regression coefficients is greater than the correlation coefficient. of the two regression coefficients is greated than the coefficient Example 68. Show that θ , the acute angle between two lines of regression is given by: $\tan \theta = \frac{(1-r^2)}{1-r^2} \frac{\sigma_x \cdot \sigma_y}{r^2}$ $|r| = \frac{1}{\sigma_x^2 + \sigma_y^2}$ Interpret the case when r = 0, ± 1 Equations of the two lines of regression are: Solution: $$Y - \overline{Y} = r \cdot \frac{\sigma_y}{\sigma_x} (X - \overline{X})$$ and $X - \overline{X} = r \cdot \frac{\sigma_x}{\sigma_y} (Y - \overline{Y})$ We have, m_1 = slope of the line of regression of Y on X = $byx = r \cdot \frac{\sigma_y}{\sigma_x}$ $$m_2$$ = slope of the line of regression of X on Y = $\frac{1}{bxy} = \frac{1}{r} \cdot \frac{\sigma_y}{\sigma_x}$ Let θ be the angle between two lines of regression, then tan $$\theta = \pm \frac{m_2 - m_1}{1 + m_1 m_2} = \frac{1}{r} \frac{\sigma_y}{\sigma_x} - r \frac{\sigma_y}{\sigma_x} = \pm \left(\frac{1 - r^2}{r}\right) \left(\frac{\sigma_x \cdot \sigma_y}{\sigma_x^2 + \sigma_y^2}\right)$$ Since $r^2 \le 1$ and σ_x , σ_y are positive. :. +ve sign gives the acute angle between the lines. Hence, $$\tan \theta = \frac{(1-r^2)}{|r|} \cdot \frac{\sigma_x \cdot \sigma_y}{\sigma_x^2 + \sigma_y^2}$$ Case I: When $$r = 0$$, $\tan \theta = \infty \implies \theta = \frac{\pi}{2} = 90^{\circ}$ Thus, the lines of regression are perpendicular to each other. Case II: When $r = \pm 1$, $\tan \theta = 0 \implies \theta = 0$ or π Thus, the two lines of regression coincide and there will be one regression line. ## Regression Analysis IMPORTANT FORMULAE 1. Regression Lines (i) Regression Equation of Y on X (i) $$Y - \overline{Y} = byx (X - \overline{X})$$ $Y - \overline{Y} = byx (X - \overline{X})$ Where, $byx = \frac{N \cdot \Sigma \cdot XY - \Sigma \cdot X \cdot \Sigma \cdot Y}{N \cdot \Sigma \cdot X^2 - (\Sigma \cdot X)^2}$ (When we use actual values of X and Y) $$= \frac{\sum xy}{\sum x^2}$$ Where, $$x = X - \overline{X}$$; $Y = Y - \overline{Y}$ (When deviations are taken from actual means of X and Y) $$= \frac{N \cdot \Sigma \, dx dy - \Sigma \, dx \cdot \Sigma \, dy}{N \cdot \Sigma \, dx^2 - (\Sigma \, dx)^2}$$ Where, $dx = X - A$, $dy = Y - A$ (When deviations are taken from assumed means of X and Y) $$= r \cdot \frac{\sigma_y}{\sigma_x} \qquad (\text{When we use } r, \sigma_y \text{ and } \sigma_x)$$ (ii) Regression Equation of X on Y $$X - \overline{X} = bxy(Y - \overline{Y})$$ $$x - \overline{X} = bxy(Y - Y)$$ $$bxy = \frac{N \cdot \Sigma XY - \Sigma X \cdot \Sigma Y}{N \cdot \Sigma Y^2 - (\Sigma Y)^2}$$ (When we use actual values of X and Y) $$= \frac{2xy}{\sum y^2}$$ (When $$= \frac{N \cdot \sum dxdy - \sum dx \cdot \sum dy}{\text{(When }}$$ (When deviations are taken from actual mean) $$= \frac{1}{N \cdot \sum dy^2 - (\sum dy)^2}$$ (When deviations are taken from assumed mean) $$= r \cdot \frac{\sigma_x}{\sigma_y}$$ (When we use $r \cdot \sigma_x$ and σ_y) (iii) In Grouped Frequency Distribution $$byx = \frac{N.\Sigma f dx dy - \Sigma f dx \Sigma f dy}{N.\Sigma f dx^{2} - (\Sigma f dx)^{2}} \times \frac{i_{y}}{i_{x}}$$ and $$bxy = \frac{N \cdot \sum f dx dy - \sum f dx}{N \cdot \sum f dy^2 - (\sum f dy)^2} \times \frac{i_x}{i_y}$$ Where Where, $N = \sum f$, stands for the total frequency. ## 2. Regression Coefficients
There are two regression coefficients: (i) Regression coefficient of Y on X = byx = r (ii) Regression coefficient of X on Y = bxy = r (iii) $$r = \sqrt{bxy \times byx}$$ 3. Standard Error Standard error of estimate $$S_{xy} = \sqrt{\frac{\Sigma(X - X_c)^2}{N}}$$ or $S_{xy} = \sigma_x \cdot \sqrt{1 - r^2}$ $S_{yx} = \sqrt{\frac{\Sigma(Y - Y_c)^2}{N}}$ or $S_{yx} = \sigma_y \cdot \sqrt{1 - r^2}$ ### Important Note - (i) Regression equation of Y on X is used to estimate the best (average) value of Y for given - (ii) Regression equation of X on Y is used to estimate the best (average) value of X for give value of Y. ### QUESTIONS - 1. Explain the concept of regression and comment on its utility. Also distinguish between - 2. What are regression coefficients? Explain the properties of regression coefficients. - 3. Discuss the difference between correlation and regression. - 4. Define the Standard Error of Estimate. How is it computed? - What is regression line? Why are there, in general, two regression lines? Under what conditions can there be only one regression line? When the two lines of regression in each other at 90°? - 6. What would be lines of regression if r = +1, r = -1, r = 0. Give interpretation in each case. - 7. Explain the meaning of (i) Standard Error of Estimate and (ii) Coefficient of Determination - How would you identify regression equation of X on Y and Y on X? - 9. What is the relationship between correlation and regression coefficients? # Index Numbers-I # INTRODUCTION NTROLLOW ... Note that a distribution of the state th Economic and business using the state of but the same and sometimes are price of a commodity rises and sometimes and sometimes and sometimes and sometimes and sometimes falls. The measurement of all Similarity, output of a commodity of sometimes falls. The measurement of all Similarity is possible only by means of some statistical methods. is Similarly, output of a comment of isses and sometimes falls. The measurement of its Similarly output of the measurement of its similarly output of the measurement of its similar is possible only by means of some statistical methods. Index numbers are such a changes in other words, by index means the statistical measures with the help of which relative changes in general price means the statistical measures with the help of which relative changes in general price. millibers we mean us of the mean the measured. Application of Index numbers are not with individual price levels but rather they help in the relative changes in general price. we laking place only to general price levels but rather they help in the relative measurement of every such nited only to general proving, output, national income, business activities whose direct measurement of ever phenomenon like cost-of-than any phenomenon like cost-of-than any phenomenon like cost-of-than any phenomena which snot possible. Index numbers are used to measure the relative changes in some phenomena which re cannot observe directly. ## DEFINITION OF INDEX NUMBERS Some important definitions of index numbers are given below: 1. Index Numbers are a specialized type of averages. - 2. Index Numbers are devices for measuring differences in the magnitude of a group of related variables. -Croxten and Cowden - An Index Number is a statistical measure designed to show changes in a variable or group of related variables with respect to time, geographic location or other characteristics. The definitions discussed above specify the following features of index numbers: (i) Relative changes in the aggregates are measured by index numbers (ii) Index numbers have present the changes taking place in some variable on an average only (iii) By index numbers, ions in base year and current year are compared. ## USES OF INDEX NUMBERS In present times, the importance of index numbers is increasing. Nowadays, they are being used words and business fields. To quot Simpson and Kafka, "Index Numbers are economic under the control of cont business fields. To quot Simpson and District The main uses of index numbers are the followings: (l) To Simplify Complexities: An index number makes possible the measurement of such angles where the measurement of such that the substantial such angles where the measurement of such that the substantial such angles where the substantial such angles where the substantial such angles where the substantial such as substantial such as the substantial substantia outplify Complexities: An index number makes possible me uncase are used because the changes whose direct measurement is not possible. In other words, index numbers are used because the changes in assure the changes in some quantity which we cannot observe directly. - (2) Helpful in Fixation of Salary and Dearness Allowances: By index numb (2) Helpful in Fixation of Salary and Dearness Allowances: By index numbers, the government and other employees can properly make wage and salary fixation. They determine the government and other employees on the basis of index numbers only. - talment of dearness allowance for employed the knowledge as to what changes had the had been changes alone, predictions about the future of the hasis of these changes alone, predictions about the future of the hasis of these changes alone, predictions about the future of the hasis of these changes alone, predictions about the future of the hading (3) Helpful in Predictions: Index humbers give the Authority of these changes alone, predictions about the future occurred in the past. On the basis of these changes alone, predictions about the future. Thus, index numbers are economic barometers. - Thus, index numbers are economic parameters. (4) Helpful in Comparison: Index numbers make possible the comparative study of phenomena. By index numbers, the relative changes occurring in the variables are determined. The simplifies the comparison of data on the basis of time and space. - nplifies the comparison or usua on uncertainty of the changes taking place (5) To Measure Purchasing Power of Money: By index numbers, the changes taking place (5) To Measure Purchasing Power of Money: By index numbers, the changes taking place (5) To Measure Purchasing Power of Money: By index numbers, the changes taking place (5) To Measure Purchasing Power of Money: By index numbers, the changes taking place (5) To Measure Purchasing Power of Money: By index numbers, the changes taking place (6) To Measure Purchasing Power of Money: By index numbers, the changes taking place (6) To Measure Purchasing Power of Money: By index numbers, the changes taking place (6) To Measure Purchasing Power of Money: By index numbers, the changes taking place (6) To Measure Purchasing Power of Money: By index numbers, the changes taking place (6) To Measure Purchasing Power of Money: By index numbers, the changes taking place (6) To Measure Purchasing Power of Money: By index numbers, the changes taking place (6) To Measure Purchasing Power of Money: By index numbers, the changes taking place (6) To Measure the purchasing power of money can also measured. - purchasing power of money can also have been seen as the changes taking place in business world (6) Useful in Business: Index numbers measures the changes, e.g., sales, changes world (6) Useful in Business: Index humbers and your of those changes, e.g., sales, changes in output and value, etc. Thus, index numbers, for a businessman, function like a barometer. value, etc. Inus, muex numbers, sign and guide posts along the business highway that indig To sum up, index numbers are the sign and guide posts along the business highway that indig to the businessmen how he should drive or manage his affairs. ## ■ LIMITATIONS OF INDEX NUMBERS Though index numbers are extremely useful statistical devices, yet they have some limitation which are detailed as follows: - (i) Index numbers measure relative changes in different phenomena. They do not always hold cent per cent true. Index numbers are true only on the average. - (ii) A given type of index numbers is not suitable for all the purposes. Multipurpose index numbers cannot be constructed. - (iii) No consideration is given to the changes taking place in the quality of a commodity while constructing the index numbers. - (iv) Bias in the selection of base year and selection of representatives sometimes leads to misleading results. - (v) Index numbers lack in perfect accuracy because they are mostly constructed on the basis of sample commodities. ### TYPES OF INDEX NUMBERS Index numbers are classified on the basis of the phenomena whose changes they measure. In the economic and business, index numbers can be classified into the following types: - (1) Price Index Numbers: Price index numbers are most popular and commonly used index numbers. These index number recovered. numbers. These index number measure the changes in prices of some commodities or graph commodities consumed in the circumstance. commodities consumed in the given period with reference to the base period. These are of the - (i) Wholesale Price Index Number: It measures the changes in the general price level of commodity. - (ii) Retail Price Index Number: It measures the general changes in the retail prices commodities which are bought and sold in the retail market. Index Numbers-I (2) Quantity Index Numbers: Quantity index numbers helps us in measuring and comparing (2) Quantity Index Numbers (2) Quantity (3) Quantity Index (4) Quantity Index (5) Quantity Index (6) (2) Quantity Index Numbers values of goods produced or sold or purchased in a given period. the physical volume of goods produced or sold or purchased in a given period. specific of the production are included in this category. - ings of agricultus Numbers: Value index numbers measure the changes in the value of some (3) value Index numbers measure the changes in the value of some ties or group of commodities consumed or purchased in the views. y value Index in the value of some of
commodities consumed or purchased in the given period with reference to base period. - period. (4) Simple and Aggregative Index Numbers: On the basis of the number of commodities that (4) Simple and Aggregation and Aggregation (4) Simple and Aggregation (4) Simple and Aggregation (4) Simple and Aggregation (5) Aggregation (4) Simple and Aggregation (5) Aggregation (6) Agg - into the constructed for individual commodities. (b) Simple Index Numbers: When index numbers are constructed for individual commodities. simple index numbers. - these are constructed for a gargegative (or composite) Index Numbers: When index numbers are constructed for a Aggregative (or composite) these are known as aggregative (or composite) index numbers. - group of common index numbers: Cost of living index numbers are also called consumer price (5) Cost of Living help in comparison of average change in consumption and expenditure of the index numbers. They consume time period to another. It shows the average change in consumption and expenditure of the of a particular class of consumers. - (6) Special Purpose Index Numbers: Some index numbers are constructed for some specific special tary measure the average change as compared to the base period of any ecific purpose. ### PROBLEMS IN THE CONSTRUCTION OF INDEX NUMBERS A number of problems come up while constructing the index numbers. The important among - (1) Purpose of Index Number: Index numbers are of many types as they are constructed for different purposes. It is very essential to fix the purpose before constructing an index number, because selection of commodities, their prices, fixation of their weights, etc., depend on the very purpose of index numbers. There can be many purposes of an index number-measurement of changes in retail prices or measurement of changes in wholesale prices etc. - (2) Selection of Items: Another important problem in the construction of index numbers is the election of items. The following things should be considered while making a selection of items: (i) only those items should be selected which represent the taste, habit, custom and needs of the related group of people, (ii) the selected items should be standardised and of classified feature, will in selection of items, their quality too must be considered, (iv) the number of items must be enough and mough and they should be of current quality, and (v) the selected items must be classified into different groups and sub-groups. - (3) Selection of Prices: After making the selection of items, the next arises the problem of ection of prices: After making the selection of items, the next arises the problem of ection of prices. lection of prices: After making the selection of items, the next allow their wholesale or that prices are to the composition of prices. Price can be of both types—retail and wholesale. Thus, whether wholesale or that prices are to the composition of prices. wholesale recent to be used, the decision depends upon the purpose of index number. Often, wholesale recent to be used, the decision depends upon the purpose of index number. Often, esale prices are taken in the construction of index numbers. In addition, prices should be picked op from that place where the related items are traded most. (4) Selection of Base year: Another important problem in the construction of index numbers is (4) Selection of Base year: Another important problem in the construction of index numbers is related to the selection of base year. A base year has to be selected for making an index number of the year for which changes are to be determined, is known as base year. Index number of base year the year for which changes are to be determined, is known as base year to be kept in mindis is always taken as 100. In selecting a base year, the following things are to be kept in mindis is always taken as 100. In selecting a base year and no unusual event like Earthquake, Flood, War, etc., the probability of o base year should be a normal year and should have taken place in that year, (ii) Base year should not be very far in past, - (ii) Base year should not be very rar in past, (iii) So far as possible, base year should be close to the current year, - (iv) Base year should not be too old or too distint. (iv) Base year should not be too old or too distinct. (5) Selection of Weights: Another important problem in making of index numbers is to assign (5) Selection of Weights: Another important problem in making of index numbers is to assign weights to different commodities or items. In fact, all commodities included in the construction weights according to their importance. Therefore, to have accurate results, commodities of index numbers do not have equal importance. There are two ways of assigning weights according to their importance. There are two ways of assigning weights. of index numbers do not have equal importance. There are two ways of assigning weights are assigned weights according to their importance. There are two ways of assigning weights are assigned weights according to men importants. A construction of index numbers should be logical (i) Quantity, (ii) Value. Weights decided in the construction of index numbers should be logical. accurate and rational. accurate and rational. (6) Selection of an Average: The selection of an average is also a significant problem in the preparation of index numbers. Averages can be of several types. Theoretically, any average can be preparation of index numbers as this is most suitable for mean is used but in practice, usually ariumine in mean is considered to be the best for the construction of index numbers as this is most suitable for measuring relative changes but due to the difficulties of computation in place of geometric mean, arithmetic mean is most often used in the construction of index numbers. (7) Section of an Appropriate Formula: Various formulae can be used in the construction of index numbers but it is very essential to select the most suitable out of them. This selection depends upon the purpose of index number and availability of data. Fisher's formula which is called as Fisher's Ideal Index, is considered to be the best. ## ■ METHODS OF CONSTRUCTING INDEX NUMBERS Different methods are used in constructing the index numbers which, from the view point of venience of study, have been presented by the following chart: | | Methods of Constructi | of course on spilot of | i la politicisti (li c
li cara di termaliti | |------------------------------|---|--
--| | Unweighted or | Simple Index Numbers | Weighted In | dex Numbers | | Simple Aggregative
Method | Simple Average of Price
Relatives Method | Weighted Aggregative
Method | Weighted Average of Price Relatives Method | | The second | (a) Laspeyre's Meth | Pricus: value or kind of bon manda of the control o | To emission the minutes of the same party to | Marshall and Edgeworth's Method Kelly's Method Fisher's Method Dorbish and Bowley's Method Index Numbers-I SIMPLE OR UNWEIGHTED INDEX NUMBERS SIMPLE ON or unweighted index numbers are those ones in the construction of which all simple or unweighted index numbers are two methods of their construction: (1) Simple Aggregative Method. (1) Simple Average of Price Relatives Method. (1) Simple Aggregative Method o (1) Simple 755. It is the simplest method. In this method, sum of current year's prices is divided by the sum of the simplest method. The following formula is used: 5. n. $$P_{01} = \frac{\sum p_1}{\sum p_0} \times 100$$ Where, $\Sigma p_1 = \text{Aggregate of Prices in Current Year}$ $\sum p_0$ = Aggregate of Prices in Base Year P_{01} = Price Index This method can be illustrated with the following examples: Example 1. Construct price index number for 1990 based on 1981 using Simple Aggregative Method: | Commodity | Price in 1981 (in Rs.) | Price in 1990 (in Rs.) | |-----------|------------------------|------------------------| | Α | 50 | 80 | | В | 40 | 60 | | С | 10 | 20 | | D | 5 | 10 | | E | 2 | 8 | | C | | | | | |--------------|----|------|-------|--------| | Construction | ot | rnce | index | Number | | Const | Construction of Price Index Number | | | | |----------------------|------------------------------------|--------------------|--|--| | Commodity | Price in 1981 (p ₀) | Price in 1990 (P1) | | | | Α | 50 | 80 | | | | B B | 40 | 60 | | | | (At) pag Cal de mili | 10 | 20 | | | | D M CORN | 5-7 | 10 | | | | Е | 2 | 8 | | | | 2-10-2 | $\Sigma p_0 = 107$ | Σ P1 = 178 | | | $$P_{01} = \frac{\sum p_1}{\sum p_0} \times 100 = \frac{178}{107} \times 100 = 166.36$$ ► Merits and Demerits of Simple Aggregate Method Merits and Demerits of Simple Aggregate internal Simple aggregative method of index number construction is very easy but it can be applied only when the prices of all commodities have been expressed in the same unit. If units are different, the results will be misleading. • (2) Simple Average of Price Relatives Method (2) Simple Average of Price Relatives of the commodities or items are found out. To In this method, first of all, the price relatives of the commute the price in base year (p_0) and then, the quotient is multiplied with 100. In terms of formula, then, the quotient is multiplied with 100. In terms of ormula, Price Relative = $\frac{\text{Current year's Price}}{\text{Base year's Price}} \times 100 \quad \text{or} \quad P = \frac{p_1}{p_0} \times 100$ Price Relative = $$\frac{\text{Current year's Price}}{\text{Rase year's Price}} \times 100 \quad \text{or} \quad P = \frac{p_1}{p_0} \times 100$$ After this, using Arithmetic average or Geometric average, or Median, we find the average of price relatives. (i) When Arithmetic mean is used, then the following formula is used: $$P_{01} = \frac{\sum \left(\frac{p_1}{p_0} \times 100\right)}{N}$$ Where, N = number of items or commodities. (ii) When Geometric Mean is used, then the following formula is used: $$P_{01} = \operatorname{Antilog}\left(\frac{\sum \log P}{N}\right)$$ Where, $P = \frac{p_1}{p_0} \times 100$ (iii) When Median is used, the following formula is used: $$P_{01}$$ = Size of $\left(\frac{N+1}{2}\right)$ In practice, Arithmetic mean is often used. The following example illustrates the procedure of the method: Example 2. The following are the prices of commodities in 1980 and 1985. Construct a price index based on price relatives taking 1980 as base year using (i) arithmetic mean. (ii) geometric mean and (iii) median. | Commodity | Α . | В | С | D | |---------------|-----|----|----|-----| | Price in 1980 | 50 | 40 | 80 | 110 | | Price in 1985 | 70 | 60 | 90 | 120 | | Commodity | Price in 1980 | Price in 1985 | Price Relatives (P) | |-----------|---------------|---------------|--| | A to Tale | 50 | 70 | $P = \frac{p_1}{p_0} \times 100$ | | В | 40 | 70
60 | 140.0 | | C | 80 | 90 | 150.0 | | D | 110 | 120 | 112.5 | | E resid | 20 | 20 | 109.1 | | N = 5 | 44 second | Section Co. | 100.00 | | | W agot to | | $\Sigma \frac{P_1}{P_0} \times 100 = 611.$ | Using Arithmetic Mean, the formula used is: $$P_{01} = \frac{\sum \left(\frac{P_1}{P_0} \times 100\right)}{N} = \frac{611.6}{5} = 122.32$$ (ii) Price Index using Geometric Mean of Price Relatives | Commodity | Price'in 1980
Po | Price in 1985 P1 | $P = \frac{P_1}{P_0} \times 100$ | log P | |-----------|---------------------|------------------|----------------------------------|---------------------------| | Α | 50 | 70 | 140 | 2.1461 | | B | 40 | 60 | 150 | 2.1761 | | С | 80 | 90 | 112.5 | 2.0512 | | D | 110 | 120 | 109.1 | 2.0378 | | Е | 20 | 20 | 100 | 2.0000 | | | 1 - 1 | | | $\Sigma \log P = 10.4112$ | Using Geometric Mean, the formula used is: $$P_{01} = \text{Antilog}\left(\frac{\sum \log P}{N}\right) = \text{Antilog}\left(\frac{10.4112}{5}\right)$$ = Antilog (2.0822) = 120.9 (iii) Price Index using Median of Price Relatives | Commodity | Price Relatives of 1985 | Price Relatives arranged in
ascending order | |--------------------|-------------------------|--| | March and A Don PE | 140 | 100.0 | | B | 150 | 109.1 | | C | 112.5 | 112.5 | | D | 109.1 | 140.0 | | Е | 100 | 150.0 | Solution: $$P_{01} = \text{Size of}\left(\frac{N+1}{2}\right)$$ th item = Size of $\left(\frac{5+1}{2}\right)$ th item = 3rd item = 112.5 ## Construction of Simple Index Numbers on the Basis of Average Price O Construction of Simple Index Humbers are constructed on the basis of average price as base, firstly we compute the average price of each commodity and this is taken as base. The price relatives are then calculated by using the following formula: owing formula: $$Price Relative = \frac{Current's Year Price}{Average Price} \times 100$$ After this, using arithmetic mean, we find the average of price relatives. This average gives $\mathfrak{th}_{\mathbb{R}}$ index numbers. The following example illustrate the procedure of this method: Example 3. Find index number for the three years, taking average price as base by using price relative method: | | | untai (165.) | The same of sa | |------|---|--------------
--| | Year | Α | В | C | | 1995 | 3 | 5 | 8 | | 1996 | 5 | 4 | 6 | | 1997 | 7 | 6 | 7 | Average price of $$A = \frac{3+5+7}{3} = \frac{13}{3} = 5$$ Average price of $B = \frac{5+4+6}{3} = \frac{15}{3} = 5$ Average price of $C = \frac{8+6+7}{3} = \frac{21}{3} = 7$ | Commodity | Average | | 1995 | | 1996 | 1997 | | | |--------------------------|--|------------|-----------------------------------|-----------------------|----------------------------------|------------|-------------------------------|--| | | price | <i>P</i> 0 | PR | <i>p</i> ₁ | PR | P2 | PR | | | Α | 5 | 3 | $\frac{3}{5} \times 100 = 60$ | 5 | $\frac{5}{5} \times 100 = 100$ | 7 | $\frac{7}{5} \times 100 = 14$ | | | В | 5 | 5 | $\frac{5}{5} \times 100 = 100$ | 4 | $\frac{4}{5} \times 100 = 80$ | 6 | $\frac{6}{5} \times 100 = 12$ | | | С | 7 | 8 | $\frac{8}{7} \times 100 = 114.29$ | 6 | $\frac{6}{7} \times 100 = 85.71$ | 7 | $\frac{7}{7} \times 100 = 1$ | | | Total of price relatives | | 274.29 | | 265.71 | | 360
120 | | | | Average of pric | Average of price relatives or
price index | | 91.43 | | 88.57 | | 120 | | MPORTANT TYPICAL EXAMPLE From the following data, construct Price Index Number for three years with average price as base by simple average of price relatives method using arithmetic mean: | Year | Wheat | Cotton | | |------|-------|--------|------| | I | 10 Kg | | Oil | | п | 8 Kg | 4 Kg | 2 Kg | | ш | 5 Kg | 2.5 Kg | 2 Kg | | 111 | 6 | 2.0 Kg | 1 Kg | We are given price per rupee. First convert these prices on a common scale say price per 100 kg. Thus, the price of wheat would be $\frac{100}{10} = 10, \frac{100}{8} = 12.50, \frac{100}{5} = 20$. Similarly, prices of cotton and oil would be $\frac{100}{4} = 25, \frac{100}{25} = 40, \frac{100}{2} = 50$ and $\frac{100}{2} = 50, \frac{100}{2} = 50, \frac{100}{1} = 100$. $$\frac{100}{2} = 50, \frac{100}{2} = 50, \frac{100}{1} = 100.$$ Average Price of Wheat = $$\frac{10+12.50+20}{3}$$ = 14.17 Average Price of Cotton = $$\frac{25 + 40 + 50}{3} = 38.33$$ Average Price of Oil = $$\frac{50+50+100}{3}$$ = 66.67 ## Construction of Price Index Number | Commodity | Units | Average
Price | | | 2nd Year | | 3rd Year | | |-----------|---------------|-------------------|-------------------|--|-------------------|--|-------------------|-----------------------| | | eu. | (P ₀) | Price | Price | Price | Price | Price | Price | | - notoli | n
galayatı | Santa. | (P ₁) | Relatives $\frac{p_1}{p_0} \times 100$ | (P ₂) | Relatives $\frac{p_2}{p_0} \times 100$ | (p ₃) | Relatives P3 × 100 P0 | | Wheat | Per Qtl. | 14.17 | 10 | 70.57 | 12.50 | 88.21 | 20 | 141.14 | | Cotton | Per Qtl. | 38.33 | 25 | 65.22 | 40 | 104.36 | 50 | 130.45 | | Oil | Per Qtl. | 66.67 | 50 | 75 | 50 | 75 | 100 | 150.00 | | To | al of Price | Relatives | | 210.79 | | 267.57 | 4 | 421.59 | | Aver | age of Pric | e Relatives | | 70.26 | | 89.19 | | 140.5 | 1. Construct the following indices by taking 1997 as the base: - (i) Simple aggregative price index - (ii) Index of average of price relatives | Items | A | В | C | D | |------------------|----|---|-----------|----| | ices Rs. (1997): | 6 | 2 | 4 | 10 | | ices Rs. (1998): | 10 | 2 | 6 | 12 | | | 15 | 3 | 8 | 14 | | ices Rs. (1999): | 15 | 3 | 1000 1866 | - | [Ans. (i) 1998 - 140 and 1999 - 186.66 (ii) 1998 - 137.32 and 1999-188] 2. Compute a price index from the following by (i) simple aggregative method, and (ii) average we method by using both arithmetic mean and geometric mean: | Commodity | A | В | C | D | Legis . | F | |---------------------|-----|-----|-----|-----|---------|-----| | Price in 1983 (Rs.) | 200 | 300 | 100 | 250 | 400 | 500 | | Price in 1988 (Rs.) | 250 | 300 | 150 | 350 | 450 | 550 | [Ans. (i) 117.143; (ii) 122.92, 121.7] 3. Prepare price index numbers for three years taking the average price as base using simple average of price relative method: ### Price per Quintal (Rs.) | | | 0il 30 and 3 Calebration 25 | | | |---|------|-------------------------------|--------|--------------| | | Year | Wheat | Cotton | Oil | | | 1995 | 100 | 25 | 30 | | - | 1996 | 99 | 20 20 | cub commo 25 | | | 1997 | 99 | 15 | 30 | [Ans. 110.52, 95.97, 93.52] 4. Construct the price index number for three years taking the average price as base by using simple average of price relative method: | Year | Rate per rupee | | | | | | |------|----------------|-----------|----------|--|--|--| | | Wheat | Rice | Sugar | | | | | I | 2 kgm | 1 kgm | 0.400 k | | | | | п | 1.6 kgm | 0.800 kgm | 0.400 kg | | | | | Ш | 1 kgm | 0.750 kgm | 0.250 k | | | | [Ans. 79.2, 92.1, I Index Numbers-I Find out index number for 1972, 1973 and 1974 taking 1971 as base by using mear. | and geometric me | 1971 | 1972 | oy using mean, med | |------------------|---------|------|--------------------| | Group | 8 | 12 | 1974 | | B | 32 | 40 | 16 20 | | C | 16 | 20 | 48 60 | | G - Evami | nle 271 | | 32 40 | Hint: See E $P_{01}\left(M\right) = 125,200,250 , P_{01}\left(AM\right) = 133.3,183.3229.2 \\ P_{01}\left(M\right) = 132.83,181.7,227.1]$ 181 ## # WEIGHTED INDEX NUMBERS Inconstructing simple index numbers, all commodities are given equal importance but in practice, In constructing simple mode and importance. For example, for a consumer, wheat is more important and importance but in practice, all commodities don't have equal importance. For example, for a consumer, wheat is more important the consumer of consume all commodities don t in ave equal important that it is not a consumer, wheat is more important then vegetable or pulse. Similarly, clothes are more important than a video. To express the relative then vegetable or purse. Onlinearly, essential the majoritant than a video. To express the relative importance of different commodities, weights on some definite basis are used. When index numbers that taking into consideration the importance of the consideration the consideration the importance of the consideration the consideration the consideration the consideration that the consideration the consideration that the consideration the consideration the consideration the consideration the consideration that the consideration the consideration that the consideration the consideration that the consideration that the consideration the consideration that the consideration that the consideration the consideration that the consideration the consideration the consideration that the consideration the consideration that the consideration the consideration the consideration that the consideration the consideration the consideration that the consideration the consideration that importance of afficient consideration the importance of different commodities, then they are greconstructed the state of - (I) Weighted Aggregative Method. - (II) Weighted Average of Price Relatives Method. ### 0 (I) Weighted Aggregative Method In this method, commodities are assigned weights on the basis of the quantities purchased. Many statisticians are divided on the issue that (i) Weight should be given on the basis of current year (q_1) (ii) On the base year quantities (q_0) (iii) On the basis of both base and current years q_0,q_1). Different statisticians have used different methods of assigning weights. Some which quantity are the following: - (l) Laspeyre's Method - (2) Paasche's Method - (3) Fisher's Method - (4) Dorbish and Bowley Method - (5) Marshall-Edgeworth's Method - (6) Kelly's Method. - Various methods of constructing weighted index numbers can be illustrated as follows: - (1) Laspeyre's Method - Prof. Laspeyre has assigned weights to the commodities on the basis of base year quantities Laspeyre's formula is as follows: $$P_{01} = \frac{\sum p_1 \ q_0}{\sum p_0 \ q_0} \times 100$$ WEIGHTED INDEX NO Steps for Calculation (i) First of all, multiplying current year prices (p_1) with the
corresponding base year quantities (p_1) with the corresponding base year quantities. rust of an, multiplying current year prices (q_0) , their summation $\Sigma p_1 q_0$ is computed. (q_0) , their summation $\Sigma p_1 q_0$ is compared (q_0) , their summation them, multiplying base year prices (p_0) with base year quantities (q_0) , their summation ($\mu_{0}q_{0}$ is round out. (iii) Finally, $\Sigma p_{1}q_{0}$ is divided by $\Sigma p_{0}q_{0}$ and the result is multiplied with 100. ► (2) Paasche's Method (2) Paasche's Method Paasche has assigned weights to the commodities on the basis of current year quantities (q₁). Paasche's formula is as follows: $$P_{01} = \frac{\sum p_1 \ q_1}{\sum p_0 \ q_1} \times 100$$ Steps for Calculation Steps for Calculation (i) First of all, multiplying current year prices (p_1) with current year quantities (q_1) , their summation $\sum p_1q_1$ is determined. (ii) Then, base year prices (p_0) are multiplied with current year quantities (q_1) , their summation $\sum p_0q_1$ is computed. (iii) Finally, $\sum p_1q_1$ is divided by $\sum p_0q_1$ and the result is multiplied by 100. (3) Fisher's Method This is the best method in use for the construction of weighted index numbers. Irving Fisher has assigned weights to different commodities on the basis of both the base year as well as current year quantities. Fisher's formula is as follows: $$P_{01} = \sqrt{\frac{\sum p_1 \ q_0}{\sum p_0 \ q_0}} \times \frac{\sum p_1 \ q_1}{\sum p_0 \ q_1} \times 100$$ In fact, Fisher's Index is the geometric mean of Laspeyre's and Paasche's Indices, i.e., (2) Passebu's Much $$P_{01} = \sqrt{L \times P}$$ Steps for Calculation (i) First of all, current year prices (p_1) are multiplied with current year quantities (q_1) to arrive at $\sum p_1q_1$. (ii) Base year prices (p_0) are multiplied by current year quantities (q_1) to get $\sum p_0 q_1$ (iii) Then, current year prices (p_1) are multiplied by current year quantities (q_1) to get $\sum p_0 q_1$ summed up to get $\sum p_0 q_1$ are multiplied by base year quantities (q_0) and further summed up to get $\sum p_1 q_0$. (iv) Base year prices (p_0) are multiplied by base year quantities (q_0) and summed up to Σ p_0q_0 . $\sum p_0 q_0$. Index Numbers- An Ideal Formula An Ideal Formula An Ideal Formula Index number computed by Fisher's method is known as Fisher's Ideal Index. This is because: Index number computed by Fisher's method is known as Fisher's Ideal Index. This is because: Index number computers index number computers index number computing index numbers. (i) It is based on geometric mean which is the best average considered for computing index numbers. (ii) This formula provides weighted index number. (ii) This formation is given to base year and current year prices and quantities. (iii) Equal important (iii) Equal important (iii) Equal important (iii) Fisher's index satisfies many tests of ideal index like - Time and Factor Reversal Tests. (4) Dorbish and Bowley's Method (4) Dorbish and Bowley has assigned weights to different commodities on the basis of Like Fisher, Dorbish and Dowley has assigned weignts to different commodities on the basis of year and base year quantities both. In fact, Dorbish and Bowley's index is the arithmetic generating and Paasche's index. Dorbish and Bowley's formula. arrent year and bases year and Paasche's index. Dorbish and Bowley's formula is as follows: $$P_{01} = \frac{L + P}{2}$$ Or $$\frac{\sum p_1 q_0}{\sum p_0 q_0} + \frac{\sum p_1 q_1}{\sum p_0 q_1}$$ $$P_{01} = \frac{\sum p_0 q_0}{2} \times 100$$ The computational process of Dorbish and Bowley's index is exactly alike as Fisher's index. (5) Marshall-Edgeworth's Method In this method, the sum of base year and current year quantities are used as weights. rshall-Edgeworth's formula is as follows: $$P_{01} = \frac{\sum p_1(q_0 + q_1)}{\sum p_0(q_0 + q_1)} \times 100$$ Or $P_{01} = \frac{\sum p_1 \ q_0 + \sum p_1 \ q_1}{\sum p_0 \ q_0 + \sum p_0 \ q_1} \times 100$ The computational process of Marshall-Edgeworth's Index is same as that of Fisher's Index. 6 Kelly's Method In this method, on the basis of fixed quantiy, different commodities are assgined weights. It is businessary that any other properties of the commodities are assgined weights. It is businessary that any other properties of the commodities are assgined weights. It is essary that quantities be related to base year or current year. Kelly's formula is as follows: $$P_{01} = \frac{\sum p_1 \ q}{\sum p_0 \ q} \times 100$$ Where, q refers to quantity of some period, not necessarily the base year or current year. reters to quantity of some period, is also called Fixed weight method. Different methods of constructing weighted index numbers can be illustrated with the following ## examples: Example 5. Construct index number of price from the following data by using: - (i) Laspeyre's method (ii) Paasche's method - (iii) Fisher's method - (iv) Dorbish-Bowley's meth. - -ball Edgeworth method | Marshall-Eug | 1 | 995 | 1996 | | | |--------------|-------|----------|------------------|-------------|--| | Commodity | Price | Quantity | Price Price | ha Quantity | | | _ | 2 | 8 | A Little William | ones 60 | | | A | 5 | 10 | 6 | 5 | | | В | - 1 | 14 | 5 | \ 10 | | | С | - | . 19 | 2 | 15 | | | D | 2 | , 19 | | / 13 | | ### Solution: | Computation | of V | arious | Inde | x Nos. | |-------------|------|--------|------|--------| | | | | | | | Commodity | 19 | 1995 1996 | | | L · | ' Р | | | |-----------|----|-----------|-----------------------|-------|------------|------------------------|----------------------|--------------------| | | Po | 90 | <i>P</i> ₁ | q_1 | Po 90 | P1 q0 | Po q1 | P1 91 | | А | 2 | 8 | 4 | 6 | 16 | 32 | 12 | 24 | | В | 5 | 10 | 6 | 5 | 50 | 60 | ne 25 jun | 30 | | C | 4 | 14 | 5 | 10 | 56 | 70 | 40 | . 50 | | D | 2 | 19 | 2 | 15 | 38 | 38 | 30 | 30, | | | _ | - | | | Σ = a =160 | $\Sigma p_i q_0 = 200$ | $\Sigma p_0 q = 107$ | $\sum p_i q_i = 1$ | (i) Laspeyre's Method: Tethod: $$P_{01} = \frac{\sum p_1 \ q_0}{\sum p_0 \ q_0} \times 100$$ $$= \frac{200}{160} \times 100 = 125$$ thod: (ii) Paasche's Method: $$P_{01} = \frac{\sum p_1 \ q_1}{\sum p_0 \ q_1} \times 100 = \frac{134}{107} \times 100 = 125.23$$ (iii) Fisher's Method: $$\begin{split} P_{01} &= \sqrt{\frac{\Sigma p_1 \ q_0}{\Sigma p_0 \ q_0}} \times \frac{\Sigma p_1 \ q_1}{\Sigma p_0 \ q_1} \times 100 \\ &= \sqrt{\frac{200}{160}} \times \frac{134}{107} \times 100 = \sqrt{1.565} \times 100 \\ &= 1.2509 \times 100 = 125.09 \end{split}$$ $$P_{01} = \frac{\frac{\sum p_1 \ q_0}{\sum p_0 \ q_0} + \frac{\sum p_1 \ q_1}{\sum p_0 \ q_1}}{2} \times 100$$ $$= \frac{\frac{200}{160} + \frac{134}{107}}{2} \times 100 = \frac{1.25 + 1.252}{2} \times 100$$ $$= \frac{2.502}{2} \times 100 = 125.1$$ (v) Marshall-Edgeworth Method: $$\begin{aligned} P_{01} &= \frac{\sum p_1 (q_0 + q_1)}{\sum p_0 (q_0 + q_1)} \times 100 \\ &= \frac{\sum p_1 q_0 + \sum p_1 q_1}{\sum p_0 q_0 + \sum p_0 q_1} \times 100 \\ &= \frac{200 + 134}{160 + 107} \times 100 = \frac{334}{267} \times 100 = 125.09 \end{aligned}$$ trample 6. Calculate weighted index number for 1970 using weighted aggregative method from the following data: | Commodity | Quantity | Prices in 1960 | Prices in 1970 | | |-----------|----------|----------------|----------------|--| | A | 5 | 10 | 8 | | | В | 4 | 8 | 10 | | | С | 3 | 6 | 9 | | | D D | 1 2 00 | 5 | 7 | | The quantity consumed neither relates to current year nor to base year. Here quantities are fixed. The appropriate index can be found out by applying Kelly's method. | Commodity | on value 200 | P0 | P1 | P04 | P19 | |-----------|--------------|--------------|----|----------------------|----------------------| | A | 5 | 10 | 8 | 50 | 40 | | В | 1 4 1 2 | 8 | 10 | 32 | 40 | | С | 3 | 6 | 9 | 18 | 27 | | D | 2 | 5 | 7 | 10 | 14 | | | | Man A market | | $\Sigma p_0 q = 110$ | $\Sigma p_1 q = 121$ | Kelly's Method/Fixed Weight Method $$P_{01} = \frac{\sum p_1 q}{\sum p_0 q} \times 100 = \frac{121}{110} \times 100$$ $$= 110$$ ## IMPORTANT TYPICAL EXAMPLES Example 7. The table below gives details of price and consumption of 5 commodities for 2005 and 2007. Using an appropriate formula arrive at an index number for 2007 prices | Commodity | Price per unit
2005 (Rs.) | Price per unit
2007 (Rs.) | Consumption value 2005 (Rs.) | |--------------|------------------------------|------------------------------|------------------------------| | | 40 | 48 | 800 | | Rice | 25 | 27 | 400 | | Wheat | 95 | 105 | 760 | | Oil | 110 | 120 | 1100 | | Fish
Milk | 80 | 100 | 480 | Since, we are given the base year (2005) consumption values (p_0q_0) and current year quantities (q_1) are not given, the appropriate formula for index number is Laspeyre's | Commodity | p_0 | 90 | p_1 | p_1q_0 | p_0q_0 | |-----------|-------|-----------------------|-------------------|---------------|----------| | Rice | 40 | $\frac{800}{40} = 20$ | 48 | 960 | 800 | | Wheat | 25 | $\frac{400}{25}$ =16 | 27 | gm 432 (1 gr) | 400 | | Oil | 95 | $\frac{760}{95} = 8$ | 105 | 840 | 760 | | Fish | 110 | 1100
110=10 | 120 | 1200 | 1100 | | Milk | 80 | $\frac{480}{80} = 6$ | 100 | 600 | 480 | | Total | | 1 | No. of Street, or | 4032 | 3540 | $$q_0 = \frac{p_0 q_0}{p_0} = \frac{\text{Consumption value 2005 (Rs.)}}{\text{Price per cent 2005 (Rs.)}}$$ $$q_0 = \frac{P_0 q_0}{P_0} = \frac{\text{Cosumption variez 2005 (Rs.)}}{\text{Price per cent 2005 (Rs.)}}$$ $$P_{01} = \frac{\sum p_1 q_0}{\sum p_0 q_0} \times 100 = \frac{4032}{3540} \times 100 = 113.9$$ wing data: Example 8. Given the following data: | Items | Base | Year | Curr | ent Yes | |-------|-------|----------|-------|---------| | | Price | Quantity | Price | وأبد | | A | 1 | 10 | 2 4 1 | I wall | | В | 1 | | v | | Find X if the ratio between Laspeyre's and Paasche's index number is L: P::28:27 | Numb | ers-I | _ | | | | | 1 | | | |---------|---------------|----|----
----------------|----|-------------------|-------------------------------|--------|-------| | | of Laboratory | Po | 90 | P ₁ | 91 | D. C. | A A | d Long | 7 | | lution: | Items | 1 | 10 | 2 | 5 | Po q ₀ | P ₁ q ₀ | P1 91 | Po 91 | | | B | 1 | 5 | х | 2 | - 5 | 5X | 10 | 5 | | | | | - | | - | Σ page =15 | $\Sigma p_1 q_0 = 20 + 5X$ | 2X | 2 | Laspeyre's Index: $$L = \frac{\sum p_1 q_0}{\sum p_0 q_0} \times 100 = \frac{20 + 5X}{15} \times 100$$...(i) Paasche's Index: $$P = \frac{\sum p_1 q_1}{\sum p_0 q_1} \times 100 = \frac{10 + 2X}{7} \times 100$$...(ii) Dividing (i) by (ii), we get $$\frac{L}{P} = \frac{20 + 5X}{15} + \frac{10 + 2X}{7} = \frac{20 + 5X}{10 + 2X} \times \frac{7}{15}$$ Given: $\frac{L}{P} = \frac{28}{27}$ $$\frac{28}{27} = \frac{20 + 5X}{10 + 2X} \times \frac{7}{15}$$ $$\Rightarrow \frac{28 \times 15}{27 \times 7} = \frac{20 + 5X}{10 + 2X}$$ $$\Rightarrow \frac{28\times13}{27\times7} = \frac{20+32}{10+22}$$ $$\Rightarrow \frac{20}{9} = \frac{20 + 5X}{10 + 2X}$$ $$\Rightarrow$$ 20(10+2X)=9(20+5X) $$\Rightarrow 200+40X=180+45X$$ $$5X = 20$$ $$X = 4$$ Thus, missing figure = 4. From the following data, construct a price index number by using Fisher's Ideal | Commodity | Bas | e Year | Current Year | | | |-----------|-------------------|----------------------|-------------------|----------------------|--| | 1 800 | Price
per unit | Expenditure
(Rs.) | Price
per unit | Expenditure
(Rs.) | | | A | 2 | 40 | 5 | 75 | | | В, | 4 | 16 | 8 | 40 | | | C | | 10 | 2 | . 24 | | | D | | 25 | 10 | 60 | | Since we are given the expenditure and the price, we can obtain the quantity by dividing total expenditure by the price for each commodity. We can then apply | sher's Formu | Base Year | | Current Year | | Po 90 | $p_1 q_0$ | Po 91 | |--------------|-----------|----|--------------|-------|------------------|----------------------------|--| | Commodities | | 90 | Pi | q_1 | | and the second second | P1 P1 | | | P0 2 | 20 | 5 | 15 | 40 | 100 | 30 | | A | | 4 | 8 | 5 | 16 | 32 | 20 75 | | В | | 10 | 2 | 12 | 10 | 20 | 12 40 | | С | | 5 | 10 | 6 | 25 | 50 | 30 24 | | D | 3 | | | | $\Sigma p_0 q_0$ | $\sum_{p_1 q_0} q_0 = 202$ | 00 | | | | | | | = 91 | = 202 | $\sum_{p_0} p_0 q_1 \sum_{p_1} \sum_{p_1} p_1$ | By Fisher's Formula: rmula: $$P_{01} = \sqrt{\frac{\sum p_1 q_0}{\sum p_0 q_0}} \times \frac{\sum p_1 q_1}{\sum p_0 q_1} \times 100$$ $$= \sqrt{\frac{202}{91}} \times \frac{199}{92} \times 100 = 2.1912 \times 100 = 219.12$$ Example 10. Construct Index Number of prices from the following data by (i) Laspeyre's method | Commodity | 19 | 94 | 1995 | | | |-----------|------------------|----------------|-------------|----------------|--| | | Price
. (Rs.) | Value
(Rs.) | Price (Rs.) | Value
(Rs.) | | | A | 8 | 100 | 10 | :90 | | | В | 10 | - 60 | 11 | 66 | | | С | 5 | 100 | 5 | 100 | | | D | 1 3 | 30 | 2. | 24 | | | E | 2 | 8 | 4 | 20 | | Solution: Since we are given the total value and the price, we can obtain the quantity figure by dividing the total value by price for each commodity. | Commodity | 1994 | | 1995 | | Po 90 | P1 40 | Po 91 | |-----------|------|------|------|----|----------------------------|---------------------------------|------------------| | | P0 | 90 | PI | 91 | A PROPERTY. | Mile Heavy | - | | A | 8 | 12.5 | 10 | 9 | 100 | 125 | 72 | | В | 10 | 6 | 11 | 6 | 60 | 66 | 60 | | C | 5 | 20 | 5 | 20 | 100 | 100 | 100 | | D | 3 | -10 | 2 | 12 | 30 | 20 | 36 | | E | 2 | 4 | 4 | 5 | 8 | 16 | 10 | | | | | | , | $\sum_{p_0} p_0 q_0 = 298$ | Σ p ₁ q ₀ | Σ Po 91
= 278 | (i) Laspeyre's Method: $P_{01} = \frac{\sum p_1 q_0}{\sum p_0 q_0} \times 100$ $= \frac{327}{298} \times 100 = 109.73$ (ii) Paasche's Method: $P_{01} = \frac{\sum p_1 q_1}{\sum p_0 q_1} \times 100$ $= \frac{300}{278} \times 100 = 107.91$ (iii) Fisher's Method: $P_{01} = \sqrt{\frac{\sum p_1 q_0}{\sum p_0 q_0}} \times \frac{\sum p_1 q_1}{\sum p_0 q_1} \times 100$ $= \sqrt{\frac{327}{298}} \times \frac{300}{278} \times 100 = \sqrt{\frac{98100}{82844}} \times 100$ $= \sqrt{1.18415} \times 100 = 1.0881 \times 100 = 108.81$ Example 11. Based on the following data, compute Laspeyre's and Paasche's Price Indices for 1981 and 1982 with 1980 as base: | Items | 19 | 80 | 19 | 81 | 1982 | | |-------|-------------------|-----------------|-------------------|-----------------|-------------------|-----------------| | - 4 | Price
(in Rs.) | Qty.
(in kg) | Price
(in Rs.) | Qty.
(in kg) | Price
(in Rs.) | Qty.
(in kg) | | Α | 2.0 | 6 | 4.0 | . 6 | 4.0 | (III ag | | В | 0.40 | 40 | 0.70 | 40 | 1.0 | 36 | | C | 0.50 | 24 | 0.20 | 40 | 0.25 | 32 | Solution | Items | 9 | 1980 | 2 | 15 | 81 | 198 | 32 | |---------------|-------|-------------|------------------------|---------|-------------------------|------|---------------------| | Though | 90 | Po | Po90 | Pl | P190 | P2 | P2 90 | | Α | 6 | 2.0 | 12.0 | 4.0 | 24.0 | 4.0 | 24.0 | | В | 40 | 0.40 | 16.0 | 0.70 | 28.0 | 1.0 | 40.0 | | C | 24 | 0.50 | 12.0 | 0.20 | 4.8 | 0.25 | 6.0 | | G. 30. | 78.4 | state less. | $\sum_{p_0q_0} p_0q_0$ | | $\Sigma p_1 q_0 = 56.8$ | | $\sum p_2 q_0 = 70$ | | THE THE PARTY | Index | · spin | 100 | provide | 142 | | 175 | Laspeyre's Price Index: $$P_{01}^{L}(1981) = \frac{\sum p_1 q_0}{\sum p_0 q_0} \times 100 = \frac{56.8}{40} \times 100 = 142$$ $$P_{01}^{L}(1982) = \frac{\sum p_2 q_0}{\sum p_0 q_0} \times 100 = \frac{70}{40} \times 100 = 175$$ totion of Paasche's Price Indices | | | 1980 | | 1981 | | | _ | | 19 | 82 | |-------|-----------------------|------------|------|-------|---|------------|---------------------------------|-------|-------------------------------|------| | Items | _ | | P090 | q_1 | P091 | <i>P</i> 1 | p_1q_1 | q_2 | P_0q_2 | P2 | | | <i>q</i> ₀ | <i>P</i> 0 | 12.0 | 6 | 12.0 | 4.0 | 24.0 | 8 | 16 | 4 | | Α | 6 | . 2.0 | _ | 40 | 16.0 | 0.70 | 28.0 | 36 | 14.4 | 1.00 | | В | 40 | 0.40 | 16.0 | 40 | 20.0 | 0.20 | 8.0 | 32 | 16.0 | 0.25 | | С | 24 | 0.50 | 12.0 | 40 | $\begin{array}{c} \Sigma p_0 q_1 \\ = 48 \end{array}$ | | $\sum_{\substack{p_1q_1\\=60}}$ | | $\sum_{p_0q_2} p_0q_2 = 46.4$ | 0.23 | Paasche's Price Index: $$P_{01}^{P}(1981) = \frac{\sum p_1 q_1}{\sum p_0 q_1} \times 100 = \frac{60}{48} \times 100 = 125$$ sche's Price Index: $$P_{01}^{P}(1981) = \frac{\sum p_{1}q_{1}}{\sum p_{0}q_{1}} \times 100 = \frac{60}{48} \times 100 = 125$$ $$P_{01}^{P}(1982) = \frac{\sum p_{2}q_{2}}{\sum p_{0}q_{2}} \times 100 = \frac{76}{46.4} \times 100 = 163.79$$ ## **EXERCISE 3.2** - 1. From the following data, calculate Price Index for 1988 by using: - (i) Laspeyre's Method - (ii) Paasche's Method - (iii) Dorbish and Bowley's Method - (iv) Fisher's Method - (v) Marshall-Edgeworth's Method | | | A | | В | | C 70072 | | D | |------|-------|----------|-------|----------|-------|----------|-------|--------| | Year | Price | Quantity | Price | Quantity | Price | Quantity | Price | Quanti | | 1980 | 24 | 8 | 9 | 3 | 16 | 5 | 10 | 3 | | 1988 | 30 | 10 | 10 | 4 | 20 | 8 | 9 | 4 | | rom the fo | ollowing data, | find the Fi | Ans. (i) 120.67
sher's Ideal In | (ii) 120.72 (i
dex No : | 11) 120.09, (| | |------------|----------------|----------------|------------------------------------|--|----------------|-----| | Items | | - | 99 | The state of s | 15 | 97 | | 1 | | Price
(Rs.) | Value | | Price
(Rs.) | | | A | | 10 | 600 | / Garage Spirit | 6 | 4 | | В | | 2 | 240 | 517978 | 2 | - 1 | | С | | 6 | 360 | - | 4 | | traing a suitable formula, construct price index number from the fo | Commodity | | 1990 | er from the fo | llowing data: | |-----------|--------|-------------|----------------|---------------| | Commers | Price | Expenditure | | 1995 | | A | 4 | 200 | Price | Expenditure | | В | 3 | 30 | 10 | 400 | | C | 2 | 10 | 9 | 18 | | - | G III. | | 5 | 10 | [Ans. 253.9] (ii) Find by weighted aggregate
method, the index number from the following data: Commodity D Price (in Rs.) in 2001: 120 Price (in Rs.) in 2005: 35 100 140 Weight: $$[\text{Hint: } P_{01} = \frac{\sum p_1 w}{\sum p_0 w}]$$ [Ans. $P_{01} = 119.03$] 4. (i) If the ratio between Laspeyre's and Paasche's Index is 52:48, find out the missing figure in the following table: | Commodity | Bas | e Year | Curre | nt Year | |-----------|-------|----------|-------|----------| | | Price | Quantity | Price | Quantity | | A | 2 | 10 | 4 | 10 | | В | 2 | 5 | ? | 10 | (ii) Given that $\Sigma p_1 q_1 = 250$, $\Sigma p_0 q_0 = 150$ Paasche's Index No. = 150, Dorbish-Bowley's Index No. = 145. Find out (a) Fisher's Ideal Index No. and (b) Marshal-Edgeworth's Index No. [Hint: See Example 40] [Ans. $\Sigma p_0 q_1 = 167$, $\Sigma p_1 q_0 = 210$, (a) 144.9 (b) 145.11] 5. Calculate Price Index Number using weighted aggregative method from the following data: | | mend weighted appregative method from the tonorming data | | | | | | | |-----------|--|------------------|---------------------|--|--|--|--| | Commodity | Quantity | Base Year Prices | Current Year Prices | | | | | | A | 5 | 30 | 40 | | | | | | В | 8 | 20 | 30 | | | | | | C | 10 | 10 | 20 | | | | | [Hint: Use Kelley's Method] 6. Based on the follow [Ans. 156.1] | ems | National Control | Prices | | Quantities Purchased | | | |--------|------------------|--------|------|----------------------|------|------| | grains | 1949 | 1950 | 1960 | 1949 | 1950 | 1960 | | | 5 | 6 | 4 | 500 | 400 | 80 | | teel | 10 | | 12 | 70 | 60 | 50 | | ruit | 4 | 7 | 0 | 100 | 80 | 90 | # • (II) Weighted Average of Price Relatives Method In this method, first of all, the price relatives for the current year are calculated on the basis of the base year prices of the commodities. If the weights are given explicitly in the question, then we make use of those weights but if the quantities in the base year (q_0) are given, then by multiplying the base year quantity (q_0) with the base year price (p_0) , we compute the value weights (p_0q_0) . Whatever be the case, weights (W) are multiplied with the respective price relatives (P) and (P) are obtained and then dividing it by the sum of the weights (EW). The resulting value gives us the required weighted index number. In terms of formula, (II) Weighted Average of Frice relatives for the current year are calculated on the basis of In this method, first of all, the price relatives for the segment of the weights are given explicitly in the question of the segment th ted index number. In terms of formals, Weighted Index Number $$(P_{01}) = \frac{\Sigma PW}{\Sigma W}$$, using A.M. Where, $P = \text{Price relative} = \frac{p_1}{p_0} \times 100$; $W = \text{Value in the base year (i.e., } p_0 q_0)$ or fixed weights. If the weighted geometric mean is used, then the formula is $$P_{01} = \text{Antilog}\left[\frac{\Sigma(\log P).W}{\Sigma W}\right]$$ Note: When the base year's value (p_0q_0) are taken as weights $(W=p_0q_0)$, then the weighted average of price relative method gives us Laspeyre's Price Index Number, if arithmetic Example 12. Compute price index from the following data by applying weighted average of price | Commodity | Base year price (p ₀) | Base year quantity (q_0) | Current year price | |-----------|-----------------------------------|----------------------------|--------------------| | A | 6.0 | 40 | 8.0 | | В | 3.0 | 80 | 3.2 | | C | 2.0 | 20 | 3.0 | Solution: | Commodity | <i>P</i> 0 | 90 | <i>p</i> ₁ | W
(p ₀ q ₀) | $P = \frac{p_1}{p_0} \times 100$ | PW | |-----------|------------|----|-----------------------|---------------------------------------|--------------------------------------|--------------------------| | A | 6.0 | 40 | 8.0 | 240 | $\frac{8}{6} \times 100 = 133.3$ | 31,992 | | В | 3.0 | 80 | 3.2 | 240 | $\frac{3.2}{3.0} \times 100 = 106.7$ | 25,608 | | С | 2.0 | 20 | 3.0 | 40 | $\frac{3}{2} \times 100 = 150.0$ | $6,000$ $\Sigma PW = 63$ | | | 11 1- | | 7 4 | $\Sigma W = 520$ | | ΣPW-03 | Using Weighted Average of Price Relative Method, $$P_{01} = \frac{\Sigma PW}{\Sigma W} = \frac{63,600}{520} = 122.30$$ # Index Numbers-I When prices and Weights of Different Commodities are Given when prices and data in respect of middle class families of a city are given below. Calculate weighted index number for 2006 using (i) weighted A.M. of price relatives; (ii) weighted G.M. of price relatives: | 1. 01 p | Weights | | | |----------|-----------|---------------------|-------------| | Items | , organis | 2005
Price (Rs.) | 2006 | | Food | 30 | 100 | Price (Rs.) | | Rent | 15 | 20 | 90 | | Clothing | 30 | | 20 | | Fuel | 10 | 70 | 60 | | | | 20 | 15 | | Misc. | 23 | 40 | 55 | | | | Pr | ice | Price | | | | |----------|------------------|---------------------------|---------------------------|--|----------------------|--------|-----------| | Items | Weights (W) | 2005
(p ₀) | 2006
(p ₁) | Relatives $P = \frac{p_1}{p_0} \times 100$ | WP | log P | W log P | | Food | 30 | 100 | 90 | 90.0 | 2700 | 1.9542 | 58.626 | | Rent | 15 | 20 | 20 | 100.0 | 1500 | 2.0000 | 30.000 | | Clothing | 20 | 70 | 60 | 85.7 | 1714 | 1.9330 | 38.660 | | Fuel | 10 | 20 | 15 | 75.0 | 750 | 1.8751 | 18.751 | | Misc. | 25 | 40 | 55 | 137.5 | 3437.5 | 2.1383 | 53.457 | | | $\Sigma W = 100$ | | - 10 | | $\Sigma WP = 101015$ | | Σ W log F | (i) $$P_{01}(A.M.) = \frac{\Sigma WP}{\Sigma W} = \frac{10101.5}{100} = 101.015$$ (ii) $$P_{01}(G.M.) = Antilog \left\{ \frac{\Sigma W. \log P}{\Sigma W} \right\} = Antilog \left[\frac{199.494}{100} \right]$$ = Antilog [1.9949] = 98.83. aple 14. A department store sells stereo systems, television sets and radios. The percentage distribution of the total sales volume (in rupees) is estimated as 30 per cent stereos, 50 per cent televisions and 20 per cent radios. The price of one stereo, one television and one radio in 1999 was Rs. 20,000, Rs. 15,000 amd Rs. 500 respectively while their respective prices in 2004 were Rs. 25,000, Rs. 20,000 and Rs. 800. A weighted price index for 2004 with base 1999 is to be computed. - (i) Which index number formula is appropriate, why? - (ii) Compute the index. - (i) Here, weighted average of price relative method is appropriate because the relative importance or contribution of various products, i.e., stereo systems, televisia. televisions and radios, to the total sales volume is to considered. Index Number using Weighted Average of Price Relatives Price in 2004 (P₁) $P = \frac{p_1}{p_0} \times 100$ Price in 1999 Weights Products (11) PW $\frac{25,000}{20,000} \times 100 = 125$ 25,000 20,000 30 3,750.00 Stereo $\frac{20,000}{15,000} \times 100 = \frac{400}{3}$ 20,000 15,000 50 6,666.67 Television Index Numbers-I Television 50 15,000 20,000 $$\frac{20,000}{15,000} \times 100 = \frac{400}{3}$$ $\frac{400}{5,000} \times 100 = 160$ $\frac{400}{3}$ $\frac{400}{5,000} \times 100 = 160$ $\frac{200}{3}$ $\frac{200}{5,000} \times 100 = 160$ $\frac{200}{3}$ Hence, the weighted price index for 2004 with base 1999, is given by $P_{01} = \frac{\Sigma WP}{\Sigma W} = \frac{13616.67}{100} = 136.17$ Example 15. Calculate index number of prices for 1995 on the basis of 1990 from the data given | below: | | | - more transfer | |-----------|--------|------------------------------|------------------------------| | Commodity | Weight | Price per unit
1990 (Rs.) | Price per unit
1995 (Rs.) | | A | 40 | 16 | 20 | | В | 25 | 40 | 50 | | С | 20 | 12 | 15 | | D | 15 | 2 | 3 | If the weights of commodities A, B, C, D are increased in the ratio 1:2:3:4, what will be increase in index number? Solution: | Commodity | Weight | Price per unit in Rs. | | | WP | Increased | W ₁ P | |-----------|------------------|---------------------------|---------------------------|--|---------------------------|------------------------------------|------------------| | | (W) | 1990
(p ₀) | 1995
(p ₁) | $P = \frac{p_1}{p_0} \times 100$ Weigh | Weight (W ₁)* | 5500 | | | Α | 40 | 16 | 20 | 125 | 5000 | $40 + \frac{1 \times 40}{10} = 44$ | 42 | | В | 25 | 40 | 50 | 125 | 3125 | $25 + \frac{2 \times 25}{10} = 30$ | 3750 | | С | 20 | 12 | 15 | 125 | 2500 | $20 + \frac{3 \times 20}{10} = 26$ | 3250 | | D | 15 | 2 | 3 | 150 | 2250 | $15 + \frac{4 \times 15}{10} = 21$ | 315 | | - 4 | $\Sigma W = 100$ | | | | Σ WP
= 12875 | $\Sigma W_1 = 121$ | Σ W ₁ | Original Index Number (I) = $\frac{\Sigma PW}{\Sigma W} = \frac{12875}{100} = 128.75$ Since, the weights of the commodities are increased in the ratio 1:2:3:4, (Total = 10), Since, the weights of the commodities are increased in the ratio 1:2:3:4, (Total the increase in weights are: $$(A): \frac{1}{10} \times 40 = 4, \quad (B): \frac{2}{10} \times 25 = 5, \quad (C): \frac{3}{10} \times 20 = 6, \quad (D): \frac{4}{10} \times 15 = 6$$ New Index Number $(I_1) = \frac{\Sigma W_1 P}{\Sigma W_1} = \frac{15650}{121} = 129.34$ Increase in the index number = $I_1 - I = 0.59$ When Group Indices and Weights are Given when Group When Group On the construction of a certain cost of living index numbers, the following group index numbers were found. Calculate the cost of living index number by using (i) weighted A.M. and (ii) weighted G.M. | Group | Index Number | Weight | |-------|--------------|--------| | A | 352 | 50 | | В | 200 | 10 | | С | 230 | 10 | | D | 160 | 15 | | Е | 190 | 15 | Group Weight (W) Index Number (P) WP $W \cdot \log P$ 50 A 352 17600 2.5465 127.3250 В 10 200 2000 2.3010 23.01 С 10 2300 23.6170 D 15 33.0615 160 2400 2.2041 E 15 34.1820 2.2788 190 2850 $\Sigma W = 100$ $\Sigma PW = 27150$ (i) $$P_{01}(A.M.) = \frac{\Sigma PW}{\Sigma W} = \frac{27150}{100} = 271.50$$ (ii) $P_{01}(G.M.) = \text{Antilog}\left\{\frac{\Sigma W \log P}{\Sigma W}\right\} = \text{Antilog}\left[\frac{241.1955}{100}\right]$ = Antilog [2.4119] = 258.19 195 **EXERCISE 3.3** |
Calculate weight | Unit Unit | Base Year
Quantity | Base Year Price
(Rs.) | | |------------------|-----------|-----------------------|--------------------------|-----| | A.C. | - OI | Per Qtl. 4 Qtl. | 200 | Pri | | Wheat | | 50 Kgs. | 5 | | | Sugar | Per Kg. | 40 Litre | 5 | | | Milk | Per Litre | 20 Metre | 10 | | | Cloth | Per Metre | 1 | 50 | 100 | | House | Per | | | _ | [Ans. 131.33] Calculate weighted index number for 2000 by Weighted Aggregative Method and Weighted Average of Relative Method from the following data: | age of Relative iv. | Weights | Prices in 1999 (Rs.) | Prices in 2000 (Rs. | |---------------------|---------|----------------------|---------------------| | Items | 40 | 16.00 | 20.00 | | A | 20 | 40.00 | 60.00 | | С . | 15 | 0.50 | 0.50 | | D | 20 | 5.12 | 6.25 | | E | 5 | 2.00 | 1.50 | [Ans. (i) $P_{01} = 137.188$, (ii) $P_{01} = 123.15$] 3. The price quotation of different commodities for 2001 and 2002 are given below. Calculate the index number for 2002 with 2001 as base year by using (i) Simple average of price relatives and (ii) Weighted average of price relative. | Commodity | Unit | Weight | Prices (Rs.) | | |-----------|-------|--------|--------------|------| | | | | 2001 | 2002 | | A | Kg. | 5 | 2.00 | 4.50 | | В | Qt. | 7 | 2.50 | 3.20 | | c | Dozen | 6 | 3.00 | 4.50 | | D | Kg. | 2 | 1.00 | 1.80 | [Ans. (i) 170.5 (ii) 164.05 ### QUANTITY INDEX NUMBERS Quantity index numbers are designed to measure the change in physical quantities of goods over a given period. These index numbers represent increase or decrease in physical quantities of goods produced or sold. The method of construction of quantity index is same as that of price index. Just as quantity is taken as weight in case of a price index, similarly, price is taken as weight in case of a quantity index. By interchanging price with quantity and quantity with price in a price index formula for the price index. quantity index. By interchanging price with quantity and quantity with price in a price index formula, quantity index can be constructed. Quantity index is symbolised as Q_{01} . Quantity index number can also be simple or weighted: Numbers (A) Simple Quantity Index Numbers (B) Simple Aggregative Method: $$Q_{01} = \frac{\Sigma q_1}{\Sigma q_0} \times 100$$ (ii) Simple Average of Relative Method: $$Q_{01} = \frac{\sum \left(\frac{q_1}{q_0} \times 100\right)}{N}$$ (Using AM) $$S_{\text{Simple Average of Relative Method: } Q_{01} = AL \frac{\left[\sum \log \frac{q_1}{q_0} \times 100\right]}{N}$$ (Using GM) 197 ₀ (B) Weighted Quantity Index Numbers (a) Weighted Aggregate Method (i) Laspeyre's Quantity Index No.: $$Q_{01} = \frac{\Sigma q_1 p_0}{\Sigma q_0 p_0} \times 100$$ (ii) Paasche's Quantity Index No.: $$Q_{01} = \frac{\Sigma q_1 p_1}{\Sigma q_2 p_2} \times 100$$ (a) Weighted Aggregate Interior (b) Laspeyre's Quantity Index No.: $$Q_{01} = \frac{\Sigma q_1 p_0}{\Sigma q_0 p_0} \times 100$$ (ii) Paasche's Quantity Index No.: $$Q_{01} = \frac{\Sigma q_1 p_1}{\Sigma q_0 p_1} \times 100$$ (iii) Fisher's Quantity Index No.: $$Q_{01} = \sqrt{\frac{\Sigma q_1 p_0}{\Sigma q_0 p_0}} \times \frac{\Sigma q_1 p_1}{\Sigma q_0 p_1} \times 100$$ (iv) Bowley's Quantity Index: $$Q_{01} = \frac{\sum_{q_1 p_0} + \sum_{q_1 p_1}}{\sum_{q_0 p_0} + \sum_{q_0 p_1}} \times 100$$ (ii) Bowley's Quantity Index: $$Q_{01} = \frac{\sum_{q_0 p_0} + \sum_{q_0 p_0} + \sum_{q_0 p_0} \times 100}{2} \times 100$$ (iv) Marshall's Quantity Index: $$Q_{01} = \frac{\sum_{q_1 p_0} + \sum_{q_1 p_1} \times 100}{\sum_{q_0 p_0} + \sum_{q_0 p_0} \times 100}$$ (b) Weighted Average of Relative Method: $$Q_{01} = \frac{\Sigma QW}{\Sigma W}$$ Where, $$Q = \frac{q_1}{q_0} \times 100$$, $W = q_0 p_0$ Etample 17. Compute quantity index for the following by (i) Simple Aggregative method (ii) Average of Quantity Relative method by using both arithmetic mean and geometric mean: | Items: | A | В | С | D | E | F | |-------------------|----|----|----|----|----|----| | Quantity in 1971: | 20 | 30 | 10 | 25 | 40 | 50 | | Quantity in 1981: | 25 | 30 | 15 | 35 | 45 | 55 | | Items | 90 | q ₁ | $Q = \frac{q_1}{q_0} \times 100$ | log | |-------|--------------------|--------------------|---|-------------------| | | 20 | 25 | 125 | 200 | | A | 30 | 30 | 100 | 2.09 | | В | 10 | 15 | 150 | 2.17 | | С | 25 | 35 | 140 | 2.14 | | D | 40 | 45 | 112.5 | 2.05 | | E | 50 | 55 | 110 | 2.04 | | V = 6 | $\Sigma q_0 = 175$ | $\Sigma q_1 = 205$ | $\Sigma \frac{q_0}{q_1} \times 100 = 737.5$ | $\Sigma \log Q =$ | $$Q_{01} = \frac{\Sigma q_1}{\Sigma q_0} \times 100 = \frac{205}{175} \times 100 = 117.143$$ (ii) Arithmetic Mean of Quantity Relatives $$Q_{01} = \frac{\Sigma\left(\frac{q_1}{q_0} \times 100\right)}{N} = \frac{737.5}{6} = 122.92$$ (iii) Geometric Mean of Quantity Relatives $$Q_{01} = \operatorname{Antilog}\left[\frac{\Sigma \log \mathcal{Q}}{\mathcal{N}}\right] = \operatorname{Antilog}\left[\frac{12.5117}{6}\right]$$ Example 18. From the following data, construct Quantity Index Number by using (i) Laspeyre's formula (ii) Passche's formula and (iii) Fisher's Formula: | Commodity | I | 990 | 1995 | | |-----------|-------|----------|-------|----------| | | Price | Quantity | Price | Quantity | | I | 8 | 10 | 10 | 11 | | П | 10 | 9 11 | 12 | 9 | | III | 16 | 16 | 20 | 17 | | Commodity | 1990 | | 1990 1995 | | 1 | | | |-----------|-----------------------|-------|-----------|-------|--|-------------------------------|--| | | <i>P</i> ₀ | q_0 | p_1 | q_1 | q1 P0 | q ₀ P ₀ | q ₁ P ₁ | | I | 8 | 10 | 10 | 11 | 88 | 80 | 110 | | II | 10 | 9 | 12 | 9 | 90 | 90 | 108 | | III | 16 | 16 | 20 | 17 | 272 | 256 | 340 | | | | | | | $\begin{array}{c} \Sigma q_1 p_0 \\ = 450 \end{array}$ | $\sum q_0 p_0 = 426$ | $\begin{array}{l} \Sigma q_1 P_1 \\ = 558 \end{array}$ | (i) Laspeyre's Quantity Index $$Q_{01} = \frac{\sum q_1 p_0}{\sum q_0 p_0} \times 100 = \frac{450}{426} \times 100 = 105.63$$ (ii) Paasche's Quantity Index antity Index $$Q_{01} = \frac{\sum q_1 p_1}{\sum q_0 p_1} \times 100 = \frac{558}{528} \times 100 = 105.68$$ In tity Index (iii) Fisher's Quantity Index antity index $$Q_{01} = \sqrt{\frac{\Sigma q_1 p_0}{\Sigma q_0 p_0}} \times \frac{\Sigma q_1 p_1}{\Sigma q_0 p_1} \times 100$$ $$= \sqrt{\frac{450}{426}} \times \frac{558}{528} \times 100 = \sqrt{1.116} \times 100$$ $$= 1.057 \times 100 = 105.7$$ Example 19. Calculate the index number of crime for 2003 with 2002 as base: | | 2002 | 2003 | Weights | |--------------------|------|------|---------| | Robberies | 13 | 8 | 6 | | Care thefts | 15 | 22 | 5 | | Cycle thefts | 249 | 185 | 4 | | Pocket picking | 328 | 259 | 1 | | Thefts by servants | 497 | 448 | 2 | | | 100000 | The server of T | | | | |--------------------|--------|-----------------|-----------------|--------------------------------------|-----------------------| | | 2002 | 2003 | Weights (W) | Crime Relative (R) | RW | | Robberies | 13 | 8 | 6 | $\frac{8}{13} \times 100 = 61.54$ | 369.24 | | Car thefts | 15 | 22 | 5 | $\frac{22}{15} \times 100 = 146.67$ | 733.35 | | Cycle thefts | 249 | 185 | 4 | $\frac{185}{249} \times 100 = 74.30$ | 297.20 | | Pocket picking | 328 | 259 | 1 | $\frac{259}{328} \times 100 = 78.96$ | 78.96 | | Thefts by servants | 497 | 448 | 2 | $\frac{448}{497} \times 100 = 90.14$ | 180.28 | | <i>y</i> | | | $\Sigma W = 18$ | | $\Sigma RW = 1659.03$ | Index Number = $$\frac{\Sigma RW}{\Sigma W} = \frac{1659.03}{18} = 92.17$$ # ■ VALUE INDEX NUMBERS The value of a commodity is the product of its price and quantity. Therefore, value index is computed by dividing the sum of total value in current year (ΣV_1) by the sum of total value in base of the e quotient being multiplied by 1868. $$V_{01} = \frac{\sum V_1}{\sum V_0} \times 100 = \frac{\sum p_1 q_1}{\sum p_0 q_0} \times 100$$ Where V = Value index V = Value index $\sum V_1 = \text{Total value in current year} = \sum p_1 q_1$ $\sum V_0 = \text{Total value in base year} = \sum p_0 q_0$ The computation of value index is illustrated in the following examples: Example 20. From the following data, calculate Value Index for the year 1993 and 1994: | O. From the following | | | | |-----------------------|------|------|------| | Year: | 1992 | 1993 | 1994 | | Price (Rs.): | 25 | 30 | 40 | | Quantity (Tonnes): | 40 | 50 | 60 | | | | | | | | 1992 | | | 1993 | | | 199 | 4 | |----------------|------|-------------------|-------|-------|-------------------|----|-----|---------------| | P ₀ | 90 | $V_0 = p_0 \ q_0$ | p_1 | q_1 | $V_1 = p_1 \ q_1$ | P2 | 92 | $V_2 = p_2 q$ | | 25 | 40 | 1000 | 30 | 50 | 1500 | 40 | 60 | 2400 | Value Index is given by: $$V_{01} = \frac{\Sigma V_1}{\Sigma V_0} \times 100$$ For 1993: $$_{01} = \frac{1500}{1000} \times 100 = 150$$ For 1994: $$V_{01} = \frac{1500}{1000} \times 100 = 150$$ $$V_{01} = \frac{2400}{1000} \times 100 = 240$$ In practice, value indices are not very much used. ### **EXERCISE 3.4** 1. From the following data, calculate (i) Price Index by Laspayre's Method, (ii) Quantity Index by Fisher, and (iii) Value Index | Commodity | | Year | Current Year | | |-----------|-----------------|----------------|-----------------|------------| | | Price (Rs./kg.) | Quantity (kg.) | Price (Rs./kg.) | Quan | | A | 4 | 2 | | MARKET CO. | | В | 5 | | 0 | | | C | - | 4 | 7 | | | D | 3 | 6 | 4 | | | D | 2 | 3 | 2 | 3 | [Hint: $V_{01} = \frac{\sum p_1 q_1}{\sum p_0 q_0}$] 3 3 [Ans. (i) L = 140.38 (ii) $$F = 140.74$$ and (iii) $V_{01} = 198.08$] Index Numbers-I Calculate quantity index numbers from the data given below using (i) Passeyre's method (ii) Passche's method (iii) Bowley's method (iv) Fisher's method (iv) Marshall's method (vi) Simple average of relatives method | Commodity | 19 | 80 | 5 method. | F 2 19 14 | |-----------|-------|----------|-----------|-----------| | Commount | Price | Quantity | | 985 | | 1 | 4 |
- 10 | Price | Quantity | | B | 6 | 8 | 3, | 12 | | C | 10 | 5 | 12 | 10 | | D | 3 | 12 | 12 | 4 | | E | 5 | 7 | 4 | 4 | | | ** | (0.00 | 3 | 8 | [Ans. (i) 95.70 (ii) 93.98 (iii) 94.84 (iv) 94.83 (v) 94.76 (vi) 94.52] 3. Compute Quantity Index Number for the following data by (i) Simple Aggregative Method, (ii) Average of Quantity relative method by using A.M.: | Commodity: | A | В | C | D | - | _ | |-------------------|----|----|----|----|----|----| | Production (1989) | 20 | 30 | 10 | 25 | E | F | | Production (1999) | 25 | 30 | 15 | | 40 | 50 | | | | | | 35 | 45 | 55 | # I TESTS OF ADEQUACY OF INDEX NUMBER FORMULAE Various formulae can be used for the construction of Index numbers. But it is necessary to select mappropriate/suitable formula out of them. Prof. Fisher has given the following tests to select an (1) Time Reversal Test - TRT (2) Factor Reversal Test - FRT (3) Circular Test. # (1) Time Reversal Test llustrating this test, Prof. Fisher remarks "The test is that the formula for calculating an the other named the such that it will give the same ratio between one point of comparison differing any sould be such that it will give the same ratio between one point of the sets, according to this test, a such that it will give the same ratio between one point of the sets of the same ratio between one point of the sets of the same ratio between one point of the sets of the same ratio between one point nsidering any year as base year, some other year's price index is computed and for another price when the ground state of the st Time Reversal Test is satisfied when $$P_{01} = \frac{1}{P_{10}} \text{ or } P_{01} \times P_{10} = 1$$ $r_{01} = \frac{V_{\text{loc}}}{P_{10}}$ or $r_{01} \sim r_{10}$ or $r_{01} \sim r_{10}$ of $r_{01} \sim r_{01}$ or r_{01} \sim r_{01}$ ···(i) Time Reversal Test is not satisfied by simple A.M. of price relative, Laspeyre and Paasche's formula. But this test is satisfied by Fisher's Ideal Index, Marshall-Edgeworth Index and Simple G.M. of Price Relative. I. of Price Kelauve. (i) Laspeyre's Formula: According to Laspeyre's Formula (omitting factor 100) $$P_{01} = \frac{\sum p_1 q_0}{\sum p_0 q_0}$$ Interchanging time subscripts, i.e., 0 to 1 and 1 to 0 $$P_{10} = \frac{\sum p_0 q_1}{\sum p_1 q_1}$$...(ii) Multiplying (i) and (ii), we get $$P_{01} \times P_{10} = \frac{\sum p_1 q_0}{\sum p_0 q_0} \times \frac{\sum p_0 q_1}{\sum p_1 q_1} \neq 1$$ Since $P_{01} \times P_{10} \neq 1$, the Laspeyre's formula does not satisfy time reversal test. (ii) Paasche's Formula: According to Paasche's Formula (omitting factor 100) P₀₁ = $$\frac{\sum p_1q_1}{\sum p_0q_1}$$...(i) Interchanging time subscripts, i.e., 0 to 1 and 1 to 0 time subscripts, i.e., 0 to 1 and 1 to 0 $$P_{10} = \frac{\sum p_0 q_0}{\sum p_1 q_0}$$ $$\begin{split} P_{10} &= \frac{-2^{\mu}C^{\eta}S^{0}}{\sum P_{1}q_{0}} \\ \text{Multiplying (i) and (i), we get} \\ P_{01} \times P_{10} &= \frac{\sum P_{1}q_{1}}{\sum P_{0}q_{0}} \times \frac{\sum P_{0}q_{0}}{\sum P_{1}q_{0}} \neq 1 \\ \text{Since } P_{01} \times P_{10} \neq 1 \text{, the Paasche's formula does not prove that } \end{split}$$ Since $P_{01} \times P_{10} \neq 1$, the Paasche's formula does not satisfy time reversal test. (iii) Fisher's Formula: According to Fisher's Formula (omitting factor 100) $$P_{01} = \sqrt{\frac{\sum p_1 q_0}{\sum p_0 q_0}} \times \frac{\sum p_1 q_1}{\sum p_0 q_1}$$...(0) Interchanging 0 to 1 and 1 to 0 $$P_{10} = \sqrt{\frac{\sum p_0 q_1}{\sum p_1 q_1}} \times \frac{\sum p_0 q_0}{\sum p_1 q_0} \tag{a)}$$ Multiplying (i) and (ii), we get $$P_{01} \times P_{10} = \sqrt{\frac{\sum_{p_1 q_0}}{\sum_{p_0 q_0}}} \times \frac{\sum_{p_1 q_1}}{\sum_{p_0 q_0}} \times \frac{\sum_{p_1 q_1}}{\sum_{p_0 q_0}} \times \frac{\sum_{p_0 q_0}}{\sum_{p_1 q_0}} \times \frac{\sum_{p_0 q_0}}{\sum_{p_1 q_0}}$$ $$= \sqrt{1} = 1$$ Since $P_{01} \times P_{10} = 1$, the Fisher's Formula satisfies time reversal test. Index Numbers-I (iv) Marshall-Edgeworth Formula: According to Marshall-Edgeworth Formula: $P = \frac{\sum p_1 q_0 + \sum p_1 q_1}{\sum p_2 + \sum p_2 q_2}$ $$P_{01} = \frac{\sum p_1 q_0 + \sum p_1 q_1}{\sum p_0 q_0 + \sum p_0 q_1}$$ Interchanging 0 to 1 and 1 to 0 $$P_{10} = \frac{\sum p_0 q_1 + \sum p_0 q_0}{\sum p_1 q_1 + \sum p_1 q_0}$$ $$\begin{aligned} & \Sigma p_{1}q_{1} + \Sigma p_{1}q_{0} \\ & P_{01} \times P_{10} = \frac{\Sigma p_{1}q_{0} + \Sigma p_{1}q_{1}}{\Sigma p_{0}q_{0} + \Sigma p_{0}q_{1}} \times \frac{\Sigma p_{0}q_{1} + \Sigma p_{0}q_{0}}{\Sigma p_{1}q_{1} + \Sigma p_{1}q_{0}} = 1 \\ & = 1, \text{Marshall-Edgeworth satisfies time reversal tree.} \end{aligned}$$ Since $P_{01} \times P_{10} = 1$, Marshall-Edgeworth satisfies time reversal test. # o (2) Factor Reversal Test This is another test given by Prof. Fisher. According to Prof. Fisher "Just as our formula This is another test great of two times without giving inconsisting results, so it ought to should permit uncertainty of prices and quantities without giving inconsisting results, so it ought to permit interchange of prices and quantities without giving inconsistent results, i.e., the two realismultiplied together should give the true value ratio." Factor Reversal Test is satisfied when Price Index \times Quantity Index = Value Index $$P_{01} \times Q_{01} = \frac{\sum p_1 q_1}{\sum p_0 q_0}$$ Like time reversal test, Factor Reversal Test too is not satisfied by Laspeyre's and Paasche's famulae, Marshall-Edgeworth's formula too does not satisfy factor reversal test. Factor thersal test is satisfied only by Fisher's Ideal formula. This is shown below: (i) Laspeyre's Formula: According to Laspeyre's Formula (omitting factor 100) $$P_{01} = \frac{\sum p_1 q_0}{\sum p_0 q_0} \qquad ...(i)$$ Interchanging p to q and q to p $$Q_{01} = \frac{\sum_{q_1 p_0}}{\sum_{q_2 p_2}} \qquad ...(ii)$$ Multiplying (i) and (ii), we get $$P_{01} \times Q_{01} = \frac{\sum p_{1}q_{0}}{\sum p_{0}q_{0}} \times \frac{\sum q_{1}p_{0}}{\sum q_{0}p_{0}} \neq \frac{\sum p_{1}q_{1}}{\sum p_{0}q_{0}}$$ Since $P_{01} \times Q_{01} \neq \frac{\sum p_1 q_1}{\sum p_0 q_0}$, the Laspeyre's formula does not satisfy factor reversal test. ···(i) ...(ii) ...(i) (ii) Paasche's Formula: According to Paasche's Formula (omitting factor 100) $$P_{01} = \frac{\sum p_1 q_1}{\sum p_0 q_1}$$ Interchanging p to q and q to p, $$Q_{01} = \frac{\sum q_1 p_1}{\sum q_0 p_1}$$ Multiplying (i) and (ii), we get $$P_{01} \times Q_{01} = \frac{\sum p_1 q_1}{\sum p_0 q_1} \times \frac{\sum q_1 p_1}{\sum q_0 p_1} \neq \frac{\sum p_1 q_1}{\sum p_0 q_0}$$ Since, $P_{01} \times Q_{01} \neq \frac{\Sigma p_1 q_1}{\Sigma p_0 q_0}$, the Paasche's formula does not satisfy factor reversal test. (iii) Fisher's Formula: According to Fisher's Formula (omitting factor 100) $$P_{01} = \sqrt{\frac{\sum p_1 q_0}{\sum p_0 q_0}} \times \frac{\sum p_1 q_1}{\sum p_0 q_1}$$ Interchanging p to q and q to p $$Q_{01} = \sqrt{\frac{\sum_{q_1} p_0}{\sum_{q_0} p_0} \times \frac{\sum_{q_1} p_1}{\sum_{q_0} p_1}}$$...(ii) Multiplying (i) and (ii), we get $$\begin{split} P_{01} \times Q_{01} &= \sqrt{\frac{\Sigma p_1 q_0}{\Sigma p_0 q_0}} \times \frac{\Sigma p_1 q_1}{\Sigma p_0 q_0} \times \frac{\Sigma q_1 p_0}{\Sigma q_0 p_0} \times \frac{\Sigma q_1 p_1}{\Sigma q_0 p_0} \times \frac{\Sigma q_1 p_1}{\Sigma q_0 p_1} \\ &= \sqrt{\frac{\Sigma p_1 q_1 \times \Sigma}{\Sigma p_0 q_0} \times \Sigma p_0 q_0}} = \frac{\Sigma p_1 q_1}{\Sigma p_0 q_0} \end{split}$$ Since, $P_{01} \times Q_{01} = \frac{\sum p_1 q_1}{\sum p_0 q_0}$, Fisher's formula satisfies factor reversal test. (iv) Marshall-Edgeworth Formula: According to Marshall-Edgeworth Formula $$\begin{split} P_{01} &= \frac{\sum p_1 q_0 + \sum p_1 q_1}{\sum p_0 q_0 + \sum p_0 q_1}; Q_{01} = \frac{\sum q_1 p_0 + \sum q_1 p_1}{\sum q_0 p_0 + \sum q_0 p_1} \\ P_{01} \times Q_{01} &= \frac{\sum p_1 q_0 + \sum p_1 q_1}{\sum p_0 q_0 + \sum p_0 q_1} \times \frac{\sum q_1 p_0 + \sum q_1 p_1}{\sum q_0 p_0 + \sum q_0 p_1} \neq \frac{\sum p_1 q_1}{\sum p_0 q_0} \end{split}$$ Since, $P_{01} \times Q_{01} \neq \frac{\sum p_1 q_1}{\sum p_0 q_0}$, the test is not satisfied by Marshall-Edgeworth formula. Index Numbers-I o (3) Circular Test (3) Circular This test is the extension of time reversal test. According to this test is the extension of time reversal test. According to This test is the extension of time reversal test. According to this test is the extension of time reversal test. According to the stest, if there are three time periods 0, 1 and 2 and price index of period 2 relative to of the stest of period 2 relative to period 2 (P_{20}) and price index of period 0 relative to period 2 (P_{20}) and price index of these three indices must be unity. Symbolically 205 $$\boldsymbol{P_{01}}\times\boldsymbol{P_{12}}\times\boldsymbol{P_{20}}=1$$ This test is satisfied by the simple aggregative index only. This test is satisfied by Laspeyre's, Paasche's and Fisher's index number. Index Circular test is in the control of passed on simple G.M., simple aggregative formula and weighted aggregative formula fixed weights) satisfy circular test. Example 21. Show that Fisher's formula does not satisfy circular test. Solution: The circular test is satisfied when $$P_{01} \times P_{12} \times P_{20} = 1$$ According to Fisher's Ideal Index, $$P_{01} = \sqrt{\frac{\sum p_1 q_0}{\sum p_0 q_0}} \times \frac{\sum p_1 q_1}{\sum p_0 q_1} \dots (i)$$ Interchanging time 0 to 1 and 1 to 2 $$P_{10} = \sqrt{\frac{\sum p_2 q_1}{\sum p_1 q_1}} \times \frac{\sum p_2 q_2}{\sum p_1 q_2} \qquad ...(ii)$$ Again, interchanging 1 to 2 and 2 to 0 $$\tilde{P}_{20} = \sqrt{\frac{\sum p_0 q_2}{\sum p_2 q_2} \times \frac{\sum p_0 q_0}{\sum p_2 q_0}} \quad ...(iii)$$ Multiplying (i), (ii) and (iii), we have $$P_{01} \times P_{12} \times P_{20} = \sqrt{\frac{\sum p_1 q_0}{\sum p_0 q_0}} \times \frac{\sum p_1 q_1}{\sum p_0 q_1} \times \sqrt{\frac{\sum p_2 q_1}{\sum p_1 q_1}} \times \frac{\sum p_2 q_2}{\sum p_1 q_2} \times \sqrt{\frac{\sum p_0 q_2}{\sum p_2
q_2}} \times \frac{\sum p_0 q_0}{\sum p_2 q_2} \neq 1$$ Since $P_{01} \times P_{12} \times P_{20} \neq 1$, the Fisher's formula does not satisfy circular test. 22. Calculate Fisher's Ideal Index from the following data and show that it satisfies both the time reversal and factor reve | ommodity | | 1983 | 1984 | | | |----------|-------|-------------|-------|-------------|--| | | Price | Expenditure | Price | Expenditure | | | A | - 8 | 80 | 10 | 120 | | | В | 10 | 120 | 12 | 96 | | | C | 5 | 40 | 5 | 50 | | | D | 4 | 56 | 3 | 60 | | | E | 20 | 100 | 25 | 150 | | Since we are given the expenditure and the price, we can obtain quantity figure by dividing total expenditure by price for each commodity. We can then apply Fisher's Ideal Formula: Calculation of Fisher's Ideal Index | | 1983 | | 1983 1984 | | | | Manager | 201 | |-----------|------|----|-----------------------|-------|------------------------------|----------------------|--|------| | Commodity | | 90 | <i>p</i> ₁ | q_1 | $p_1 q_0$ | $p_0 q_0$ | $p_1 q_1$ | 900 | | | P0 8 | 10 | 10 | 12 | 100 | 80 | 120 | Po 9 | | A | 10 | 12 | 12 | 8 | 144 | 120 | 96 | 8 | | В | 5 | 8 | 5 | 10 | 40 | 40 | 50 | 5 | | C | 1 | 14 | 3 | 20 | 42 | 56 | 60 | 8 | | D | 20 | 5 | 25 | 6 | 125 | 100 | 150 | 1 | | E | 20 | | | - | $\sum_{p_1q_0} p_1q_0 = 451$ | $\sum p_0 q_0 = 396$ | $\begin{array}{c} \Sigma p_1 q_1 \\ = 476 \end{array}$ | Σ | By Fisher's Formula: $$P_{01} = \sqrt{\frac{\Sigma p_1 q_0}{\Sigma p_0 q_0}} \times \frac{\Sigma p_1 q_1}{\Sigma p_0 q_1} \times 100$$ $$= \sqrt{\frac{451}{396}} \times \frac{476}{426} \times 100 = \sqrt{\frac{214676}{168696}} \times 100$$ $$= \sqrt{1.2726} \times 100 = 112.8$$ Time Reversal Test: $P_{01} \times P_{10} = 1$ rersal Test: $$P_{01} \times P_{10} = 1$$ $$P_{01} = \sqrt{\frac{\sum p_1 q_0}{\sum p_1 q_0}} \times \frac{\sum p_1 q_1}{\sum p_0 q_1} \text{ and } P_{10} = \sqrt{\frac{\sum p_0 q_1}{\sum p_1 q_1}} \times \frac{\sum p_0 q_0}{\sum p_1 q_0}$$ $$P_{01} \times P_{10} = \sqrt{\frac{\sum p_1 q_0}{\sum p_0 q_0}} \times \frac{\sum p_1 q_1}{\sum p_0 q_1} \times \frac{\sum p_0 q_1}{\sum p_1 q_1} \times \frac{\sum p_0 q_0}{\sum p_1 q_0}$$ $$= \sqrt{\frac{451}{396}} \times \frac{476}{426} \times \frac{426}{476} \times \frac{396}{451} = \sqrt{1} = 1$$ me reversal test is satisfied. Hence, time reversal test is satisfied. Factor Reversal Test: $$P_{01} \times Q_{01} = \frac{\sum p_1 q_1}{\sum p_0 q_0}$$ $$P_{01} = \sqrt{\frac{\Sigma p_1 q_0}{\Sigma p_0 q_0}} \times \frac{\Sigma p_1 q_1}{\Sigma p_0 q_1} \text{ and } Q_{01} = \sqrt{\frac{\Sigma q_1 p_0}{\Sigma q_0 p_0}} \times \frac{\Sigma q_1 p_1}{\Sigma q_0 p_1}$$ $$\begin{split} P_{01} \times Q_{01} &= \sqrt{\frac{\Sigma p_1 q_0}{\Sigma p_0 q_0}} \times \frac{\Sigma p_1 q_1}{\Sigma p_0 q_1} \times \frac{\Sigma q_1 p_0}{\Sigma q_0 p_0} \times \frac{\Sigma q_1 p_1}{\Sigma q_0 p_1} \\ &= \sqrt{\frac{451}{396}} \times \frac{476}{426} \times \frac{426}{396} \times \frac{476}{451} = \sqrt{\frac{476 \times 476}{396 \times 396}} = \frac{476}{396} = \frac{\Sigma p_1 q_1}{\Sigma p_0 q_0} \end{split}$$ The factor reversal test is satisfied. Hence, the factor reversal test is satisfied. # INPORTANT TYPICAL EXAMPLES frample 23. Calculate Price Index for the year 1996 from the following data | Commodity | | data. Ose geometric mea | |-----------|-----------------------------|-----------------------------| | Commodity | Average Price 1990
(Rs.) | Average Price 1996
(Rs.) | | A | 16.1 | 14.2 | | В | 9.2 | 8.7 | | C | 15.1 | 12.5 . | | D | 5.6 | | | E | 11.7 | 4.8 | | F | | 13.4 | | F | 100 | 117 | Now reverse the base (taking 1996 as base) and show that the two results are strictly (i) Calculationof index number for the year 1996 with 1990 as base year using | Commodity | Average Price
1990 (Rs.) | Average Price
1996 (Rs.)
P1 | Price Relatives $\left(\frac{p_1}{p_0} \times 100\right) = P$ | log P | |-----------|-----------------------------|-----------------------------------|---|---------------------------| | A | 16.1 | 14.2 | $\frac{14.2}{16.1} \times 100 = 88.20$ | 1.9455 | | B sheet | 9.2 | 8.7 | $\frac{8.7}{9.2} \times 100 = 94.57$ | 1.9757 | | C carten | 15.1 | 12.5 | $\frac{12.5}{15.1} \times 100 = 82.78$ | 1.9179 | | D | 5.6 | 4.8 ' | $\frac{4.8}{5.6} \times 100 = 85.71$ | 1.9331 | | E | 11.7 | 13.4 | $\frac{13.4}{117} \times 100 = 114.53$ | 2.0589 | | F | 100 | 117 | $\frac{117}{100} \times 100 = 117.00$ | 2.0682 | | N = 6 | | - | | $\Sigma \log P = 11.8993$ | $$P_{01} \text{ for } 1996 = \text{Antilog}\left(\frac{\sum \log P}{N}\right) = \text{Antilog}\left(\frac{11.8993}{6}\right) = \text{Antilog}\left(1.9832\right) = 96.20$$ | Commodity | Average Price
1996 (Rs.) | Average Price
1990 (Rs.) | Price Relatives $\left(\frac{p_1}{p_0} \times 100\right) = P$ | log P | |-----------|-----------------------------|-----------------------------|---|-------------------------| | A | 14.2 | 16.1 | $\frac{16.1}{14.2} \times 100 = 113.38$ | 2.0545 | | В | 8.7 | 9.2 | $\frac{9.2}{8.7} \times 100 = 105.75$ | 2.0242 | | С | 12.5 | 15.1 | $\frac{15.1}{12.5} \times 100 = 120.80$ | 2.0820 | | D | 4.8 | 5.6 | $\frac{5.6}{4.8} \times 100 = 116.67$ | 2.0669 | | E | 13.4 | 11.7 | $\frac{11.7}{13.4} \times 100 = 87.31$ | 1.9410 | | F | 117 | 100 | $\frac{100}{117} \times 100 = 85.47$ | 1.9318 | | N = 6 | | | | $\Sigma \log P = 12.10$ | $$P_{10} \text{ for } 1990 = \text{Antilog}\left(\frac{\sum \log P}{N}\right)$$ $$= \text{Antilog}\left(\frac{12.1004}{6}\right)$$ Two results are strictly consistent as they satisfy the time reversal test i.e. $$P_{01} \times P_{10} = \frac{96.2}{100} \times \frac{103.928}{100} = 1 \text{ [approx.]}$$ Note: If the simple index numbers are computed for the same data relating to two periods using G.M. but with the bases reversed, then the product of the two index number should be equal to unity. This implies that the index number calculates on the basis of G.M. satisfies TRT. Example 24. Show with the help of the following data the index number calculated on the basis of A.M. does not satisfy the circular test, whereas that by geometric mean method of averaging satisfies it. | Commodity | Price | | | | |-----------|-------|------|----|--| | | 2000 | 2001 | 1 | | | A | 20 | 30 | | | | В | 30 | 36 | | | | С | 20 | 30 | | | | D | 12 | 15 | -4 | | Circular test is satisfied when $P_{01} \times P_{12} \times P_{20} = 1$ Calculation of P_{01} , P_{12} and P_{20} | Commodity | Price | | | Price Relatives | | | _ | | | |-----------|-------|----------------------|--------|-------------------------|-----------------------|-------------------------|--------|---------------------|---------| | | 2000 | 2001 | 2002 | P ₀₁ | P ₁₂ | P ₂₀ | les d | | | | A | 20 | 30 | 40 | 150.0 | 133.3 | 50.0 | | log p ₁₂ | log P20 | | В | 30 | 36 | 45 | 120.0 | 125.0 | | 2.1761 | 2.1249 | 1.6990 | | | 20 | 30 | 50 | 150.0 | 166.7 | 66.7 | 2.0792 | 2.0969 | 1.8241 | | С | 12 | 15 | 30 | | | 40.0 | 2.1761 | 2.2219 | 1:6021 | | D | 12 | 13 | 30 | 125.0 | 200.0 | 40.0 | 2.0969 | 2.3010 | 1.6021 | | N = 4 | Par. | Learning of the same | Will I | $\Sigma p_{01} = 545.0$ | $\Sigma p_{12} = 625$ | $\Sigma p_{20} = 196.7$ | 8.5283 | 8.7447 | 6.7273 | Index numbers calculated on the basis of A.M. $$P_{01} = \frac{545}{4} = 136.25$$ $$P_{01} = \frac{625}{4} = 156.25$$ $$P_{01} = \frac{196.7}{4} = 49.18$$ $$P_{01} \times P_{12} \times P_{20} = \frac{136.25}{100} \times \frac{156.25}{100} \times \frac{49.18}{100}$$ $$= 1.3625 \times 1.5625 \times 0.4918 \neq 1$$ (Omitting 100) Thus, the index numbers based on simple arithmetic mean do not satisfy circular test. Index numbers calculated on the basis of G.M. $$P_{01} = \text{Antilog} \left[\frac{8.5283}{4} \right] = \text{Antilog} \left[2.1321 \right] = 135.5$$ $$P_{12} = \text{Antilog} \left[\frac{8.7447}{4} \right] = \text{Antilog} \left[2.1862 \right] = 153.6$$ $$P_{20} = \text{Antilog} \left[\frac{6.7273}{4} \right] = \text{Antilog} \left[1.6818 \right] = 48.06$$ $$P_{01} \times P_{12} \times P_{20} = \frac{135.5}{100} \times \frac{153.6}{100} \times \frac{48.06}{100}$$ $$= 1.355 \times 1.536 \times 0.4806$$ $$= 1$$ (Omitting 100) Thus; Index numbers based on G.M. satisfies the circular test. # **EXERCISE 3.5** XERCISE 3.3 1. Calculate Laspeyre's, Paasche's, Marshall-Edgeworth's and Fisher's price index numbers 1. Calculate Laspeyre's, Paasche's, Marshall-Edgeworth's and Fisher's price index numbers | following | 1 | 980 | 1985 | | | |-----------|--------------|-------------|------------|-----|--| | Items | Price (Rs) | Expenditure | Price (Rs) | Exp | | | | Frice (i.e.) | 50 | 6 | | | | A | 3 | 84 | 10 | | | | В | 10 | 80 | 12 | | | | С | 10 | 20 | 5 | - | | | D | | 56 | 8 | | | Which of them satisfies time reversal and factor reversal tests. [Ans. 123.10, 120.42, 121.77, 121.96; TRT: Fisher and Marshall; FRT: Fisher] 2. From the following data, calculate quantity index numbers using: (i) Laspeyre's (ii) Paasche's and (iii) Fisher's methods. | Laspeyre's (| 1980 | | 1985 | | | |--------------|-------|-------|-------|-------|--| | Commodity | Price | Value | Price | Value | | | A | 50 | 350 | 60 | 540 | | | B | 20 | 80 | 30 | . 150 | | | C | 24 | 240 | 20 | 300 | | | D | 100 | 600 | 150 | 600 | | Which of the above method satisfy factor reversal test? [Ans. 103.14, 96.95, 99.99 approx.; Fisher's formula satisfy FRT] 3. With the help of the following data, show that the index number calculated on the basis of A.M. is not reversible while the Index number calculated on the basis of G.M. is reversible. | Make comparison between A | wi and Givi. | A CONTRACTOR OF THE PARTY TH | |---------------------------|---------------
--| | Commodity | Price in 1998 | Price in 1999 | | A | 40 | 60 | | В | 50 | 80 | | С | 20 | 40 | | D | 20 | 10 | [Ans. $P_{01} = 140$, $P_{10} = 94.79$ (using AM) $P_{01} = 124.45$, $P_{10} = 80.334$ (using G.M.) 4. Following are the values: Show that Fisher's method, Paasche's method and Marshall method either satisfy time reversal test and factor reversal test or do not satisfy both or one of them. [Ans. TRT: Fisher and Marshall, Paasche's does not satisfy any one, FRT: Fisher Marshall, Paasche's does not satisfy any one, TRT: Fisher and Marshall, Paasche's does not satisfy any one, TRT: Fisher and Marshall, Paasche's does not satisfy any one, TRT: Fisher and Marshall, Paasche's does not satisfy any one, TRT: Fisher and Marshall, Paasche's does not satisfy any one, TRT: Fisher and Marshall, Paasche's does not satisfy any one, TRT: Fisher and Marshall, Paasche's does not satisfy any one, TRT: Fisher and Marshall, Paasche's does not satisfy any one, TRT: Fisher and Marshall method either satisfy time. MISCELLANEOUS SOLVED EXAMPLES Compute a price index for the following by (i) simple aggregative method (ii) average of price relatives method by using both arithmetic mean and general price index of price relatives method by using both arithmetic mean and general price index of price relatives method (ii) average | Commodity | A | В | С | D | F | | |-------------------|----|------|----|-----|----|----| | in 1971 (Rs.): | 20 | 30 | 10 | 25 | - | | | ce in 1981 (Rs.): | 25 | 30 | 16 | 2.5 | 40 | 50 | | | | - 50 | 13 | 35 | | | | Commodity | P_0 | p_1 | $P = \frac{p_1}{p_0} \times 100$ | log P | |-----------|--------------------|--------------------|----------------------------------|-------------------| | Α | 20 | 25 | 125 | 2.0969 | | В | 30 | 30 | 100 | 2.0000 | | С | 10 | 15 | 150 | 2.1761 | | D | 25 | 35 | 140 | 2.1461 | | Е | 40 | 45 | 112.5 | 2.0512 | | F | 50 | . 55 | 110 | 2.0414 | | N = 5 | $\Sigma p_0 = 175$ | $\Sigma p_1 = 205$ | $\Sigma P = 737.5$ | Σ log P = 12.5117 | (i) Index number by using Simple Aggregative Method: $$P_{01} = \frac{\Sigma p_1}{\Sigma p_0} \times 100 = \frac{205}{175} \times 100 = 117.14$$ (ii) Index number by using Average of Price Relatives: (a) Using A.M. $$P_{01} = \frac{\Sigma \left(\frac{P_1}{P_0} \times 100\right)}{N} = \frac{\Sigma P}{N} = \frac{737.5}{6} = 122.92$$ (b) Using G.M. $P_{01} = \text{Antilog}\left[\frac{\Sigma \log P}{N}\right] = \text{Antilog}\left[\frac{12.5117}{6}\right]$ (b) Using G.M. $$P_{01} = \text{Antilog}\left[\frac{\Sigma \log P}{N}\right] = \text{Antilog}\left[\frac{12.5117}{6}\right]$$ = Antilog [2.0853] = 121.7 = Antilog [2.0853] = 121.7 = Antilog [2.0853] = 121.7 Prepare Index Number of prices for three years with average price as base from the data given below by simple average of price relative method using A.M. | | Rate per rupee
Commodities | | | | | |----|-------------------------------|----------|--------|--|--| | 1 | A | В | С | | | | 1 | 4 kg | 2 kg | 1 kg | | | | 11 | · 2.5 kg | 1.6 kg. | 1 kg | | | | | 2 kg | 1.25 kg. | 0.8 kg | | | #### 212 Since we are given quantity prices (i.e., rate per rupee), first we convert these Solution: | oney price | es (i.e., rate per quite
First Year | Second Year | Third Year | |------------|--|---|-------------------------------------| | A | 100 = Rs. 25 per Qtl | $\frac{100}{2.5} = \text{Rs. 40 per Qtl}$ | $\frac{100}{2} = \text{Rs. 50 per}$ | | В | $\frac{100}{2} = \text{Rs. } 50 \text{ per Qtl}$ | $\frac{100}{1.6}$ =Rs. 62.5 per Qtl | $\frac{100}{1.25}$ =Rs. 80 per | | C 1 | 2
100 =Rs. 100 per Qtl | $\frac{100}{1}$ =Rs. 100 per Qtl | $\frac{100}{0.8}$ =Rs. 125 per | Then we determine the average price as follows: Average Price of A = $$\frac{25 + 40 + 50}{3} = 38.3$$ Average Price of B = $$\frac{50 + 62.5 + 80}{3} = 64.2$$ Average Price of C = $$\frac{3}{3}$$ Average price of C = $\frac{100 + 100 + 125}{3} = 108 \cdot 3$ With average price as base, we compute the price relative (P) and then find the | Commodity Unit | Unit | it Average | Fi | rst year | Second year | | Third year | | |----------------|---------------------|--------------------------------------|-----|--------------------|-------------|--------------------|------------|--------------------| | | price (100)
Base | Price | P | Price | P | Price | P | | | Α | 100 kg | 38.3 | 25 | 65.3 | 40 | 104.4 | 50 | 130.5 | | В | 100 kg | 64.2 | 50 | 77.9 | 62.5 | 97.4 | . 80 | 124.6 | | С | 100 kg | 108.3 | 100 | 92.3 | 100 | 92.3 | 125 | 115.4 | | Tota | of Rela | tives | | $\Sigma P = 235.5$ | | $\Sigma P = 294.1$ | | $\Sigma P = 370.5$ | | Average o | f Relativ | es $\left(\frac{\Sigma P}{N}\right)$ | Ŧ | 78.5 | 18,0 | 98.03 | 100 | 123.5 | Thus, Index No. for Ist year = 78.5 2nd year = 98.03 3rd year = 123.5 ber by using Mean Example 27. Find out inde | Group | 1985 | 1986 | 1987 | |-------|------|------|------| | Α - | 6 | 12 | 24 | | В | 9 | 15 | 30 | | C . | 15 | 21 | 36 | | D | 21 | 27 | 42 | | E | 24 | 36 | 54 | Construction of Index Number Using Dies | | colut | U | |---|-------|---| | ŀ | 30 | | | | | | | Group | | 985 | | 1986 | T | Avera | | | |--|-------------------------|---------------------------|-------------------------|---------------------------|---------|------------|----------------------------|--------| | | Price (p ₀) | Price
Relatives
(P) | Price (p ₁) | Price
Relatives
(P) | log P | Price (P2) | 1987
Price
Relatives | log P | | | 6 | 100 | 12 | 200.00 | | - 2 | (P) | | | A | 9 | 100 | | | 2.3010 | . 24 | 400.00 | 2.6021 | | В | - | | 15 | 166.67 | 2.2217 | 30 | 1333,33 | 2.5228 | | С | 15 | 100 | 21 | 140.00 | 2.1461 | 36 | 240.00 | - | | - D | 21 | 100 | 27 | 128.57 | 2.1089 | 42 | | 2.3802 | | Е | 24 | 100 | 36 | 150.00 | 2.1761 | 54 | 200.00 | 2.3010 | | Total | 10 | 500 | _ | .785.24 | | - | 225.00 | 2.3522 | | Total | | | | .783.24 | 10.9538 | - | 1398.33 | 12.158 | | A.M. of Price
Relatives (ΣΡ/N) | 1 | 100 | - | 157.05 | - | - | 279.67 | 3 | | Median of Price Relatives $(M = \frac{N+1}{2})$ | = | 100 | - | 150.00 | Ī | F | 240.00 | - | | G.M. of Price
Relatives
[Antilog $(\Sigma \frac{\log P}{N})$] | Ī | 100 | | | 155.2 | - | - | 270. | Example 28. The price paid and quantities purchased by a household in base and current years are given below. Calculate the additional dearness allowance to be given to the household so as to fully compensate it for the price rise, using both the Laspeyre's and Paasche's index numbers. | 10 | Base | Period | Curren | nt Period | |-----------|-------|----------|--------|-----------| | Commodity | Price | Quantity | Price | Quantity | | A | 30 | 10 | 40 | 8 | | В | 12 | 20 | 15 | 18 | Laspeyre's Index Number $$= \frac{\Sigma p_1 \ q_0}{\Sigma p_0 \ q_0} \times 100$$ $$= \frac{40 \times 10 + 20 \times 15}{30 \times 10 + 12 \times 20} \times 100 = \frac{400 + 300}{300 + 240} \times 100$$ $$= \frac{700}{540} \times 100 = 129.63$$ Additional dearness allowance to be paid = 29.63% $$\begin{aligned} \text{Paasche's index number} &= \frac{\sum p_1 \ q_1}{\sum p_0 \ q_1} \times 100 = \frac{40 \times 8 + 15 \times 18}{30 \times 8 + 12 \times 18} \times 100 = \frac{320 + 270}{240 + 216} \times 100 \\ &= \frac{590}{450} \times 100 = 129.386 \end{aligned}$$ Additional dearness allowance to be paid = 29.386% ulate by suitable method, the index number of price from the following Example 29 | ommodity | 1 | 977 | 1 | 987 | |----------|-------|----------|---------|-----| | mmounty | Price | Quantity | Price · | - | | | 8 | 10 | 10 | | | A | 10 | 9 | 12 | | | В | 16 | 16 | 20 | - | Since we are given the base year and current year price and quantity, Fisher's Ideal. Index shall be the most suitable. | Commodity | P ₀ | q_0 | p_1 | q_1 | $p_0 q_0$ | $p_1 q_0$ | $P_0 q_1$ | $p_1 q_1$ |
-----------|----------------|-------|-------|-------|----------------------|----------------------|------------------------|--------------------------------| | A | 8 | 10 | 10 | 11 | 80 | 100 | 88 | 110 | | В | 10 | 9 | 12 | 9 | 90 | 108 | 90 | 108 | | C | 16 | 16 | 20 | 17 | 256 | 320 | 272 | 340 | | | | | | | $\sum p_0 q_0 = 426$ | $\sum p_1 q_0$ = 528 | $\sum_{p_0} q_1$ = 450 | Σρ ₁ q ₁ | Fisher's Ideal Formula is given by Formula is given by $$P_{01} = \sqrt{\frac{\sum p_1 q_0}{\sum p_0 q_0}} \times \frac{\sum p_1 q_1}{\sum p_0 q_1} \times 100$$ $$= \sqrt{\frac{528}{426}} \times \frac{558}{450} \times 100 = \sqrt{\frac{294624}{191700}} \times 100$$ $$= \sqrt{1.53690} \times 100 = 1.2397 \times 100 = 123.97$$ Example 30. Calculate Laspeyre's, Paasche's and Fisher's Ideal Index for the following data: | Commodity | | 1970 | 1990 | | | |-----------|-------|-------------|-------|-----------|--| | 1 | Price | Expenditure | Price | Expenditu | | | . A | 8 | 100 | . 10 | 90 | | | В | 10 | 60 | 11 | 66 | | | С | 5 | 100 | 5 | 100 | | | D | . 3 | 30 | 2 | 24 | | | E | 2 | 0 | 4 | 20 | | With the help of these data, show which of the above index number satisfies time and factor reversal test. Since we are given the expenditure and the price, we can obtain the quantity-figure by dividing total expenditure by price for each commodity. We can then apply the | modity | p_0 | q_0 | p_1 | q_1 | $P_0 q_0$ | | | | |--------|-------|-------|-------|-------|------------------------|-------------------------------|------------------------|-------------------| | A | 8 | 12.5 | 10 | 9 | 100 | P ₁ q ₀ | $P_0 q_1$ | $p_1 q_1$ | | В | 10 | 6 | 11. | 6 | 60 | 66 | 72 | 90 | | C | 5 | 20 | 5 | 20 | 100 | 100 | 60 | 66 | | D | 3 | 10 | 2 | 12 | 30 | 20 | 100 | 100 | | Е | 2 | 4 | 4 | 5 | - 8 | 16 | 36 | 24 | | | N 90 | e II | | 7 | $\sum p_i q_i = 200$ | | 10 | 20 | | 810 | 500 | | 100 | | $\Sigma p_0 q_0 = 298$ | $4p_1q_0 = 327$ | $\Sigma p_0 q_1 = 278$ | $\Sigma n a = 30$ | Laspeyre's Method: $$P_{01} = \frac{\Sigma p_1 q_0}{\Sigma p_0 q_0} \times 100 = \frac{327}{298} \times 100 = 109.73$$ Paasche's Method: $$P_{01} = \frac{\sum p_1 q_1}{\sum p_0 q_1} \times 100 = \frac{300}{278} \times 100 = 107.91$$ Fisher's Method: $$P_{01} = \sqrt{\frac{\sum p_1 q_0}{\sum p_0 q_0}} \times \frac{\sum p_1 q_1}{\sum p_0 q_1} \times 100$$ $$= \sqrt{\frac{327}{298} \times \frac{300}{278}} \times 100 = \sqrt{\frac{98100}{82844}} \times 100$$ $$= \sqrt{1.18415} \times 100$$ $$= 1.0881 \times 100 = 108.81$$ ### Time Reversal Test Time reversal test is satisfied when $P_{01} \times P_{10} = 1$ Laspeyre's Index No. $$P_{01} = \frac{\sum p_1 q_0}{\sum p_0 q_0} = \frac{327}{298}$$ $$P_{10} = \frac{\sum p_0 q_1}{\sum p_1 q_1} = \frac{278}{300}$$ $$P_{01} \times P_{10} = \frac{327}{298} \times \frac{278}{300} \neq 1$$ Thus, Laspeyre's Index does not satisfy TRT. $$P_{10} = \frac{2P_0 q_0}{\sum p_1 q_0} = \frac{2.27}{327}$$ $$P_{01} \times P_{10} = \frac{300}{278} \times \frac{298}{327} \neq 1$$ Thus, Paasche's Index does not satisfy TRT. Fisher's Ideal Index: $$\begin{aligned} & \text{pol Index:} \\ & P_{01} = \sqrt{\frac{\sum p_1 q_0}{\sum p_0 q_0}} \times \frac{\sum p_1 q_1}{\sum p_0 q_1} = \sqrt{\frac{327}{298}} \times \frac{300}{278} \\ & P_{10} = \sqrt{\frac{\sum p_0 q_1}{\sum p_1 q_1}} \times \frac{\sum p_0 q_0}{\sum p_1 q_0} = \sqrt{\frac{278}{300}} \times \frac{298}{327} \\ & P_{01} \times P_{10} = \sqrt{\frac{327}{298}} \times \frac{300}{278} \times \frac{278}{300} \times \frac{298}{327} = 1 \end{aligned}$$ Thus, Fisher's Ideal Index satisfies TRT. Factor Reversal Test Factor Reversal Test $\text{Factor reversal test is satisfied when } P_{01} \times \mathcal{Q}_{01} = \frac{\Sigma p_1 q_1}{\Sigma p_0 q_{\Phi}}$ Laspeyre's Index $$\begin{aligned} P_{01} &= \frac{\Sigma p_1 q_0}{\Sigma p_0 q_0} = \frac{327}{298} \\ Q_{01} &= \frac{\Sigma q_1 p_0}{\Sigma q_0 p_0} = \frac{278}{298} \\ P_{01} \times Q_{01} &= \frac{327}{298} \times \frac{278}{298} \neq \frac{\Sigma p_1 q_1}{\Sigma p_0 q_0} \end{aligned}$$ Thus, Laspeyre's Index does not satisfy FRT. Paasche's Index $$P_{01} = \frac{\sum p_1 q_1}{\sum p_0 q_1} = \frac{300}{278}$$ $$Q_{01} = \frac{\sum q_1 p_1}{\sum q_0 p_1} = \frac{300}{327}$$ 300 \(\Sigma p_1 q_1 \) $$P_{01} \times Q_{01} = \frac{300}{278} \times \frac{300}{327} \neq \frac{\sum p_1 q_1}{\sum p_0 q_0}.$$ Thus, Paasche's Indeed. Thus, Paasche's Index does not satisfy FRT. Fisher's Ideal Index $$\begin{split} P_{01} &= \sqrt{\frac{\Sigma}{\Sigma}} \frac{p_1 q_0}{p_0 q_0} \times \frac{\Sigma p_1 q_1}{\Sigma p_0 q_1} = \sqrt{\frac{327}{298} \times \frac{300}{278}} \\ \mathcal{Q}_{01} &= \sqrt{\frac{\Sigma}{\Sigma}} \frac{q_1 p_0}{q_0 p_0} \times \frac{\Sigma q_1 p_1}{\Sigma q_0 p_1} = \sqrt{\frac{278}{298} \times \frac{300}{327}} \\ P_{01} &\times \mathcal{Q}_{01} &= \sqrt{\frac{327}{298} \times \frac{300}{278} \times \frac{278}{298} \times \frac{300}{327}} \\ &= \frac{300}{298} = \frac{\Sigma p_1 q_1}{\Sigma p_0 q_0} \end{split}$$ $\sum_{q_1} q_1$, Fisher's Ideal Index satisfies FRT. Since, $P_{01} \times Q_{01} = \frac{\sum_{P_1} q_1}{\sum_{P_0} q_0}$ Example 31. It is stated that Marshall-Edgeworth index is a good approximation to the ideal index number. Verify using the following data: | Commodity | 19 | 970 | | 990 | |-----------|---------|----------|-------|----------| | | Price . | Quantity | Price | | | A | 5 | 100 | , | Quantity | | В | 4 | 80 | - 0 | 50 | | С | 2.5 | 60 | | 100 | | D | 12.0 | 30 | 3 . | 72 | | | 1 100 | 30 | 9 | 33 | Commodity 1970 p_0 q_0 P_1 q_1 P_0q_0 P_0q_1 p_1q_0 p_1q_1 A 5 100 6 50 500 250 600 300 В 4 80 5 100 320 400 400 500 C 2.5 60 5 72 150 180 300 360 D 12.0 30 9 33 360 396 270 297 Fisher's Index: $$\begin{split} \mathbf{P}_{01} &= \sqrt{\frac{\Sigma p_1 q_0}{\Sigma p_0 q_0}} \times \frac{\Sigma p_1 q_1}{\Sigma p_0 q_1} \times 100 \\ &= \sqrt{\frac{1570}{1330}} \times \frac{1457}{1226} \times 100 = 118.44 \end{split}$$ $$\begin{aligned} & \text{Marshall-Edgeworth Index:} \\ & P_{01} = \frac{\sum p_1 \left(q_0 + q_1\right)}{\sum p_0 \left(q_0 + q_1\right)} \times 100 = \frac{\sum p_1 q_0 + \sum p_1 q_1}{\sum p_0 q_0 + \sum p_0 q_1} \times 100 \\ & = \frac{1570 + 1457}{1330 + 1226} \times 100 = 118.42 \end{aligned}$$ The above calculations clearly show that the answer obtained by the Fisher's method and Marshall-Edgeworth's method is the same. and Marshall-Eageworm's invoiced to the price index number from the following date. Example 32. Using suitable formula construct the price index number from the following date. | Commodity | | 1990 | | 1995 | |-----------|-------|-------------|-------|------------| | Commounty | Price | Expenditure | Price | Expenditur | | A | 1.0 | 60.00 | 1.25 | 62.50 | | В | 1.50 | 37.50 | 2.50 | 50.00 | | C | 2.00 | 20.00 | 3.00 | 30.00 | | D | 12.00 | 36.00 | 18.00 | 72.00 | | E | 0.10 | 4.00 | 0.15 | 9.00 | Check whether it satisfies time reversal and factor reversal test. Solution: Since we are given the base year and current year price and expenditure, so Fisher's Ideal Formula shall be most suitable. | Commodity | p_0 | q_0 | P ₁ | q_1 | $p_0 q_0$ | $p_1 q_0$ | $P_0 q_1$ | $p_1 q_1$ | |-----------|-------|-------|----------------|-------|------------------------|--------------------------|----------------------|----------------------------| | _ A | 1.0 | 60 | 1.25 | 50 | 60 | 75 | - 50.0 | 62.50 | | В | 1.50 | 25 | 2.50 | 20 | 37.50 | 62.5 | 30.0 | 50.00 | | С | 2.00 | 10 | 3.00 | 10 | 20.00 | 30.0 | 20.0 | 30.00 | | D | 12.0 | 3 | 18.00 | 4 | 36.00 | 54.0 | 48.0 | 72.00 | | Е | 0.10 | 40 | 0.15 | 60 | 4.00 | 6.0 | 6.0 | 9.00 | | | | | | -61 | $\sum p_0 q_0$ = 157.5 | $\Sigma p_1 q_0 = 227.5$ | $\sum p_0 q_1 = 154$ | $\sum_{p_1q_1}q_1$ = 223.5 | Fisher's Ideal Index: $$P_{01} = \sqrt{\frac{\sum_{P_1} q_0}{\sum_{P_0} q_0}} \times \frac{\sum_{P_1} q_1}{\sum_{P_0} q_1} \times 100$$ $$= \sqrt{\frac{227.5}{157.5}} \times \frac{223.5}{154} \times 100 = \sqrt{\frac{50846.25}{24255}} \times 100$$ $$= \sqrt{2.0963} \times 100 = 144.8$$ Time Reversal Test Time Reversal Test $$TRT \text{ is said to be satisfied if } P_{01} \times P_{10} = 1$$ $$P_{01} = \sqrt{\frac{\Sigma p_1 q_0}{2p_0 q_0}} \times \frac{\Sigma p_1 q_1}{\Sigma p_0 q_1} = \sqrt{\frac{227.5}{157.5}} \times \frac{223.5}{154}$$ $$P_{10} = \sqrt{\frac{\Sigma p_0 q_1}{2p_1 q_1}} \times \frac{\Sigma p_0 q_0}{\Sigma p_1 q_0} = \sqrt{\frac{154}{223.5}} \times \frac{157.5}{227.5}$$ $$P_{01} \times P_{10} = \sqrt{\frac{227.5}{157.5}} \times \frac{213.5}{157.5} \times \frac{154}{223.5} \times \frac{157.5}{227.5}$$ The relation of formula satisfies time are set of the results res Thus, Fisher's formula satisfies time reversal test. Factor Reversal Test FRT is said to be satisfied if $$P_{01} \times Q_{01} = \frac{\sum p_1 q_1}{\sum p_0 q_0}$$ $$\begin{split} P_{01} &= \sqrt{\frac{\Sigma p_1 q_0}{\Sigma p_0 q_0}} \times \frac{\Sigma p_1 q_1}{\Sigma p_0 q_0} = \sqrt{\frac{227.5}{157.5} \times \frac{223.5}{154}} \\ \mathcal{Q}_{01} &= \sqrt{\frac{\Sigma q_1 p_0}{\Sigma q_0 p_0}} \times \frac{\Sigma q_1 p_1}{\Sigma q_0 p_0} = \sqrt{\frac{154}{157.5} \times \frac{223.5}{227.5}} \\ P_{01} &\times \mathcal{Q}_{01} &= \sqrt{\frac{227.5}{157.5} \times \frac{223.5}{154}} \times \frac{154}{157.5} \times \frac{223.5}{227.5} \end{split}$$ $$Q_{01} = \sqrt{\frac{\sum q_1 p_0}{\sum q_0 p_0}} \times \frac{\sum q_1 p_1}{\sum q_0 p_1} = \sqrt{\frac{154}{157.5}} \times \frac{223.5}{227.5}$$ $$P_{01} \times Q_{01} = \sqrt{\frac{227.5}{157.5}} \times \frac{223.5}{154} \times \frac{154}{157.5} \times \frac{223.5}{227.5}$$ $$P_{01} \times Q_{01} = \frac{223.5}{157.5} = \frac{\sum p_1 q_1}{\sum p_0 q_0}$$ As $P_{01} \times Q_{01} = \frac{\Sigma p_1 q_1}{\Sigma p_0 q_0}$, Fisher's Ideal Formula satisfies factor reversal test. Example 33. From the data given below, show that Laspeyre's, Paasche's and Fisher's Index numbers do not satisfy the circular test: | Commodity | 1 | 995 | 1 | 996 | 1997 | | | |-----------
----------------|-----|-------|----------|-------|----------|--| | | Price Quantity | | Price | Quantity | Price | Quantity | | | A | 1 | . 7 | 4 | 13 | 5 | 10 | | | В | 2 | 6 | 9 | 7 | 8 | 4 | | | С | 3 4 | 8 | 11 | 4 | 10 | 2 | | Solution | Commodity | Po | q_0 | $p_{\rm I}$ | q_1 | P ₂ | q_2 | $p_0 q_0$ | $p_0 q_1$ | $p_0 q_2$ | $p_1 q_0$ | $P_1 q_1$ | $p_1 q_2$ | $p_2 q_0$ | P2 91 P2 92 | |-----------|----|-------|-------------|-------|----------------|-------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-------------| | | - | 7 | 4 | 13 | 5 | 10 | 7 | 13 | 10 | 28 | 52 | 40 | 35 | | | A | 2 | 6 | 9 | 7 | 8 | 4 | 12 | 14 | 8 | 54 | 63 | 36 | 48 | 65 50 | | B C | 4 | 8 | 11 | 4 | 10 | 2 | 32 | 16 | 8 | 88 | 44 | 22 | 80 | 56 32 | | | | | | | | | 51 | 43 | 26 | 170 | 159 | 98 | 163 | 161 102 | Laspeyre's Index Number peyre's Index Number $$P_{01} \times P_{12} \times P_{20} = 1 \text{ (omitting factor 100 from each index)}$$ $$P_{01} = \frac{\sum_{P_1} q_0}{\sum_{P_2} q_0} = \frac{170}{51}$$ $$P_{01} = \frac{\sum p_1 q_0}{\sum p_0 q_0} = \frac{170}{51}$$ $$P_{12} = \frac{\sum p_2 q_1}{\sum p_1 q_1} = \frac{161}{159}$$ $$P_{20} = \frac{\sum p_0 q_2}{\sum p_2 q_2} = \frac{26}{102}$$...(iii) $$P_{01} \times P_{12} \times P_{20} = \frac{\sum_{p_1} q_0}{\sum_{p_2} q_0} \times \frac{\sum_{p_2} q_1}{\sum_{p_1} q_1} \times \frac{\sum_{p_2} q_2}{\sum_{p_2} q_2} = \frac{170}{51} \times \frac{161}{159} \times \frac{26}{102} \neq 1$$ Thus, Laspeyre's index does not satisfy circular test. #### Paasche's Index Number $$P_{01} \times P_{12} \times P_{20} = 1$$ (omitting factor 100 from each index) $P_{01} = \frac{2p_1q_1}{\sum p_0q_1} = \frac{159}{43}$ $$P_{01} = \frac{\sum p_1 q_1}{\sum p_0 q_1} = \frac{159}{43}$$ $$P_{12} = \frac{\sum_{p_1} q_2}{\sum_{p_1} q_2} = \frac{102}{98} \qquad ...(ii)$$ $$P_{20} = \frac{\sum p_0 q_0}{\sum p_2 q_0} = \frac{51}{163}$$ $$P_{01} \times P_{12} \times P_{20} = \frac{\sum p_1 q_1}{\sum p_0 q_1} \times \frac{\sum p_2 q_2}{\sum p_1 q_2} \times \frac{\sum p_0 q_0}{\sum p_2 q_0} = \frac{159}{43} \times \frac{102}{98} \times \frac{51}{163} \neq 1$$ Thus Possible 1 and 1 and 2 and 2 and 3 Thus, Paasche's index does not satisfy circular test. # Fisher's Ideal Index Number $$P_{01} \times P_{12} \times P_{20} = 1$$ (omitting factor 100 from each index) $$P_{01} = \sqrt{\frac{\sum p_1 q_0}{\sum p_0 q_0}} \times \frac{\sum p_1 q_1}{\sum p_0 q_1} = \sqrt{\frac{170}{51}} \times \frac{159}{43}$$...(i) $$P_{12} = \sqrt{\frac{\sum p_2 q_1}{\sum p_1 q_1}} \times \frac{\sum p_2 q_2}{\sum p_1 q_2} = \sqrt{\frac{161}{159}} \times \frac{102}{98}$$...(i) $$P_{20} = \sqrt{\frac{\Sigma p_0 q_2}{\Sigma p_2 q_2}} \times \frac{\Sigma p_0 q_0}{\Sigma p_2 q_0} = \sqrt{\frac{26}{102}} \times \frac{51}{163}$$...(iii) $$P_{01} \times P_{12} \times P_{20} = \sqrt{\frac{170}{51} \times \frac{159}{43} \times \frac{161}{159} \times \frac{102}{98} \times \frac{26}{102} \times \frac{51}{163}} \neq 1$$ Thus, Fisher's ideal index does not satisfy the circular test. Hence, we conclude that none of these satisfy the circular test. none of the fisher's Ideal Index number from given data. Does it satisfy the time reversal and factor reversal test. | Commodity | 199 | 5 | | | |-----------|---|----------|-------|----------| | | Price | Quantity | | 996 | | Α | 6 | 50 | Price | Quantity | | n i | 2 | | / 10 | 56 | | В | 2 | 100 | 2 | 120 | | C | 4 4 | 60 | 6 | 60 | | D | 110 | 30 | 12 | | | E | 8 | 40 | | 24 | | | 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | | 12 | 36 | ···(i) ...(ii) ...(i) ...(iii) | Commodity | p_0 | q_0 | p_1 | q_1 | $p_0 q_0$ | $p_1 q_0$ | $p_0 q_1$ | р а | |-----------|---|-------|-------|-------|-------------------------|----------------------|-----------------------|--| | Α | 6 | 50 | 10 | 56 | 300 | 500 | 336 | p ₁ q ₁ | | В | 2 | 100 | 2 | 120 | 200 | 200 | 240 | 240 | | C | 4 | 60 | 6 | 60 | 240 | 360 | 240 | 360 | | D | 10 | 30 | 12 | 24 | 300 | 360 | 240 | 288 | | E on | 8 | 40 | 12 | 36 | 320 | 480 | 288 | 432 | | | Personal Property of the Party | | | - | $\sum p_0 q_0$
=1360 | $\sum_{p_1 q_0} q_0$ | $\sum p_0 q_1 = 1344$ | Σp ₁ q ₁
=188 | $$P_{01} = \sqrt{\frac{\sum p_1 q_0}{\sum p_0 q_0}} \times \frac{\sum p_1 q_1}{\sum p_0 q_1} \times 100$$ $$= \sqrt{\frac{1900}{1360}} \times \frac{1880}{1344} \times 100$$ $$= \sqrt{1.397 \times 1.398} \times 100 = \sqrt{1.953} \times 100 = 139.75$$ Time Reversal Test $$P_{01} = \sqrt{\frac{\sum p_1 q_0}{\sum p_0 q_0}} \times \frac{\sum p_1 q_1}{\sum p_0 q_1} = \sqrt{\frac{1900}{1360}} \times \frac{1880}{1344}$$ $$P_{10} = \sqrt{\frac{\sum p_0 q_0}{\sum p_1 q_1}} \times \frac{\sum p_0 q_1}{\sum p_0 q_0} = \sqrt{\frac{1344}{1880}} \times \frac{1360}{1900}$$ $$P_{01} \times P_{10} = \sqrt{\frac{1900}{1360}} \times \frac{1880}{1344} \times \frac{1344}{1880} \times \frac{1360}{1900}$$ Thus, Fisher's Ideal Formula satisfies time reversal test. Factor Reversal Test FRT is said to be satisfied if $$P_{01} \times Q_{01} = \frac{\sum p_1 q_1}{\sum p_0 q_0}$$ Thus, Fisher's Ideal Foliman Statistics that Factor Reversal Test $$P_{01} = \sqrt{\frac{\sum p_1 q_0}{\sum p_0 q_0}} \times \frac{\sum p_1 q_1}{\sum p_0 q_0}$$ $$P_{01} = \sqrt{\frac{\sum p_1 q_0}{\sum p_0 q_0}} \times \frac{\sum p_1 q_1}{\sum p_0 q_1} = \sqrt{\frac{1900}{1360}} \times \frac{1880}{1344}$$ $$Q_{01} = \sqrt{\frac{\sum q_1 p_0}{\sum q_0 p_0}} \times \frac{\sum q_1 p_1}{\sum q_0 p_1} = \sqrt{\frac{1344}{1360}} \times \frac{1880}{1900}$$ $$P_{01} \times Q_{01} = \sqrt{\frac{1880}{1344}} \times \frac{1900}{1360} \times \frac{1344}{1360} \times \frac{1880}{1900}$$ $$\therefore P_{01} \times Q_{01} = \frac{1880}{1360} = \frac{\sum p_1 q_1}{\sum p_0 q_0}$$ Since $P_{0...} \times Q_{01} = \frac{\sum p_1 q_1}{\sum p_0 q_0}$. Fisher's ideal formula satisfies fax $$Q_{01} = \sqrt{\frac{-31P_0}{\Sigma q_0 p_0}} \times \frac{-31P_1}{\Sigma q_0 p_1} = \sqrt{\frac{1344}{1360}} \times \frac{160}{190}$$ $$P_{\text{ex}} \times Q_{\text{ex}} = \frac{1880}{1344} = \frac{\Sigma p_1 q_1}{1360}$$ Since $P_{01} \times Q_{01} = \frac{\sum p_1 q_1}{\sum p_0 q_0}$. Fisher's ideal formula satisfies factor reversal test. Example 35. Construct a cost of living index number from the following price relatives for the year 1985 and 1986 with 1982 as base giving weightage to the following groups in the proportion of 30, 8, 6, 4 and 2 respectively: | Group | 1982 | 1985 | 1986 | |----------|------|------|------| | Food | 100 | 114 | 116 | | Rent | 100 | 115 | 125 | | Clothing | 100 | 108 | 110 | | Fuel | 100 | 105 | 104 | | Misc. | 100 | 102 | 104 | Construction of Cost of Living I | | Price | Price | | ing Index | Number | | |--------------------|--|--|---|-----------|-----------------------|----------------------| | Group | relatives
for 1982
(P ₀) | relatives
for 1985
(P ₁) | Price
relatives
for 1986
(P ₂) | R | P ₁ W | P ₂ W | | Food | 100 | 114 | 116 | 30 | | 1 | | Rent | 100 | 115 | 125 | 8 | 3420 | 3480 | | Clothing | 100 | 108 | 110 | 6 | 920 | 1000 | | Fuel | 100 | 105 | 104 | | 648 | . 660 · | | Misc. | 100 | 102 | 104 | 4 | 420 | 416 | | Wilse | | | | 2 | 204 | 208 | | The least transfer | the species | FIRM | | ΣW=50 | $\Sigma P_1 W = 5612$ | $\Sigma P_2 W = 576$ | Index Number for 1985 = $$\frac{\Sigma P_1 W}{\Sigma W} = \frac{5612}{50} = 112.24$$ Index Number for 1986 = $\frac{\Sigma P_2 W}{\Sigma W} = \frac{5764}{50} = 115.28$, Calculate the index number of prices for 1972 on the basis of 1971 from the data given | Commodity | Weights | Price/Unit in 1971
(Rs.) | Price/Unit in 1972
(Rs.) | |-----------|---------|-----------------------------|-----------------------------| | Rice | 40 | 16.00 | 20.00 | | Wheat | 25 . |
40.00 | 60.00 | | Linseed | 5 | 0.50 | | | Gur | 20 | 5.12 | 0.50 | | Tobacco | 10 | 2.00 | 1.50 | | Commodity | W I Fin | <i>P</i> ₀ | <i>P</i> ₁ | $P = \frac{p_1}{p_0} \times 100$ | PW | |-----------|------------------|-----------------------|-----------------------|----------------------------------|--------------------| | Rice | 40 | 16 | 20 | 125 | 5000 | | Wheat | 25 | 40 | 60 | 150 | 3750 | | Linseed | 5 | 0.50 | 0.50 | 100 | 500 | | Gur | 20 | 5.12 | 6.25 | 122 | 2440 | | Tobacco | 10 | 2.00 | 1.50 | 75 | 750 | | | $\Sigma W = 100$ | | 1 1 | | $\Sigma PW = 1244$ | $$P_{01} = \frac{\Sigma PW}{\Sigma W} = \frac{12440}{100} = 124.40$$ Example 37. Calculate Laspeyre's, Paasche's, Fisher's Ideal and Marshall-Edgeworth in | Commodity | | 1993 | 100 | 100 | |-----------|-------|-------------|------------|------| | Commount | Price | Expenditure | Price 1994 | | | Δ | 8 | 80 | 10 E | xper | | В | 10 | 120 | 12 | 1 | | C | 5 | 40 | 5 | | | D | 4 | 56 | 3 | - | | Е | 20 | 100 | 25 | | With the help of these data, show which of the above index satisfies time and factor Solution: Since we are given the price and expenditure, we can obtain quantity figure | Commodity | P_0 | q_0 | p_1 | q_1 | $p_1 q_0$ | $P_0 q_0$ | $p_1 q_1$ | _ | |-----------|-------|-------|-------|-------|---------------------------|---------------------------|--|--------------------| | A | 8 | 10 | 10 | 12 | 100 | . 80 | 120 | P ₀ q | | В | 10 | 12 | 12 | 8 | 144 | 120 | 96 | 96 | | С | 5 | 8 | 5 | 10 | 40 | 40 | 50 | 50 | | D | 4 | 14 | 3 | 20 | 42 | 56 | 60 | 80 | | E | 20 | 5 | 25 | 6 | 125 | 100 | 150 | 12 | | | | | | - | $\sum_{p_1q_0} q_0 = 451$ | $\sum_{p_0 q_0} q_0$ =396 | Σρ ₁ q ₁
=476 | Σρ ₀ =4 | (i) Laspeyre's Index: $$P_{01} = \frac{\sum p_1 q_0}{\sum p_0 q_0} \times 100 = \frac{451}{396} \times 100 = 113.88$$ (ii) Paasche's Index: $$P_{01} = \frac{\sum p_1 q_1}{\sum p_0 q_1} \times 100 = \frac{476}{426} \times 100 = 111.74$$ (iii) Fisher's Ideal Index: $$P_{01} = \sqrt{\frac{\sum p_1 q_0}{\sum p_0 q_0}} \times \frac{\sum p_1 q_1}{\sum p_0 q_1} \times 100$$ $$= \sqrt{\frac{451}{396}} \times \frac{476}{426} \times 100$$ $$= \sqrt{1.1388 \times 1.1174} \times 100 = 112.80$$ (iv) Marshall-Edgeworth Index: Expected in Index: $$P_{01} = \frac{\sum_{P_{0}} (q_{0} + q_{1})}{\sum_{P_{0}} (q_{0} + q_{1})} \times 100$$ $$= \frac{\sum_{P_{0}} q_{0} + \sum_{P_{0}} q_{1}}{\sum_{P_{0}} q_{0} + \sum_{P_{0}} q_{1}} \times 100$$ $$= \frac{451 + 476}{396 + 426} \times 100 = \frac{927}{822} \times 100 = 112.77$$ Test: $$E_{P_{0}} = 1$$ Time Reversal Test: $$P_{01} \times P_{10} = 1$$ $P_{01} \times P_{10} = 1$ (i) Laspeyre's Method: $$P_{01} = \frac{\sum p_1 q_0}{\sum p_0 q_0} = \frac{451}{396}$$ $$P_{10} = \frac{\sum p_0 q_1}{\sum p_1 q_1} = \frac{426}{476}$$ $$P_{01} \times P_{10} = \frac{451}{396} \times \frac{426}{476} \neq 1$$ Time Reversal Test is not satisfied by Laspeyre's Method. (ii) Paasche's Method: $$P_{01} = \frac{\sum p_1 q_1}{\sum p_0 q_1} = \frac{476}{426}$$ $$P_{10} = \frac{\sum p_0 q_0}{\sum p_1 q_0} = \frac{396}{451}$$ $$P_{01} \times P_{10} = \frac{476}{426} \times \frac{396}{451} \neq 1$$ Time Reversal Test is not satisfied by Paasche's Method. (iii) Fisher's Method: $$P_{01} = \sqrt{\frac{\sum_{P_1} q_0}{\sum_{P_0} q_0}} \times \frac{\sum_{P_1} q_1}{\sum_{P_0} q_1} = \sqrt{\frac{451}{396}} \times \frac{476}{426} \qquad ...(i)$$ $$P_{10} = \sqrt{\frac{\sum_{P_0} q_1}{\sum_{P_1} q_1}} \times \frac{\sum_{P_0} q_0}{\sum_{P_1} q_0} = \sqrt{\frac{426}{476}} \times \frac{396}{451} \qquad ...(ii)$$ $$\Rightarrow P_{01} \times P_{10} = \sqrt{\frac{451}{396}} \times \frac{476}{426} \times \frac{426}{476} \times \frac{396}{451} = \sqrt{1} = 1$$ $$\therefore \text{ Time Reversal Test is satisfied by Fisher's Method.}$$ $$\begin{aligned} \text{(iv) Marshall-Edgeworth Method:} \\ P_{01} &= \frac{\sum p_1 \{q_0 + q_1\}}{\sum p_0 \{q_0 + q_1\}} = \frac{\sum p_1 q_0 + \sum p_1 q_1}{\sum p_0 q_0 + \sum p_0 q_1} \\ &= \frac{451 + 476}{396 + 426} = \frac{927}{822} \\ P_{10} &= \frac{\sum p_0 q_1 + \sum p_0 q_0}{\sum p_1 q_1 + \sum p_1 q_0} = \frac{426 + 396}{476 + 451} = \frac{822}{927} \end{aligned}$$ $$\Rightarrow P_{01} \times P_{10} = \frac{927}{822} \times \frac{822}{927} = 1$$ Time Reversal Test is satisfied by Marshall-Edgeworth Method. Factor Reversal Test: $$P_{01} \times Q_{01} = \frac{\Sigma p_1 q_1}{\Sigma p_0 q_0}$$ (i) Laspeyre's Method: 1 Laspeyre's Natural. $$P_{01} = \frac{\sum p_1 q_0}{\sum p_0 q_0} = \frac{451}{396}$$ $$Q_{01} = \frac{\sum q_1 p_0}{\sum q_0 p_0} = \frac{426}{396}$$ $$\Rightarrow P_{01} \times Q_{01} = \frac{451}{396} \times \frac{426}{396} \times \frac{\sum p_1 q_1}{\sum p_0 q_0}$$ Factor Reversal Test is not satisfied by Laspeyre's formula. (ii) Paasche's Method: $$P_{01} = \frac{\sum p_1 q_1}{\sum p_0 q_1} = \frac{476}{426}$$ $$Q_{01} = \frac{\sum q_1 p_1}{\sum q_0 p_1} = \frac{476}{451}$$ $$\Rightarrow P_{01} \times Q_{01} = \frac{476}{426} \times \frac{476}{451} \neq \frac{\Sigma p_1 q_1}{\Sigma p_0 q_0}$$ Factor Reversal Test is not satisfied by Paasche's formula. (iii) Fisher's Method: $$P_{01} = \sqrt{\frac{\sum p_1 q_0}{\sum p_0 q_0} \times \frac{\sum p_1 q_1}{\sum p_0 q_1}} = \sqrt{\frac{451}{396} \times \frac{476}{426}}$$ $$Q_{01} = \sqrt{\frac{\Sigma q_1 p_0}{\Sigma q_0 p_0}} \times \frac{\Sigma q_1 p_1}{\Sigma q_0 p_1} = \sqrt{\frac{426}{396}} \times \frac{476}{451}$$ $$\Rightarrow P_{01} \times Q_{01} = \sqrt{\frac{456}{396}} \times \frac{476}{426} \times \frac{476}{396} \times \frac{476}{451}$$ $$= \sqrt{\frac{476 \times 476}{396 \times 476}} \times \frac{476}{396} \times \frac{2p_1 q_1}{\sum p_0 q_0}$$ Figure Pewersal Test is extincted. Factor Reversal Test is satisfied by Fisher's formula. (iv) Marshall-Edgeworth Method: $$P_{01} = \frac{\sum p_1 q_0 + \sum p_1 q_1}{\sum p_0 q_0 + \sum p_0 q_1}$$ $$= \frac{451 + 476}{396 + 426} = \frac{927}{822}$$ $$Q_{01} = \frac{\sum q_1 p_0 + \sum q_1 p_1}{\sum q_0 p_0 + \sum q_0 p_1} = \frac{426 + 476}{396 + 451} = \frac{902}{847}$$ $$\Rightarrow P_{01} \times Q_{01} = \frac{927}{822} \times \frac{902}{847} \neq \frac{\sum p_1 q_1}{\sum p_0 q_0}$$ Factor Reversal Test is not satisfied by Marshall-Edgeworth formula. Example 38. From the following data, calculate: (i) Price Index (P_{01}) using Marshall-Edgeworth Formula. (ii) Quantity Index (Q_{01}) using Bowley's Formula. | Items | Curren | it year | Base year | | | |--------|-------------|-------------|-------------|----------------|--| | - 5525 | Price (Rs.) | Value (Rs.) | Value (Rs.) | Quantity (Rs.) | | | Α | 20 | 200 | 360 | 12 | | | В | 41-001 | 36 | 64 | 16 | | | C | 14 | 238 | 575 | 23 | | | Items | Base | Year | Current Year | | | | | | |-------|----------------|-------|-----------------------|-----------------------|----------------------|------------------------------|-------------------------------|----------------| | | P ₀ | 90 | <i>P</i> ₁ | q ₁ | Po 90 | P1 90 | P ₀ q ₁ | P1 41 | | A | 30 | 12 | 20 | 10 | 360 | 240 | 300 | 200 | | В | 4 | 16 | 1 4 | 9 | 64 | 64 | 36 | 36 | | С | 25 | 23 | 14 | 17 | 575 | 322 | 425 | 238 | | | | Total | | - | $\sum p_0 q_0 = 999$ | $\sum_{p_1q_0} p_1q_0$ = 626 | $\Sigma p_0 q_1 = 761$ | Σ p,q,
=474 | (i) Marshall-Edgeworth's Price Index $$P_{01} = \frac{\sum p_1 (q_0 + q_1)}{\sum p_0 (q_0 + q_1)} \times 100 = \frac{\sum p_1 q_0 + \sum p_1 q_1}{\sum p_0 q_0 + \sum p_0 q_1} \times 100$$ $$= \frac{626 + 474}{999 + 761} \times 100 = \frac{1100}{1760} \times 100 = 62.50$$ (ii) Bowley's Quantity Index (Q_{01}) Quantity Index $$(Q_{01})$$ $$Q_{01} = \frac{L+P}{2} = \frac{\sum q_1 p_0}{\sum q_0 p_0} + \frac{\sum q_1 p_1}{\sum q_0 p_1} \times 100$$ $$= \frac{\frac{761}{2} + \frac{474}{626}}{2} \times 100 = 75.96 \text{ or } 76.00 \text{ (approx.)}$$ Example 39. From the following data, calculate weighted index number for 1997 with 1995 as the base year by using weighted geometric mean: | Group | Weight | Price in 1995 | Price in 1997 | |-------|--------|---------------|---------------| | Α | 5 | 2.00 | 4.50 | | В | 7 | 2.50 | 3.20 | | С | 6 | 3.00 | 4.50 | | D | 2 | 1.00 | 1.80 | #### Solution: | Group | Price in
1995
(p ₀) | Price in
1997
(P ₁) | $\left(\frac{p_1}{p_0} \times 100\right)$ | log P | (w) | W.log P | |-------|---------------------------------------|---------------------------------------|---|--------|-----------------|----------------------| | A | 2.00 | 4.50 | $\frac{4.50}{2.00} \times 100 = 225$ | 2.3522 | 5 | 11.7610 | | В | 2.50 | 3.20 | $\frac{3.20}{2.50} \times 100 = 128$ | 2.1072 | 7 | 14.7504 | | C | 3.00 | 4.50 | $\frac{4.50}{3.00} \times 100 = 150$ | 2.1761 | 6 | 13.0566 | | D | 1.00 | 1.80 | $\frac{180}{100} \times 100 = 180$ | 2.2553 | 2 | 4.5106 | | | | | | | $\Sigma W = 20$ | ΣW. log/
=44,0786 | Cost of Living Index Number based on G.M. $$= \operatorname{Antilog} \left[\frac{\Sigma W \log P}{\Sigma W} \right] = \operatorname{Antilog} \left[\frac{44.0786}{20} \right]$$ $$=$$ Antilog (2.2039) $=$ 159.9 Given that $\Sigma p_1 q_1 = 250$, $\Sigma p_0 q_0 = 150$, Paasche's Index Number = 150, Dorbish 40. ...lev's Index Number = 145. Bowley's Index Number, and Marshall-Edgeworth Index Number, and Marshall-Edgeworth Index Number. $p_0 = 250, \sum_{i=0}^{n} q_i = 150$ Given, $4P_1$ and $4P_2$ and $4P_3$ and $4P_4$ 4P paasche's Index Number = 150, Dorbish-Bowley Index Number = 145 $$P_{01}^{F} = \frac{\sum p_{1}q_{1}}{\sum p_{0}q_{1}} \times 100$$ Substituting the given values, $$150 = \frac{250}{\sum p_0 q_1} \times 100$$ or $$\Sigma p_0 q_1 = \frac{25000}{150} = \frac{500}{3} = 167 \text{ (approx.)}$$ $$\Sigma p_1 q_2 = \Sigma p_1 q_2 = \Sigma p_2 q_3$$ $$P_{01}^{DB} = \frac{\sum_{p_1 q_0}^{p_1 q_0} + \sum_{p_0 q_1}^{p_1 q_0}}{\sum_{p_0 q_1}^{p_1 q_0} \times 100} \times 100$$ Substituting the given values, or $$145 = \left[\frac{\sum p_1 q_0}{150} + \frac{250}{167}\right] 50$$ or $$\frac{145}{50} = \frac{\Sigma p_1
q_0}{150} + 1.50$$ or $$2.90 - 1.50 = \frac{\Sigma p_1 q_0}{150}$$ $$\therefore 1.40 = \frac{\Sigma p_1 q_0}{150}$$ or $$\Sigma p_1 q_1 = 1.40 \times 150$$ or $$2.90 - 1.50 = \frac{\sum p_1 q_0}{150}$$ $$\therefore 1.40 = \frac{\sum p_1 q_0}{150}$$ $$\Sigma p_1 q_0 = 1.40 \times 150$$ = 210 (approx.) So now, ## Fisher's Index Number $$= \sqrt{\frac{\sum p_1 q_0}{\sum p_0 q_0}} \times \frac{\sum p_1 q_1}{\sum p_0 q_1} \times 100$$ $$= \sqrt{\frac{210}{150} \times \frac{250}{167}} \times 100$$ $$= \sqrt{1.40 \times 1.50} \times 100$$ $$= 144.91$$ $$\begin{aligned} & \textbf{Marshall-Edgeworth Index Number} \\ & = \frac{\Sigma p_1 \left(q_0 + q_1\right)}{\Sigma p_0 \left(q_0 + q_1\right)} \times 100 = \frac{\Sigma p_1 q_0 + \Sigma p_1 q_1}{\Sigma p_0 q_0 + \Sigma p_0 q_1} \times 100 \\ & = \frac{210 + 250}{150 + 167} \times 100 = \frac{460}{317} \times 100 \end{aligned}$$ #### IMPORTANT FORMULAE =145.110≈ 145 # 1. Simple Index Numbers: (i) Simple Aggregative Method: egative Method: $$P_{01} = \frac{\sum p_1}{\sum p_0} \times 100$$ (ii) Simple Average of Price Relative Method (a) $$P_{01} = \frac{\sum p_1}{p_0} \times 100$$ (b) $P_{01} = \text{Antilog} \left[\frac{\sum \log(p_1/p_0)}{N} \times 100 \right] \text{ using G.M.}$ #### 2. Weighted Index Numbers: - (a) Weighted Aggregate Method (i) Laspeyre's Method: $$P_{01} = \frac{\sum p_1 q_0}{\sum p_0 q_0} \times 100$$ (ii) Paasche's Method: $$P_{01} = \frac{\sum p_1 q_1}{\sum p_0 q_1} \times 100$$ (iii) Fisher's Method: $$P_{01} = \sqrt{\frac{\sum p_{1}q_{0}}{\sum p_{0}q_{0}}} \times \frac{\sum p_{1}q_{1}}{\sum p_{0}q_{1}} \times 100$$ (iv) Dorbish-Bowley's Method: $$P_{01} = \frac{L+P}{2} \quad or \quad \frac{1}{2} \quad \left(\frac{\sum p_1 q_0}{\sum p_0 q_0} + \frac{\sum p_1 q_1}{\sum p_0 q_1}\right)$$ Marshall-Edgeworth Method: $\Sigma p_1(q_0+q_1)\times 100$ (vi) Kelly's Method: $$P_{01} = \frac{\sum p_1 q}{\sum p_0 q} \times 100$$ • Method $P_{01} = \frac{1}{\sum p_0(q_0 + q_1)}$ (b) Weighted Average of Price Relative Method ΣPW (i) Weighted Average of Trice (i) If A.M. is used $$P_{01} = \frac{\Sigma PW}{\Sigma W}$$ (i) If A.M. is used $$P_{01} = \frac{1}{\sum W}$$ (i) If G.M. is used $$P_{01} = \text{Antilog} \left[\frac{\Sigma(W \log P)}{\Sigma W} \right]$$ Tests of Adequacy: Time reversal test is satisfied when: $$P_{01} \times P_{10} = 1$$ Factor reversal test is satisfied when: atisfied when: $$P_{01} \times Q_{01} = \frac{\sum p_1 q_1}{\sum p_0 q_0}$$ Circular test is satisfied when: $$P_{01} \times P_{12} \times P_{20} = 1$$ ## QUESTIONS - 1. What are index numbers? Explain the various problems faced in the construction of an index number. What is the utility of index number? - 2. Explain the uses and limitations of index numbers. - 3. Explain the Laspeyre's, Paasche's and Fisher's formula for computing an index number. Check which of them satisfies the time reversal and factor reversal tests. - 4. Discuss the various tests of adequacy of Index Number formulae. - 5. Explain the various methods of constructing Index Numbers. - 6. Explain (i) Time Reversal Test (ii) Factor Reversal Test (iii) Circular Test. Indicate whether Laspeyre's, Paasche's and Fisher's Ideal Index Numbers satisfy one or other tests. - 7. Explain the concept of quantity and value indices. - (i) Differentiate between Weighted and Unweighted Index Numbers. - (ii) Explain various formulae for calculating index numbers. - (iii) Discuss tests for index numbers. - What is Fisher's Ideal Index? Why is it called ideal? Show that it satisfies both the time reversal test as well as factor reversal test. - "Index numbers are economic barometers". Explain the statement. What precautions will you take in." You take while constructing an index number? # Index Numbers-II ## ■ INTRODUCTION In the previous chapter, we have studied the concept of index number, the problems in its construction, methods of constructing them and the tests of an ideal index number. During the process of index numbers' construction, some specific problems like construction of chain index, base shifting, splicing, deflating, construction of a consumer price index, etc., come across us. It is very essential to take them properly into consideration. ### **□** CHAIN BASE INDEX NUMBERS Chain base index is that index number in which the year immediately preceeding the one is taken as base year. For example, suppose, we want to construct index numbers for 1990, 91, 92, 93 and we take 1990 as base for 1991, 1991 as base year for 1992 and 1992 as base for 1993, then such type of index is called chain base index. ### O Steps in Construction of Chain Base Index (i) First of all, link relatives are computed using the following formula: (ii) The link relatives are then converted into chain base index using the following formula: Chain Base Index = Link Relatives of Current Year × Chain Index of Previous Year 100 The construction of chain indices can be illustrated with the following examples: Example 1. Construct Chain Base Index from the follows: | - | | | ne following | , | | 27 19 19 | |----------|------------|------|--------------|------|------|---------------------------| | Year: | 1985 | 1986 | 1987 | 1988 | 1989 | 199 | | Prices: | 04 | | | | 00 | 100 | | - rices. | Prices: 94 | 98 | 102 | 95 | 98 | CONTRACTOR AND ADDRESS OF | | | Carlotte Service | Computation of CBI | | |-------|------------------|-------------------------------------|--| | Years | Prices | Link Relatives | | | 1985 | 94 | 100 | Chain Base Index | | 1986 | 98 | $\frac{98}{94} \times 100 = 104.3$ | 100
104.3×100 | | 1987 | 102 | $\frac{102}{98} \times 100 = 104.1$ | 100 = 104.3
104.1×104.2 | | 1988 | 95 | $\frac{95}{102} \times 100 = 93.1$ | $\frac{100}{100} = 108.6$ $\frac{93.1 \times 108.6}{100} = 101.1$ | | 1989 | 98 | $\frac{98}{95} \times 100 = 103.2$ | $\frac{100}{100} = 101.1$ $\frac{103.2 \times 101.1}{100} = 104.3$ | | 1990 | 100 | $\frac{100}{98} \times 100 = 102$ | $\frac{100}{100} = 104.3$ $\frac{102 \times 104.3}{100} = 106.4$ | Construct Chain Base Index from the link relative | Affine Area and a second | 1 1 1 | | and ves given | below. | | |--------------------------|-------|------|---------------|--------|------| | Year: | 1969 | 1970 | 1971 | | | | Link Relatives: | 100 | 105 | | 1972 | 1973 | | | 1 | 103 | 95 | 175 | 102 | Computation of CRI | Year | Link Relatives | Chin | |------|--------------------------|--| | 1969 | 100 | Chain Base Index | | 1970 | | $\frac{105 \times 100}{100} = 105$ | | 1971 | All Digital Land Too | $\frac{95 \times 105}{100} = 99.75$ | | 1972 | 175 | $\frac{175 \times 99.75}{100} = 174.56$ | | 1973 | 102 | $\frac{102 \times 174.56}{100} = 178.03$ | imple 3. Construct Chain Base Index from the following data: | Group | 1970 | 1971 | 1972 | 1973 | |-------|------|------|------|------| | Ι | 2 | 3 | 4 | 5 | | II | 8 | 10 | 12 | 15 | | III | 4 | 5 | 8 . | 10 | totion of Chain Base Index Chained to 1970 | | | putatio.
970 | | 1971 | | 1972 | | |---------------------|----------|-----------------|----|----------------|----|----------------|---------------------| | Group of | - I | L.R. | Р | L.R. | P | L.R. | P 1973 | | Commodities | <u>-</u> | 100 | 3 | 150 | 4 | 133.33 | 5 L.I | | 1 | 8 | 100 | 10 | 125 | 12 | 120.00 | 15 12 | | II | - | 100 | 5 | 125 | 8 | 160.00 | 10 12 | | III | - | 300 | | 400 | | 413.33 | 10 12 | | Total
Average of | _ | 100 | | 133.33 | | 137.78 | 37 | | L.R. | | 100 | - | 133.33×100 | | 137.78×133.33 | | | hain Base
Index | | | | 100
=133.33 | | 100
=183.70 | 125×1
10
≈229 | ## FIXED BASE INDEX ■ FIXED BASE INDEX In fixed base index, the base year remains fixed. Fixed Base Index is an index in which the base year is the fixed year. For example, suppose, we want to construct indices for 1990, 91, 92, 93 and we take 1990 alone as base year for all the years, then such type of index is called as fixed base index. # Steps in Construction of Fixed Base Index Fixed base index is computed in the following manner: (i) First of all, the price relatives are found out using the following formula: Price Relatives = $$\frac{\text{Current Year's Price}}{\text{Base Year's Price}} \times 100$$ (ii) If it is a single commodity case, then these price relatives would be FBIs. But, if it is a If it is a single commodity case, then the price relative for each year and dividing multi-commodity case, then by summing up the price relative for each year and dividing the sum by the number of commodity, average of price relatives are found out. These averages are fixed base indices. The method of constructing fixed base index is illustrated by the following examples: Example 4. Construct index numbers for the following data by taking (a) price of 1975 as base and (b) average of all the prices as base. | Year: | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | |--------|------|------|------|------|------|------|------|------| | Price: | 110 | 120 | 160 | 150 | 180 | 200 | 220 | 210 | #### Solution: | | Calculat | Calculation of FBI | | | | |--------|----------|--------------------------------------|--|--|--| | Year | Price | Index Base = 168.75 | | | | | 1975 | 110 | 100 | $\frac{110}{168.75} \times 100 = 65.2$ | | | | 1976 . | 120 | $\frac{120}{110} \times 100 = 109.1$ | 120
168.75 ×100 =71.1 | | | | 1977 | 160 | $\frac{160}{110} \times 100 = 145.5$ | 160
168.75 × 100 = 94.8 | | | | 1978 | 150 | 150 | | |------------------|-----|--------------------------------------|--| | 1979 | 180 | $\frac{150}{110} \times 100 = 136.4$ | $\frac{150}{168.75} \times 100 = 88.9$ | | 1980 | 200 | $\frac{180}{110} \times 100 = 163.6$ | $\frac{180}{168.75} \times 100 = 106.$ | | 1981 | 220 | $\frac{200}{110} \times 100 = 181.8$ | $\frac{200}{168.75} \times 100 = 118.$ | | and value (the) | 210 | $\frac{220}{110}
\times 100 = 200.0$ | $\frac{220}{168.75} \times 100 = 130$ | | 1982 | 210 | $\frac{210}{110} \times 100 = 190.9$ | $\frac{210}{168.75} \times 100 = 124$ | *Average of all the given prices = $\frac{110+120+160+150+180+200+220+210}{8} = 168.75$ 8 Find out the fixed base index number for 1986, 1987 and 1988 based on 1985 | 174. | Price in (Rs.) | n | oo oa | 1985. | | | | |-----------|----------------|------------------------|------------------------|----------------|--|--|--| | Commodity | 1985 | Price in (Rs.)
1986 | Price in (Rs.)
1987 | Price in (Rs.) | | | | | A | 15 | 30 | | 1988 | | | | | В | 10 | 12 | 20 | 24 | | | | | C | 12 | 18 | 16 | 13 | | | | | D | - 8 | - 8 | 8 | 10 | | | | | E | 17 | : 15 | 12 | 16 | | | | | | part 1 | 13 | 16 | 20 | | | | Computation of Fixed Base Index No. | Commodity | P ₀ | 1985
Price
Relatives | <i>P</i> ₁ | 1986 Price Relatives $\frac{p_1}{p_0} \times 100$ | P ₂ | 1987 Price Relatives $\frac{p_2}{p_0} \times 100$ | P ₃ | 1988 Price Relatives $\frac{p_3}{p_0} \times 100$ | |---------------|----------------|----------------------------|-----------------------|---|----------------|---|----------------|---| | A | 15 | 100 | 30 | 200.0 | 20 | 133.3 | 24 | 160.0 | | В | 10 | 100 | 12 | 120.0 | 16 | 160.0 | 13 | 130.0 | | C | 12 | 100 | 18 | 150.0 | 8 | 66.7 | 10 | | | D | 8 | 100 | 8 | 100.0 | 12 | 150.0 | - | 83.3 | | E | 17 | 100 | 15 | 88.2 | | | 16 | 200.0 | | Total of Rela | | 500 | 13 | | 16 | 94.1 | 20 | 117.7 | | DI ICCIO | | 200 | | 658.2 | | 604.1 | 1 | 691.0 | Price Index for 1986 = $$\frac{\sum \frac{P_1}{P_0} \times 100}{N}$$ = $\frac{658.2}{5}$ = 131.64 Price Index for 1987 = $\frac{\sum \frac{P_2}{P_0} \times 100}{N}$ = $\frac{604.1}{5}$ = 120.82 Price Index for 1988 = $\frac{\sum \frac{P_3}{P_0} \times 100}{N}$ = $\frac{691.0}{5}$ = 138.2 # IMPORTANT TYPICAL EXAMPLES Las given below, calculate the Chain Base Index No Exampl | | From the data § | 992 | 1993 | 1994 | 1995 | 1996 1997 | |--------------------------|-----------------|-----|------|------|------|-----------| | Price: 31 22 28 24 30 27 | Year. | 21 | 22 | 28 | - 24 | | Verify that the CBI will be the same as FBI with 1992 as base. Calculation of CBI and FBI Solution: | Year | Price | Link relatives | СВІ | FBI | |------|-------|-------------------------------------|---|-----------------------------------| | 1992 | 31 | 100 | 100 | (Base = 1992) | | 1993 | 22 | $\frac{22}{31} \times 100 = 70.96$ | $\frac{100 \times 70.96}{100} = 70.96$ | $\frac{22}{31} \times 100 = 70.9$ | | 1994 | 28 | $\frac{28}{22} \times 100 = 127.27$ | $\frac{127.27 \times 70.96}{100} = 90.30$ | $\frac{28}{31} \times 100 = 90.$ | | 1995 | 24 | $\frac{24}{28} \times 100 = 85.71$ | $\frac{85.71 \times 90.3}{100} = 77.40$ | $\frac{24}{31} \times 100 = 77$ | | 1996 | 30 | $\frac{30}{24} \times 100 = 125.00$ | $\frac{125 \times 77.40}{100} = 96.75$ | $\frac{30}{31} \times 100 = 96$ | | 1997 | 27 | $\frac{27}{30} \times 100 = 90.00$ | $\frac{90 \times 96.75}{100} = 87.07$ | $\frac{27}{31} \times 100 = 87$ | | 1998 | 25 | $\frac{25}{27} \times 100 = 92.59$ | $\frac{92.59 \times 87.07}{100} = 80.61$ | $\frac{25}{31} \times 100 = 80$ | Note: FBI and CBI calculated on the basis of original prices are equal (i.e., same) for a single commodity case. For a multi commodity case, CBI are almost equal to FBI. The slight difference that appear between them are due to approximations made in the calculations. Example 7. Calculate the fixed base index number and chain base index number from the following data. Are the two results same? If not, why? | Commodity | | 1 | Price (in rupees | A TO LEGO. | 1 | |-----------|------|------|------------------|------------|-----| | | 1986 | 1987 | 1988 | 1989 | 199 | | X | 2 | 3 | : 5 | 7 | 8 | | Y | 8 | 10 | 12 | 14 | 18 | | Z | 4 | 5 | 7 | 9 | 12 | Solution: Since base year is not specified, the first year in order of time, i.e., 1986 is taken as base. Fixed Base Ind. | min 7 | | (Base yea | r = 1986) | | |--------------|--|---|---|---| | 1986
(PR) | 1987 | Prices
1988 | | | | 100 | $\frac{3}{2} \times 100 = 150$ | , | (PR) | 1990
(PR) | | 100 | $\frac{10}{8} \times 100 = 125$ | 12 | 14 | $\frac{8}{2} \times 100 = 400$ | | 100 | $\frac{5}{4} \times 100 = 125$ | 8 | 0 | 0 | | 300 | 400 | _ | 4×100=225 | $\frac{12}{4} \times 100 = 300$ | | 100 | 133.33 | 191.67 | 750 | 925 | | | 1986
(PR)
100
100
100
300 | $\begin{array}{c} 1986 \\ (PR) \\ \hline \\ 100 \\ \hline \\ \frac{3}{2} \times 100 = 150 \\ \hline \\ 100 \\ \hline \\ \frac{10}{8} \times 100 = 125 \\ \hline \\ 100 \\ \hline \\ \\ \frac{5}{4} \times 100 = 125 \\ \hline \\ 300 \\ \hline \end{array}$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | Commodity | 1 | 986 | 27.0 | 1987 | 1 1 | e Index Numb | | 1989 | 0 | M-100 | |------------------|-------|-----|-------|-----------------|----------------|-----------------|-----------------------|-----------------|-------|---------------| | | p_0 | LR | p_1 | LR | P ₂ | LR | | A 11.00 | | 1990 | | X | 2 | 100 | 3 | 150 | - 5 | 166.70 | <i>p</i> ₃ | LR | p_4 | LR | | | 8 | 100 | 10 | 125 | 12 | 120.00 | 7 | 140 | 8 | 114.29 | | | 4 | 100 | 5 | 125 | 7 | | 14 | 116.67 | 18 | 128.57 | | | 7 | 300 | 45.7 | 400 | 100 | 140.00 | 9 | 128.57 | 12 | 133.33 | | Total of LR | _ | - | | | | 426.7 | oper ! | 385.24 | | 376.19 | | Average | | 100 | - | 133.33 | | 142.23 | - | 128.41 | | 125.40 | | Chain
Indices | | 100 | - | 133.33×100 | - | 133.33×142.23 | | 189.63×128.41 | | 243.50×125.40 | | muleo | . ** | | 10th | 100
= 133.33 | Selle. | 100
= 189.63 | | 100
= 243.50 | | 100 | From the above, it is clear that the index numbers obtained by both methods are the same for the instruo years and they are different for the remaining years. This is due to the average (combining) of the values for different commodities. # Relative Merits and Demerits of Chain Base Index and Fixed Base Index (I) Under FBI, base year remains fixed, and all further years are compared on the basis of same year whereas under CBI, base year shifts every year and each year is compared with a mediately preceding year as the base. (0) FBI are constructed on the basis of price relatives whereas CBI are constructed on the basis of price relatives. (I) FBI indicates the long-term tendency of data whereas CBI depicts the short-term tendency of data. (4) llems included in FBI can't be shifted or changed whereas in CBI, every year items or modities can be shifted or changed. (5) FBI is easier to compute whereas CBI is difficult to compute. # EXERCISE 4.1 | 1. Construct Chain | Base Index from the f | 1981 | 1982 | 1983 | - | |--------------------|-----------------------|------|------|------|------| | Year: | 1979 1980 | 288 | 360 | 480 | 1984 | Verify that the CBI will be the same as FBI base. [Ans. 100, 125, 120, 150, 200, 175] bers from the link relatives given below: | Prepare index n | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | |-----------------|------|------|----------|-------------|----------|------| | Year: | 105 | 75 | 71 | 105 | 95 | 90 | | Link relatives: | 105 | /3 | /.
[A | ns. 100, 75 | 53.25.55 | 90 | .11, 47.79, 43.01] The average wholesale prices of three groups of commodities for the year 1995 to 1999 are given below. Compute Chain Base Index number with 1995 as base: | 1995 | 1996 | 1997 | 1998 | 1999 | |------|-----------------------|--------------|--------------------|---| | 6 | 9 | 15 | 21 | 24 | | 24 | 30 | 36 | 42 | 54 | | 12 | 15 | 21 | 27 | 36 | | | 1995
6
24
12 | 6 9
24 30 | 6 9 15
24 30 36 | 6 9 15 21
24 30 36 42
13 15 21 27 | [Ans. 100, 133.3, 189.6, 243.4, 305.2] - 4. From the following data, calculate Index Numbers: - (i) taking prices of 1992 as base year, - (ii) taking prices of 1994 as base year, erage prices of five years as base. | (III) taking avera | ige prices or | | 7 10 | | 1. 125-28 | |--------------------|---------------|------|------|------|-----------| | Year: | 1992 | 1993 | 1994 | 1995 | 1996 | | | 10 | 12 | 15 | 16 | 20 | | Prices (in Rs): | 10 | | | | 1000 | [Ans. (i) 100, 120, 150, 160, 200 (ii) 66.67, 80, 100, 106.67, 133.33 (iii) 68.49, 82.19, 102.74, 109.59, 136.99] 5. Calculate the fixed base index number and chain base index number from the following data. | Commodity | | | Price (in Rs.) | A Life to The | - 13 | |-----------|------|------|----------------|---------------|-------| | | 1992 | 1993 | 1994 | 1995 | | | I | 2 | 3 | 5 | 7 | in le | | П | 8 | 10 | 12 | 14 | _ | | III | 4 | 5 | 7 | 9 | | [Ans. FBI: 100, 133.3, 191.67, 250, 306.2] CBI: 100, 133.33, 189.63, 243.49, 305.34 Construct Fixed base and Chain base index numbers from the following data. A | sults same? | Production | Year | wing data. Are the tw | |-------------|-----------------------|------|-----------------------| | 1973 | 75 | 1981 | Production | | 1974 | 81 | 1982 | 120 | | 1975 | 90 | 1983 | 123 | | 1976 | 72 | 1984 | 108 | | 1977 | 84 | 1985 | 96 | | 1978 | 87 | 1986 | 111 | | 1979 | 93 | 1987 | 114 | | 1980 | 105 | 1988 | 117 | | | 00 100 120 06 112 114 | | 120 | [Ans. 100, 108, 120, 96, 112, 116, 124, 140, 160, 164, 144, 128, 148, 152, 156, 160 For a single series of index numbers, FBI and CBI are equal.] # BASE CONVERSION Sometimes, a necessity arises to convert chain base index into fixed
base index and vice-versa. The following procedure is taken up for conversion: - (1) Conversion of Chain Base Index into Fixed Base Index. - Its procedure is as follows: - (i) For the first year, the FBI will be taken the same as CBI. But if in a question it has been asked to take the first year as a base, the FBI for the first year will then be taken as 100. - (ii) For successive years, fixed base indices are computed from chain base index by the following formula: #### Current year's FBI = Current year's CBI× Previous year's FBI 100 ple 8. From the chain base index number given below, prepare fixed base index numbers: | Year: | 1983 | 1984 | 1985 | 1986 | 1987 | |-------|------|------|------|------|------| | CBI: | 138 | 153 | 156 | 147 | 195 | | Year | CBI | Conversion | FBI | |------------|--|----------------|--------| | 1983 | 138 | | 138 | | 1984 | 153 | 153×138 | 211.14 | | WINE | | 100 | | | 1985 | 156 | 156 × 211.14 | 329.38 | | 361 | The state of s | 100 | | | 1986 | 147 | ≥ 147 × 329.38 | 484.19 | | In harmony | Control of the Contro | 100 | * | | 1987 | 195 | 195 × 484.19 | 944.17 | | | | 100 | | # • (2) Conversion of Fixed Base Index to Chain Base Index. (2) Conversion of Figure 1. Its procedure is as follows: (i) For the first year, CBI will be taken the same as FBI. (ii) For successive years, chain base Indices are derived from fixed base Index by the following formula: la: $\frac{\text{Current year's CBI}}{\text{Current year's FBI}} \times 100$ fixed base index numbers, prepare chain base index Exan | | sha fall | owing fixed | J Dase man | | | The midex i | lumba | |-----------|-------------|-------------|------------|------|------|-------------|-------| | mple 9. F | rom the lon | 1981 | 1982 | 1983 | 1984 | 1985 | - | | | Year: | | 150 | 180 | 250 | 300 | 1986 | | | FBI: | 110 | 150 | | | | 440 | Solution: | | Conversion of | BI into CBI | | |------|---------------|-----------------------------------|---------| | Year | FBI | Conversion | CBI | | 1981 | 110 | _ | 110 | | 1982 | 150 | $\frac{150}{110} \times 100$ | 136.364 | | 1983 | 180 | $\frac{180}{150} \times 100$ | 120 | | 1984 | 250 | $\frac{250}{180} \times 100$ | 138.889 | | 1985 | 300 | $\frac{300}{250} \times 100$ mg/s | 120 | | 1986 | 440 | $\frac{440}{300} \times 100$ | 146.667 | # IMPORTANT TYPICAL EXAMPLE Example 10. From the Chain base index numbers given below prepare fixed base index numbers | and verify | the answers. | | | | The Personal Property lies | |------------|--------------|------|------|------|----------------------------| | Year: | 1971 | 1972 | 1973 | 1974 | 1975 | | | | | | 200 | 150 | | CBI: | 110 | 160 | 140 | 200 | | Solution: | | From CBI to FBI | | |------|-----------------|---------------------------------------| | Year | CBI | FBI | | 1971 | 110 | 110 | | 1972 | 160 | $\frac{160 \times 110}{100} = 176.$ | | 1973 | 140 | $\frac{140 \times 176}{100} = 246.$ | | 1974 | 200 | $\frac{200 \times 246.40}{100} = 492$ | | 1975 | 150 | $\frac{150 \times 492.80}{100} = 739$ | | 7.110 | ion: Year | FBI | | |----------|-----------|--------|--| | | 1971 | 110 | CBI | | 1. 1.1.2 | 1972 | 176 | 110 | | 1 ((10)) | 1973 | 246.40 | $\frac{176}{110} \times 100$ = 160 | | | dyne. | 246.40 | $\frac{246.40}{176} \times 100 = 140$ | | W- F | 1974 | 492.8 | $\frac{492.8}{246} \times 100 = 200$ | | | 1975 | 739.2 | $\frac{739.2}{492.8} \times 100 = 150$ | EXERCISE 4.2 1. From the Chain base index numbers given below, prepare fixed base index numbers and verify the answers: | _ | | 1976 | 1977 | 1978 | |---|-----|------|---------|-------------| | | 110 | 120 | 105 | 95 | | | | 110 | 110 120 | 110 120 105 | [Ans. 80, 88, 105.6, 110.9, 105.3] 241 2. Change the following fixed base index numbers into chain base index numbers | Year: | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | |-------|------|------|------|------|------|------| | FBI: | 100 | 110 | 175 | 250 | 300 | 400 | [Ans. 100, 110.0, 159.1, 142.8, 120.0, 133.3] 3. From the chain base index given below, prepare fixed base index numbers and verify your answers. | Year: | 1960 | 1961 | 1962 | 1963 | 1964 | |-------|------|------|------|------|------| | CBI; | 90 | 110 | 115 | 120 | 130 | [Ans. 90, 99, 113.8,136.6, 177.6] 4. From the fixed based index numbers given below, prepare chain base index numbers: | Year: | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | |-------|------|------|------|------|------|------| | FBI: | 376 | 392 | 408 | 380 | 392 | 400 | [Ans. 376, 104.28, 104.1, 93.1, 103.2, 102]. O Base Shifting Sometimes, it becomes necessary that index numbers are changed by taking some other year as base year rather than the given base year. This operation is called as base-shifting. Base shifting is needed for the following two reasons: (i) When the present base year has become rather old (ii) When some series are to be compared whose base years are different. In such condition, such series cannot be made fit for comparison unless base years of all the series are the same. be made fit for comparison unless base years of all the series are the same. be made fit for comparison unless base years of air the series are the same. While base-shifting, index number of new base year is taken as 100 and all other old years index numbers are converted on this new base. The following formula is used for this purpose: Index No. with Not Base Index No. of New Base Year **100** From the following example, the process of base-year shifting is illustrated: Example 11. The following are index numbers of prices based on 1980, shift the base to 1984. | Year | Index Numbers
(1980 = 100) | Year | Index Numbers
(1980 = 100) | |------|-------------------------------|------|-------------------------------| | 1980 | 100 | 1985 | 390- | | 1981 | 120 | 1986 | 400 | | 1982 | 200 | 1987 | 420 | | 1983 | 240 | 1988 | 435 | | 1004 | 300 | 1989 | 444 | #### Solution: | Computation | of New | Index | Numbers | |-------------|--------|-------|---------| | Year | Old Index No.
(1980 = 100) | New Index No.
(1984 = 100) | |------|-------------------------------|---------------------------------------| | 1980 | 100 | $\frac{100}{300} \times 100 = 33.33$ | | 1981 | 120 | $\frac{120}{300} \times 100 = 40.00$ | | 1982 | 200 | $\frac{200}{300} \times 100 = 66.67$ | | 1983 | 240 | $\frac{240}{300} \times 100 = 80.00$ | | 1984 | 300 | 100.00 | | 1985 | 390 | $\frac{390}{300} \times 100 = 130.00$ | | 1986 | 400 | $\frac{400}{300} \times 100 = 133.33$ | | 1987 | 420 | $\frac{420}{300} \times 100 = 140.00$ | | 1988 | 435 | $\frac{435}{300} \times 100 = 145.00$ | | 1989 | 444 | $\frac{444}{300} \times 100 = 148.00$ | Index Numbers-II o Splicing splicing splicing we come across a situation when an index constructed on a given base year is and new index is constructed taking the year, in which an index we have two types of indices. of splicing we come across a situation when an index constructed on a given base year is sometimes we and new index is constructed taking the year, in which an index was stopped being such as the year. Thus, we have two types of indices and we have to change them into a single stop base year. Thus, we have two types of indices and we have to change them into a single solid stop the procedure taken up for this is called as splicing. For example, one series is available single stop to the year is 1981. This index is stopped using in 1985 and taking 1985 as the year with ourselves a new series of indices in 1985 to 1990. If we are in need of a series of indices with year in the year in the year is the year in i stee year findex numbers with the second of a green findex numbers with us by the second findex numbers with us by the second findex fi is of old series of indices is tied with new index series. There may be two types of splicing: (i) Splicing of new index series to old index series: The following formula is used for splicing new index series
to old index series: spliced new index series to old index series = New index ×Old index of overlapping year (ii) Splicing of old index series to new index series: The following formula is used for splicing old index series to new index series: Spliced old index series with new index series = Old index × Old index of overlapping year The following examples illustrate the process of splicing: Example 12. Given below are two price index series. Splice them on the base 1981 = 100 | Year | 1981 | '82 | '83 | '84 | '85 | '86 | '87 | '88 | ·89 | '90 | |-------------------------|--------|-------|------------|-----|------------|------------|-----|-----|-----|-----| | Index A
(1981 = 100) | 100 | 110 | 120 | 125 | 150 | = | - | _ | - | - | | Index B
(1985 = 100) | Copple | ORN C | - | ,-, | 100 | 115 | 120 | 130 | 140 | 160 | #### Splicing of Index B to Index A | Year | Index A
(1981 = 100) | Index B
(1985 = 100) | Spliced index
(1981 = 100) | |------|-------------------------|-------------------------|--------------------------------------| | 1981 | 100 | _ | 100 | | 1982 | 110 | | 110 | | 1983 | 120 | | 120 | | 1984 | 125 | | 125 | | 1985 | 150
(B. See | 100 | $100 \times \frac{150}{100} = 150$ | | 1986 | and larged social in | 115 | $115 \times \frac{150}{100} = 172.5$ | | | | | 013 | |------|---|-----|------------------------------------| | 1987 | _ | 120 | $120 \times \frac{150}{100} = 180$ | | 1988 | | 130 | $130 \times \frac{150}{100} = 195$ | | 1989 | | 140 | $140 \times \frac{150}{100} = 210$ | | 1990 | _ | 160 | $160 \times \frac{150}{100} = 240$ | | | | | | Given below are two price index series. Splice them on the base 1985 = 100 | Year: | 1981 | '82 | '83 | '84 | '85 | '86 | '87 | '88 | '89 | _ | |---------------------------------|------|-----|------------|------------|-----|------------|-----|------------|-------|-----| | Old Price Index
(1981 = 100) | 100 | 110 | 120 | 125 | 150 | _ | _ | in her | - | 1/8 | | New Price Index
(1985 = 100) | - | - | - | 1 | 100 | 115 | 120 | 130 | . 140 | 160 | Splicing of Old Index Series to New Index Series | Year | Old price index
(1981 = 100) | New price index
(1985 = 100) | Spliced index
(1985 = 100) | |------|---------------------------------|---------------------------------|--------------------------------------| | 1981 | 100 | Temples | | | 1982 | 110 | EL WA | $110 \times \frac{100}{150} = 73.33$ | | 1983 | 120 | | $120 \times \frac{100}{150} = 80.00$ | | 1984 | 125 | | $125 \times \frac{100}{150} = 88.33$ | | 1985 | 150 | 100 | $150 \times \frac{100}{150} = 100$ | | 1986 | · - 1 | 115 | 115 | | 1987 | | 120 | 120 | | 1988 | - | 130 | 130 | | 1989 | - | 140 | 140 | | 1990 | | 160 | 160 | Example 14. A price index series was started in 1994 as base. By 1998 it rose by 25%. The link relative for 1999 was 95. In this year a new series was started. This new series rose by 15 points by next year. During 2004 the price level was only 5% higher than 2002 and in 2002 they were 8% higher than 2000. Splice the two series. | | Transition - | | | |--------------------|--|---|---| | Year | Old price index
(1994 = 100) | New price index
(1999 = 100) | Old price index
spliced to new | | 1994 | 100 | | (1999 = 100) | | 10 41 FF201 | of stall to the stall to | NOT SHOW IN | $\frac{100}{118.75} \times 100 = 84.2$ | | 1008 | 125 | | 118.75 | | ne. | (05) | | $\frac{125}{118.75} \times 100 = 105.2$ | | 1999 | $\left(\frac{95}{100} \times 125\right) = 118.75$ | 100 | 100.00 | | 2000 | of only I in (I -) | 100 + 15 = 115 | | | 2002 | | | 115.00 | | tath 7415 M. 42 | No. of the last | 100 = 124.2 | 124.20 | | 2004 | e diale , till mp | $\left(\frac{124.2 \times 105}{100}\right) = 130.41$ | 130.4 | | Given the followin | g values: | / ke la | | | | A uple set from | | D . | | | 1994
1998
1999
2000
2002
2004 | 1994 100 1998 125 1999 $\left(\frac{95}{100} \times 125\right) = 118.75$ 2000 2002 2004 Given the following values: | | | A | Culphy SAT Comme | | В | |------|-----------------------------------|------|-------------------------------------| | Year | Section 1975 | Year | | | 1998 | $\Sigma p_0 q_0 = \text{Rs. } 20$ | 2001 | $\Sigma p_3 q_3 = \text{Rs. 35}$ | | 1999 | $\Sigma p_1 q_0 = \text{Rs. 24}$ | 2002 | $\Sigma p_4 q_3 = \text{Rs. 43}$ | | 2000 | $\Sigma p_2 q_0 = \text{Rs. 30}$ | 2003 | $\Sigma p_5 q_3 = \text{Rs. } 52.5$ | | 2001 | $\Sigma p_3 q_0 = \text{Rs. 40}$ | 2004 | $\Sigma p_6 q_3 = \text{Rs. 55}$ | (i) Calculate the price indices in A series with \boldsymbol{q}_0 as weights and in B series with \boldsymbol{q}_3 as weights. (ii) Splice the two series so as to make A a continuous series. Computation of Price Indices and Splicing | Year | Index A
(1998 = 100) | Index B
(2001 = 100) | Splicing of Series B to A
(1998 = 100) | |------|----------------------------------|---------------------------------------|---| | 1998 | 100 | | -100 | | 1999 | $\frac{24}{20} \times 100 = 120$ | | 120 | | 2000 | $\frac{30}{20} \times 100 = 150$ | T-: | 150 | | 2001 | $\frac{40}{20} \times 100 = 200$ | 100 | 200 | | 2002 | CIANA LON | $\frac{43}{35} \times 100 = 122.86$ | .00 | | 2003 | New you | $\frac{52.5}{35} \times 100 = 150.00$ | $\frac{200}{100}$ × 150 = 300 | | 2004 | DEC-DOIN THE | $\frac{55}{35}$ × 100.= 157.14 | $\frac{200}{100} \times 157.14 = 314.2$ | # Deflating of Index Numbers number. Calculate: Operfacting of Index Numbers Often, changes keep taking place in the prices of commodities and the cost of living. Therefore, index numbers of salary or wages need to be revised due to such changes. In other words, wherever, we need to derive real wages from money wages or real income from money income, the index numbers have to be adjusted or revised. In fact, this process is called as Deflating of Index numbers have to be adjusted or the correction for price changes in money wages or money wages or money wages or money wages. For deflating, the following formulae are used: e series. For denaung, the following following solutions are used: Real Wages (or Deflated Wages) = $\frac{\text{Money Wages}}{\text{Price Index}} \times 100$ The real income is also known as deflated income., i.e., income at constant prices. The real income is also known as defined income, in the real wage index or real income index is to be derived, then first, the above said formulae are wage index or real income index is to be derived, then first, the above said formulae are the following If real wage most of the another than the first year as base. The following formulae are used and then indices are computed by taking the first year as base. The following formulae are used to find it: Real Wages Index No. = $$\frac{\text{Real wages of the current year}}{\text{Real wages of the base year}} \times 100$$ Real Income Index No. = $$\frac{\text{Real income of the current year}}{\text{Real income of the base year}} \times 100$$ The following examples illustrate the process of defalting the index numbers: Example 16. The following data relate to the wages of the people and the general price index (i) Real Wages and (ii) Index Number of Real Wages with 1980 as base | Year | Wages
(in Rs.) | Price Index | |------|-------------------|-------------| | 1980 | 800 | 100 | | 1981 | 819 | 105 | | 1982 | 825 | 110 | | 1983 | 876 | 120 | | 1984 | 920 | 125 | | 1985 | 938 | 140 | | 1986 | 924 | 140 | #### Solution: | Year | Wages
(in Rs.) | Price
index | Real wages | Real wage index number
(1980 =Base year) | |------|-------------------|----------------|---------------------|---| | 1980 | 800 | 100 | 800
100 ×100=800 | =100 | | 1981 | 819 | 105 |
819
105 ×100=780 | $\frac{780}{800} \times 100 = 97.5$ | 825 | 1902 | : 100 Mg 1971 | Audi cale | 825
110 × 100=750 | | |------|---------------|-----------|------------------------------------|--------------------------------------| | 1983 | 876 | 120 | $\frac{876}{120} \times 100 = 730$ | $\frac{750}{800} \times 100 = 93.5$ | | 1984 | 920 | 125 | 920
125 ×100=736 | $\frac{730}{800} \times 100 = 91.25$ | | 1985 | 938 | 140 | 938
140 × 100=670 | $\frac{736}{800} \times 100 = 92$ | | 1986 | 924 | 140 | $\frac{924}{140} \times 100 = 660$ | $\frac{670}{800} \times 100 = 83.75$ | | 97 | 1 3760 | 21/2 1 /1 | 140 000 | $\frac{660}{800} \times 100 = 82.5$ | Example 17. The following table gives the per capita income and the cost of living index of a particular community. Calculate the index numbers of real income taking into | Year: | 1989 | 1990 | | | | | 0 | |----------------------------------|------|------|------|------|------|------|------| | Cost of living index (1989=100): | 100 | 104 | 1991 | 1992 | 1993 | 1994 | 1995 | | Per capita income (in Rs.): | 360 | 400 | 115 | 160 | 210 | 260 | 300 | | | | 100 | 480 | 520 | 550 | 590 | 610 | ## Construction of Real Income Index Number | Year | Per capita
income (Rs.) | Cost of living index | Real income
(Rs.) | Real income Index Nos. | |------|----------------------------|----------------------|---------------------------------------|--| | 1989 | 360 | 100 | $\frac{360}{100} \times 100 = 360$ | (1989=100)
100 | | 1990 | 400 | 104 | $\frac{400}{104} \times 100 = 384.61$ | $\frac{384.61}{360} \times 100 = 106.84$ | | 1991 | 480 | 115 | $\frac{480}{115} \times 100 = 417.39$ | $\frac{417.39}{360} \times 100 = 115.94$ | | 1992 | 520 | 160 | $\frac{520}{160} \times 100 = 325$ | $\frac{325}{360} \times 100 = 90.28$ | | 1993 | 550 | 210 | $\frac{550}{210} \times 100 = 261.90$ | $\frac{261.90}{360} \times 100 = 72.75$ | | 1994 | 590 | 260 | $\frac{590}{260} \times 100 = 226.92$ | $\frac{226.92}{360} \times 100 = 63.03$ | | 1995 | 610 | 300 | $\frac{610}{300} \times 100 = 203.33$ | $\frac{203.33}{360} \times 100 = 56.48$ | # Purchasing Power of Money The concept of deflating can also be used to determine the purchasing power or real of a rupee. When prices in general are rising, the real value of a rupee is declining. If, for apple, the price index in 1992 with base 1990 is 120, the real value of a rupee in 1992 as compared with its value in $1990 = \frac{1}{120} \times 100 = 0.83$. This implies that a rupee in 1990 is worth only 83 paise in 1992. Thus, Purchasing Power of Money = Cost of Living Index Example 18. Table below shows the average wages in rupees per week of a group of industrial workers in the year 1989-1996. The consumer price indices for these year with 1989 workers in the given: | as base are also given: | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | | |---|------|-------|-------|-------|-------|-------|-------|-------| | Year:
Average wage of | 119 | 133 | 144 | 157 | 175 | 184 | 189 | 1996 | | workers (Rs.):
Consumer price index: | 100 | 107.6 | 106.6 | 107.6 | 116.2 | 118.9 | 119.8 | 120.2 | - (i) Determine the real wage of workers during the year 1989-1996 as compared with their wages in 1989. - (ii) Determine the purchasing power of rupee for the year 1996 as compared to the year 1989. What is the significance of this result? (i) Real Wage = $\frac{\text{Money Wage}}{\text{Common Prime Field Wage}} \times 100$ Solution: | Year | Wages (Rs.) | Consumer price index | Real wages | | |------|-------------|----------------------|---|--| | 1989 | 119 | 100 | $\frac{119}{100} \times 100 = 119.00$ | | | 1990 | 133 | 107.6 | $\frac{133}{107.6} \times 100 = 123.6$ | | | 1991 | 144 | 106.6 | $\frac{144}{106.6} \times 100 = 135.00$ | | | 1992 | 157 | 107.6 | $\frac{157}{107.6} \times 100 = 145.9$ | | | 1993 | 175 | 116.2 | $\frac{175}{116.2} \times 100 = 150.6$ | | | 1994 | 184 | 118.9 | $\frac{184}{118.9} \times 100 = 154.7$ | | | 1995 | 189 | 119.8 | $\frac{189}{119.8} \times 100 = 157.7$ | | | 1996 | 194 | 120.2 | $\frac{194}{120.2} \times 100 = 161.4$ | | $\frac{100}{100.0}$ = 0.83 or 83 paise (approx). (ii) The purchasing power of rupee = $\frac{100}{120.2}$ For the year 1996, it means a rupee worth of 1989, is worth only 83 paise in 1986. The purchasing power of rupee has decreased by 17% over the period 1989 to 1986. | he following data: | Weekly take-home pay | | |--------------------|----------------------|--| | | (wages) | Consumer Price
Index | | | 109.50 | 112.8 | | 2000 | 112.20 | | | 2001 | 116.40 | 118.2 | | 2002 | 125.08 | 127.4 | | 2003 | | 138.2 | | 2002 | 155.40 | 143.5 | | | 1999
2000
2001 | 1999 109.50
2000 112.20
2001 116.40
2002 125.08 | - (i) What was the real average weekly wage for each year? - (ii) In which year did the employees have the greatest buying power? - (ii) What percentage increase in the weekly wages for the year 2004 is required (if any) to provide the same buying power that the employees employed in the year in which they had the highest real wages. - (i) Real average weekly wage can be obtained by the following formula: Real Wage = $\frac{\text{Money Wage}}{\text{Price Index}} \times 100$ Calculation of Real Wages | Year | Wages (Rs.) | Consumer price index | Real wages | |------|-------------|----------------------|---| | 1999 | 109.50 | 112.8 | $\frac{109.5}{112.8} \times 100 = 97.07$ | | 2000 | 112.20 | 118.2 | $\frac{112.2}{118.2} \times 100 = 94.92$ | | 2001 | 116.40 | 127.4 | $\frac{116.4}{127.4} \times 100 = 91.37$ | | 2002 | 125.08 | 138.2 | $\frac{125.08}{138.2} \times 100 = 90.51$ | | 2003 | 135.40 | 143.5 | $\frac{135.4}{143.5} \times 100 = 94.36$ | | 2004 | 138.10 | 149.8 | $\frac{138.10}{149.8} \times 100 = 92.19$ | (ii) The employees have the greatest buying power in 1999 since the real wage was maximum for the year 1999. (iii) The percentage increase in prices in 2004 as compared to 1999 $= \frac{149.8}{112.8} \times 100 = 132.8$ The weekly money wages in 2004 so as to have the same purchasing power as in 1999 109.50×132.8 $=\frac{109.50\times132.8}{100}$ = Rs. 145.42 100 Thus, the required increase in weekly wages = 145.42 - 138.10 =Rs. 7.32 The percentage increase in weekly wages of 2004 $= \frac{7.32}{138.10} \times 100 = 5.3\%.$ Example 20. Calculate the national income at current prices from the following data: | Calculate the national area | | | | | o minu. | | |--|------|------|------|------|---------|-----------| | Year: | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | | National income at 1997
prices (Rs. Billion): | 80 | 90 | 100 | 105 | (1) 120 | 110115 or | | Price index (1997 = 100): | 100 | 120 | 125 | 140 | 180 | 200 | #### Solution: ## Calculation of National Income at Current Prices | Year | National
income
at
1997 prices | Price index
(1997=100) | National income at current prices National income at 1997 prices×Price inc 100 | | | |------|---|---------------------------|--|--|--| | 1999 | 80 | 100 | $80 \times \frac{100}{100} = 80$ | | | | 2000 | 90 | 120 | $90 \times \frac{120}{100} = 108$ | | | | 2001 | 100 | 125 | $100 \times \frac{125}{100} = 125$ | | | | 2002 | 105 | 140 | $105 \times \frac{140}{100} = 147$ | | | | 2003 | 120 | 180 | $120 \times \frac{180}{100} = 216$ | | | | 2004 | 115 | 200 | $115 \times \frac{200}{100} = 230$ | | | Index Numbers-II For the following data of a firm, construct the index of average wage and salaries at constant prices (Base year = 1980). | onstant people on the second | 1980 | 1981 | | | | |------------------------------|----------------------|---------|------|--------|------| | verage wages and | 5000 | 5670 | 1982 | 1983 | 1984 | | alaries paid (1857) | 05 had little to the | 4.17.00 | 5865 | 6240 | 6820 | | onsumer price index: | 100 | 108 | 102 | 17,000 | | | <u></u> | Colonia | | 102 | 104 | 110 | | Year | Average wages
and
salaries paid (Rs.) | Consumer
price
index | Wages and salaries at constant prices | Index of wage
salaries
(1980 = 10 | ies | | |------|---|----------------------------|---------------------------------------|---|-----|--| | 1980 | 5000 | 100 | $\frac{5000}{100} \times 100 = 5000$ | $\frac{5000}{5000} \times 100 =$ | 100 | | | 1981 | 5670 | 108 | $\frac{5670}{108} \times 100 = 5250$ | $\frac{5250}{5000} \times 100 =$ | 10: | | | 1982 | 5865 | 102 | $\frac{5865}{102} \times 100 = 5750$ | $\frac{5750}{5000} \times 100 =$ | n | | | 1983 | 6240 | 104 | $\frac{6240}{104} \times 100 = 6000$ | 6000
5000 × 100 = | 12 | | | 1984 | 6820 | 110 | $\frac{6820}{110} \times 100 = 6200$ | $\frac{6200}{5000} \times 100 =$ | 12 | | Example 22. The average wage of a rail-road worker per day was Rs. 119 in 2000 and Rs. 245 in 2005. The consumer price index for these year was 95.5 and 123.5 respectively. Show that the money wage increased by about 59% in 2005 as compared as 2000. We first calculate a consumer price index with 2000 as base year by dividing given consumer price index by 95.5 and expressing the result as percentage: | Year | C.P.I. | Wages | New C.P.I.
(2000 = 100) | Real wages $\left(\frac{\text{Wages}}{\text{C.P.L}} \times 100\right)$ | Money wages index (Real wages Base year wages × 100) | |------|--------|-------|--|--|---| | 2000 | 95.5 | 119 | $\frac{95.5}{95.5} \times 100 = 100$ | $\frac{119}{100} \times 100 = 119$ | $\frac{119}{119} \times
100 = 100$ | | 2005 | 123.5 | 245 | $\frac{123.5}{95.5} \times 100 = 129.32$ | $\frac{245}{129.32} \times 100 = 189.45$ | 189.45
119×100=159.20 | Although the wages are more than doubled, the money wages increased by only 59.20%. of real wage increase. Current real wage percentage is $\frac{120}{110} \times 100 = \frac{1200}{11} = 109.09\%$ Hence, the percentage increase in real wage is 109.09 - 100 = 9.09%. # **EXERCISE 4.3** ## Base Shifting Base Shifting 1. The following are the index numbers of wholesale prices of a certain commodity based on | 1992: | 1992 | 1993 | 1994 | 1995 | 1996 | |-------|------|------|------|------|------| | Year: | 100 | 108 | 120 | 150 | 210 | Shift the base to 1994 and obtain new index numbers. [Ans. 83.33, 90, 100, 125, 175] 2. An index is at 100 in 1981. It rises 4% in 1982, falls 6% in 1983, falls 4% in 1984 and rises 3% in 1985. Calculate the index numbers for five years with 1983 as base. [Hint: See Example 35] Given below are the two price index series at different base years. Splice (i) 1995-base index series with 1991-base index series, and (ii) 1991-base index series with 1995-base index | eries. | | | | | | Water San | 9 | 1000 | 1000 | 2000 | |--------------------------------|------|------|------|------|------|-----------|------|------|------|------| | Year: | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | | | - | 106 | 115 | 123 | 125 | _ | _ | - | - 5 | - | | Price Index
(1991 as base): | 100 | 105 | 115 | 123 | - | | | | 120 | 150 | | Price Index | 1 | _ | 1 | - | 100 | 104 | 110 | 112 | 120 | 150 | | 1995 as base): | | | | | | | | | | 10 | [Ans. (i) 100, 105, 115, 123, 125, 130, 137.5, 140, 150, 187.5 (ii) 80, 84, 92, 98.4, 100, 104, 110, 112, 120, 150] | Year | Index A
(1954 = 100) | Index B
(1969 = 100) | Index C
(1975 = 10 | |------|-------------------------|--|-----------------------| | 1954 | 100 | | 1 | | 1960 | 120 | 75-1- Is | 1 | | 1969 | 200 | 100 | 100 | | 1975 | | 200 | 120 | | 1985 | | The state of s | 12. | [Ans. 25, 30, 50, 100, 120] Prepare a spliced series of index numbers with base 1975 = 100 as base. [Hint: See Example 38] Index Numbers-II The following table gives the per capita income and the cost of living index for a particular class of people. Deflate the per capita income by taking into account the changes in the cost | class | | 0 | |--|---|----------------------| | of living. | Per capita income (Rs.) | Cost and | | 1979 | 300 | Cost of living index | | | 320 | 120 | | 1980 | over the second by the second of | 125 | | 1981 | 340 | 150 | | 1982 | 350 | | | The second secon | 375 | 160 | | 1983 | 5.5 | 175 | [Ans. 250, 256, 226.27, 218.75, 214.29] 253 6. Calculate the (i) Real Wages and (ii) Index of Real Wages from the following information using 1985 as base year: | Year: | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | |------------------------|------|------|------|------|------|------| | Average monthly wages: | 200 | 225 | 240 | 280 | 350 | 400 | | Consumer price index: | 100 | 120 | 125 | 135 | 175 | 225 | [Ans. (i) 200, 187.5, 192, 207.41, 200, 177.78; (ii) 100, 93.75, 96, 103.72, 100, 88.89] 7. The following are the average daily wages in rupees of a group of industrial workers and | Year: | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | |-----------------------|------|------|------|------|------|------| | Daily wages: | 80 | 108 | 125 | 147 | 216 | 230 | | Consumer price index: | 100 | 120 | 125 | 140 | 180 | 200 | - (i) Determine the real wages of workers during the years 1999-2004 as compared with their wages in 1999. - (ii) Calculate the purchasing power of rupee for the year 2004 as compared to the year 1999. What is the significance of this result? [Ans. (i) 80, 90, 100, 105, 120, 115 (ii) $0.5 = \frac{100}{200}$, purchasing power of rupee has decreased by 50% over the period
from 1999 to 2004] 8. Given the following data: | Year: | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | |--------------------|--------|--------|--------|--------|--------|--------|--------| | Monthly pay (Rs.): | 10,500 | 11,000 | 11,500 | 12,500 | 13,500 | 14,000 | 14,500 | | Price index: | 115 | 120 | 130 | 138 | 144 | 150 | 160 | Calculate the real monthly pay for each year. (ii) In which year did the employee have the highest purchasing power? (iii) What percentage increase in the monthly pay for the year 2001 is required (if any) to compensate him with the purchasing power in the year of his highest real pay? [Ans. (i) 9130.43, 9166.66, 8846.15, 9057.97, 9375, 9333.33, 9062.5 (ii) 1999, (iii) 3.44%] # CONSUMER PRICE INDEX OR COST OF LIVING INDEX NUMBERS CONSUMER PRICE INDEX OF CONSUMER PRICE INDEX OF CONSUMER PRICE INDEX OF CONSUMER PRICE INDEX OF CONSUMERS AND THE CONSUMERS OF COMPANY OF CONSUMERS CONSUME Cost of living index numbers show the direction and magnitude of change taking place in the cost of living index numbers show the direction and place. Its purpose is to know how much cost of living of specific group of persons at given time and place. Its purpose is to know how much increase or decrease has taken place in the outlay or subsistence expenditure made by a consumer on increase or decrease has taken place in the outlay or subsistence expenditure made by a consumer of increase or decrease has taken place in the outlay or subsistence of people consume of increase in the price of commodities are different. Therefore, separate consumer of the outland of the process of commodities are different. Therefore, separate consumer of the process of the pulse and for different consumers. his living. It is not uniform on all the classes of a society of commodities are different. Therefore, separate cost of commodities and changes in the prices of commodities and for different places. Consume living indices are constructed for different classes of people and for different places. Consumer living indices are constructed for different classes of people and for different places. Consumer living indices are constructed for different classes of people and for different places. Consumer living indices are constructed for different classes of people and for different places. Consumer living indices are constructed for different classes of people and for different places. Consumer living indices are constructed for different classes of people and for different places. Consumer living indices are constructed for different places. living indices are constructed for different classes of Polyne and the effects on living conditions price Index Numbers are those index numbers which measure the effects on living conditions price Index Numbers are those index numbers which measure the effects on living conditions are the conditions of Price Index Numbers are those index and conditions of different classes of consumers for any change in the level of prices over a period of time, of different classes of consumers for any change in the level of prices over a period of time. of different classes of consumers for any classes of time economic progress of a country Such types of indices are constructed in order to find out how the economic progress of a country Such types of indices are constructed in order to find out how the economic progress of a country Such types of a particular class of people. Such types of indices are constructed in order to find out now the has affected the standard of living of a particular class of people. # Uses of Consumer Price Index The different uses of consumer price index are given below: - (i) To Examine the Effects of Changes in Retail Prices: It is used to examine the effect of change in the retail prices on the cost of living of a particular class of people - (ii) Helpful in Policy Formation: The government may decide its price control, minimum wages, rationing policies in the light of the changes in the cost of living index. - (iii) Fixation of Dearness Allowance: The amount of dearness allowance and revision of wages of different categories of employees are decided on the basis of consumer price index. ## Construction of Consumer Price Index The procedure of constructing a consumer price index is as follows: (1) Decision about the Class of People: First of all, it should be ascertained that for which class consumer price index will be constructed, i.e., whether the index is related to industrial workers, teachers, office employees, etc. At the same time, the scope of the index should also be well defined - (2) Conducting Family Budget Enquiry: After deciding about the specific class, some families from that class should be selected by random sampling and their budgets should be studied to make findings about their items of income-expenditure, quantities of commodities and size of families etc. According to convenience, the items of consumption are divided into five main categories: (1) Food, (ii) Clothing, (iii) Fuel and Lighting, (iv) House Rent, (v) Miscellaneous. - (3) Obtaining Price Quotations: After selecting the commodities, their retail prices are obtained. Retail prices of the selected commodities are collected from the reliable sources and from those places from where the people of that class buy goods. - (4) To Decide Weight: To express the relative importance of the items of consumptions consumptions of the items of consumptions consumpt selective weights are assigned to them. Weights can be given in two ways: (i) In the proportion of consumption quantity is the designed to the consumption quantity is the selective weights are assigned to them. consumption quantity in the base year (q_0) (ii) In the proportion of expenditure made on each commodity in the base year (q_0) (ii) In the proportion of expenditure made on each commodity in the base year $(p_0 q_0)$. - (5) Methods of Constructing Consumer Price Index: After this, consumer price indices are structed by the following matter $q_{\rm cons}$ constructed by the following methods: - (i) Aggregate Expenditure Method. - (ii) Family Budget Method. (l) Aggregate Expenditure Method (1) Aggregate Expenditure 1. (2) Aggregate Expenditure 2. (3) Aggregate Expenditure 2. (4) Aggregate Expenditure 2. (4) Aggregate Expenditure 2. (5) Aggregate Expenditure 2. (6) gregard, wages are assigned to items on the base of b method, wages are assigned to items on the base of b Consumer Price Index $$(P_{01}) = \frac{\sum p_1 q_0}{\sum p_0 q_0} \times 100$$ Aggregative expenditure method is equal to Laspeyre's Method. neps for Calculation is for Calculation Solution (Q_0) and prices in current year (p_1) are multiplied and their sum (Q_0) is taken. This is the aggregate expenditure in current year Quantity in taken. This is the aggregate expenditure in current year (\mathcal{E}_1, q_0) is taken. This is the aggregate expenditure in current year. (i) Quantity in base year (q_0) and price in base year (p_0) are multiplied and their sum $(\Sigma p_0 q_0)$ is taken. This is the aggregate expenditure in base year. is taken. This state by $\sum p_0 q_0$ and the quotient is multiplied by 100. (2) Family Budget Method (2) Family Budget this method, the weights are assigned to items on the basis of percentage expenditure on Consumer Price Index $(P_{01}) = \frac{\sum PW}{\sum W}$ Where, P = Price Relatives = $\frac{p_1}{p_0} \times 100$, W = Total Expenses = $p_0 q_0$. If the geometric mean is used, then $P_{01} = AL \left[\frac{\Sigma W \log P}{\Sigma W} \right]$ Family budget method is equal to Weighted Average of Price Relative Method. s for Calculation (i) Price relative of current year for each commodity is computed by the following formula: $$P = \frac{p_1}{p_0} \times 100$$ - (ii) Price relative of each commodity is multiplied by the expenditure on it or (Value Weight or W) to find out weighted price relatives. - (iii) Weighted price relatives are summed up (ΣΡW) - (iv) Σ W, i.e., summation of weights which is Σ p_0q_0 is determined. - (r) Σ PW is divided by Σ W and the quotient is multiplied by 100. - the lit should be noted that prices and quantities must be same in units while multiplying. If I as a noted that prices and quantities must be same in units while mulipying with soft price and quantity are not different, then the unit of quantity must be changed into the unit of price before carrying out multiplication. For example, if the price is per quintal and the quantity purchased in kg. then kgs. must be converted into quintals before carrying out multiplication. out multiplication. - The consumer price index numbers (or cost of living index) obtained by both the methods are the same - Aggregate expenditure method should always be preferred to in as much as it proves to be easier than the second method should always be preferred to in as much as it proves to be than the family budget method so far as calculations are concerned. |) by (1) 1 - 8 | Quantity consumed | Unit | Prices | |-----------------|-------------------|-------|--------| | Items | in 1980 | | 1980 | | | 2 Qtls | Qtls | 75 | | Wheat
Rice - | 20 Kg | Kg | 12 | | Sugar | 10 Kg | Kg | 12 | | Ghee | 5 Kg | Kg | 10 | | Clothing | 25 Meters | Meter | 4.5 | | Fuel | 40 Kg | Kg | 10 | | Rent | One House | House | 25 | Solution: | Items | Quantity consumed in 1980 (q ₀) | Unit | Prices in
1980 (p ₀) | Prices in
1990 (p ₁) | P ₀ q_0 | P_1q_0 | |----------|---|-------|-------------------------------------|-------------------------------------|-------------------------|-----------------------| | Wheat | 2 Otls | Qtls | 75 | 125 | 150 | 250 | | Rice | 20 Kg | Kg | 12 | 16 | 240 | 320 | | Sugar | 10 Kg | Kg | 12 | 16 | 120 | 160 | | Ghée | 5 Kg | Kg | 10 | 15 | 50 | 75 | | Clothing | 25 Meters | Meter | .4.5 | 5 | 112.5 | 125 | | Fuel | 40 Kg | Kg | 10 | 12 | 400 | 480 | |
Rent | One House | House | 25 | 40 | 25 | 40 | | .com | | | | | $\sum p_0 q_0 = 1097.5$ | $\sum p_1 q_0 = 1450$ | Cost of Living Index Number $(P_{01}) = \frac{\sum p_1 q_0}{\sum p_0 q_0} \times 100 = \frac{1450}{1097.5} \times 100 = 132.12$ (ii) Computation of Cost of Living Index Number by Family Budget Method | Items | Quantity consumed in 1980 (q ₀) | Unit | Prices in 1980 (<i>p</i> ₀) | Prices in
1990(p ₁) | Price relatives $P = \frac{p_1}{p_0} \times 100$ | $W = p_0 q_0$ | PW | |----------|---|-------|--|------------------------------------|--|---------------------|---------------| | Wheat | 2 Otls | Otls | 75 | 125 | 166.66 | 150 | 24999 | | Rice | 20 Kg | Kg | 12 | 16 | 133.33 | 240 | 31999 | | Sugar | 10 Kg | Kg | 12 | 16 | 133.33 | 120 | 15999
7500 | | Ghee | 5 Kg | Kg | 10 | 15 | 150.00 | 50 | 12499.1 | | Clothing | 25 Meters | Meter | 4.5 | 5 | 111.11 | 112.5 | 4800 | | Fuel | 40 Kg | Kg | 10 | 12 | 120.00 | 400 | 4000 | | Rent | One House | House | 25 | 40 | 160.00 | 25 | - ni | | | | 7 19 | | | an resident | $\sum_{n=1097.5} W$ | =144997 | Index Numbers-II Cost of Living Index $(P_{01}) = \frac{\Sigma PW}{\Sigma W} = \frac{144997.675}{1097.5} = 132.12$ Construct Cost of Living Index Number of 1980 on the basis of 1970 by (i) Aggregate Expenditure Method, and (ii) Family Budget Method: | Items | Quantity consumed | Unit | Pric | Prices in | | |----------|-------------------|-------|------|-----------|--| | | in 1970 | | 1970 | 1980 | | | Wheat | 2 Qtls | Qtls | 50 | | | | Rice | 1 Qtl | Qtls | 80 | 100 | | | Arlıar | 20 Kg | Kg | 1.20 | 110 | | | Sugar | 0.5 Qtls. | Kg | 2.0 | 2.80 | | | Salt | 10 Kg | Qtls | | 3.00 | | | Oil | 10 Kg | Kg | 20 | 30 | | | Clothing | 20 Meter | Meter | 4 | 8. | | | | 4 Otls | | . 3 | 5 | | | Fuel | - | Qtls | 12 | 15 | | | Rent | One House | House | 50 | 75 | | Solution: Since the unit of price and quantity of two items such as sugar and salt are different, we should convert the unit of quantity into the unit of price before we apply any method. (i) Construction of Cost of Living Index by Aggregate Expenditure Method | Items | Quantity consumed in 1970 (q ₀) | Unit | Price in 1970 (p ₀) | Price in
1980 (p ₁) | . P ₀ q ₀ | $p_{1}q_{0}$ | |----------|---|-------|---------------------------------|------------------------------------|---------------------------------|----------------------| | Wheat | 2 Qtls | Qtls | 50 | 100 | 100 | 200 | | Rice | 1 Qtl | Qtls | 80 | 110 | 80 | 110 | | Arhar | 20 Kg | Kg | 1.20 | 2.80 | 24 | 56 | | Sugar | 50 Kg | Kg | 2.0 | 3.00 | 100 | 150 | | Salt | 0.1Qtls. | Qtls | 20 | 30 | 2 | 3 | | Oil | 10 Kg | Kg | 4 | 8 | 40 | 80 | | Clothing | 20 Meter | Meter | 3 | 5 | 60 | 100 | | Fuel | 4 Qtls | Qtls | 12 | 15 | 48 | 60 | | Rent | One House | House | 50 | 75 | 50 | 75 | | 11.0 | 1-1-1-1 | 7 | | | $\Sigma p_0 q_0 = 504$ | $\Sigma p_1 q_0 = 8$ | Cost of Living Index Number $(P_{01}) = \frac{\sum p_1 q_0}{\sum p_0 q_0} \times 100$ $=\frac{834}{504}\times100=165.47\approx165.5$ 257 Exam # (ii) Construction of Cost of Living Index by Family Budget mthod | Items | Quantity
consumed
in 1970 | Unit | Prices
in 1970
(p ₀) | Prices
in 1980
(p ₁) | Price
Relatives
$P = p_1/p_0$
×100 | $W = p_0 q_0$ | PW | |----------|---------------------------------|-------|--|--|---|------------------|---------------| | Wheat | 2 Qtls | Qtls | 50 | 100 | 200 | 100 | 200- | | Rice | 1 Qtl | Qtls | 80 | 110 | 137.5 | 80 | 20000 | | Arhar | 20 Kg | Kg | 1.20 | 2.80 | 233.33 | 24 | 11000
5600 | | Sugar | 50 Kg | Kg | 2.0 | 3.00 | 150.00 | 100 | 15000 | | Salt | 0.10 Qtls. | Qtls | 20 | 30 | 150.00 | 2 | 300 | | Oil | 10 Kg. | Kg | 4 | 8 | 200 | 40 | 8000 | | Clothing | 20 meter | meter | 3 | - 5 | 166.67 | 60 | 10000 | | Fuel | 4 Qtls. | Qtls | 12 | - 15 | 125 | 48 | 6000 | | Rent | One House | House | - 50 | 75 | 150 | 50 | 7500 | | - | - | | | | | $\Sigma W = 504$ | Σ PW- 9240 | Cost of Living Index Number $(P_{01}) = \frac{\sum PW}{\sum W} = \frac{83400}{50A} = 165.5$ ΣW 504 #### IMPORTANT TYPICAL EXAMPLES **BASED ON FAMILY BUDGET METHOD** Example 26. An enquiry into the budget of the middle class families in a certain city in India gave | the following inform | ation: | |----------------------|--------| | Items | F | | Items | Food | Fuel | Clothing | Rent | Misc. | |----------------------|------|------|----------|------|-------| | Expenses (in %) | 35 | 10 | 20 | 15 | 20 | | Prices in 2000 (Rs): | 150 | 25 | 75 | 30 | 40 | | Prices in 2002 (Rs): | 145 | 23 | 65 | - 30 | 45 | What is the cost of living index number of 2002 as compared with 2000? Solution: Here the percentage expenses on different items are to be taken as weights (W). | Items | Weights (W) | Prices in 2000 (p ₀) | Prices in 2002 (p ₁) | $\mathbf{P} = \frac{p_1}{p_0} \times 100$ | |---------|------------------|----------------------------------|----------------------------------|---| | Food | 35 | 150 | 145 | 96.67 | | Fuel | 10 | 25 | 23 | . 92.00 | | lothing | 20 | 75 | 65 | 86.67 | | Rent | 15 | 30 | 30 | 100.00 | | Misć. | 20 | 40 / | 45 | 112.50 | | | $\Sigma W = 100$ | . / | | | Cost of Living Index Numbers $(P_{01}) = \frac{\sum PW}{\sum W} = \frac{9786.85}{100} = 97.86$ 100 The percentage decrease in prices in 2002 = 97.86 - 100 = -2.14. The percentage -2.14. Thus, there is a decrease of 2.14% in the prices of 2002 as compared to 2000. Construct the Cost of Living Index for 1976 on the basis of 1975 from the following data and give your comments: | Item | Prices in 1975
(Rs.) | Prices in 1976
(Rs.) | Weights | | |----------|-------------------------|-------------------------|---------|--| | Food | 39 | 47 | | | | Fuel | | 12 | 4 | | | Clothing | 14 | 18 | No. 1 | | | Rent - | 12 - 4 3.1 | 15 and 15 and 15 | . 3 | | | Misc. | 25 | 30 | 2 | | Solution: Since weights are directly given along with the prices in 1975 and 1976, we first determine price relatives (P) and then multiply it with weights (W). Calculation of Cost of Living Index | | | | ring muck | | | |----------|-----------------------|-----------------------|----------------------------------|---------------|-------------| | Items | <i>P</i> ₀ | <i>p</i> ₁ | $P = \frac{p_1}{p_0} \times 100$ | W = '. | PW . | | Food | 39 | 47 | 120.51 | 4 | 482.04 | | Fuel | 8 | 12 | 150.00 | 1 | 150.00 | | Clothing | 14 | 18 | 128.57 | 3 | 385.71 | | Rent · | 12 | 15 | 125.00 | 2 | 250.00 | | Misc. | 25 | 30 | 120.00 | t Mai | 120.00 | | | R | | 32 | ΣW = 11 | ΣPW=1387.75 | Cost of Living Index Numbers $(P_{01}) = \frac{\sum PW}{\sum W} = \frac{1387.75}{11} = 126.16$ It shows that the cost of living has gone up by 26.16% in 1976 compared to 1975. Example 28. Calculate the Cost of Living Index from the following data: | Group | Food | Fuel and
Lighting | Clothing | Rent | Misc. | |---------|------|----------------------|----------|------|-------| | Index: | 352 | 200 | 230- | 160 | 190 | | Weight: | 48 | 10 | 8 | 12 | 15 | Since we are given index no. for different group items along with their weights, we use family budget method (or weighted average of price relatives) to calculate cost of living index. living index. | Items | Index No. (I) | Weight (W) | Г | |-------------------|---------------|------------|------| | Food | 352 - | 48 | 16 | | Fuel and Lighting | 200 | 10 | 20 | | Clothing | 230 | 8 | 18 | | Rent | 160 | 12 | 19 | | Miscellaneous | 190 | 15 | 28 | | VIIScerimies | | ΣW=93 | ΣIW= | Cost of Living Index Numbers $(P_{01}) = \frac{\Sigma IW}{\Sigma W} = \frac{25506}{93} = 274.26$ Example 29. The following table gives the group index numbers and the weights of different heads of expenditure in the calculation of a cost of living index except the index for the group fuel and lighting: | Group: | Food | Clothing | Fuel &
Lighting | Rent | Misc. | |----------|------|----------|--------------------|------|-------| | Index: | 132 | 113 | - n l=60 | 128 | 147 | | Weights: | 65 | 9 | . 8 | 10 | 8 | If the cost of living index is 134, find the index number of fuel and lighting. Let the index number of Fuel and Lighting be denoted by X | Group | Price Index
(P) | Weight (W) | PW | |-------------------|--------------------|------------------|-------------------------| | Food | 132 | 65 | 8580 | | Clothing | 113 | 9 | 1017 | | Fuel and Lighting | х | 8 / | 8X | | Rent | 128 | 10 | 1280 | | Misc. | 147 | 8 1 111 11 | 1176 | | 1 | V | $\Sigma W = 100$ | $\Sigma PW = 12053 + 1$ | Cost of Living Index = $$\frac{\Sigma PW}{\Sigma W}$$ = 134 (given) ⇒ $134 = \frac{12053 + 8X}{100}$ ⇒ $13400 = 12053 + 8X$ ⇒ $13400 - 12053 = 8X$ ⇒ $1347 = 8X$ ⇒ $X = \frac{1347}{8} = 168.375$ 8 A textile worker in the city of Delhi earns Rs. 750 p.m. The cost of living index for January 1980 is given as 160. Using the following data, find out the amount he spent on (a) Food and (b) Rent. | Group. | Food | Clothing | P | | | |--------------|------|-----------|------|----------|-------| | Group | | - Touring | Rent | Fuel and | Misc. | | Expenditure: | ? | 125 | 2 | Lighting | | | Group Index: | | 181 | 140 | 100 . | 75 | | Group Indian | | ~ | 140 | 118 | 101 | Let expenditure on food be Rs. X and rent be Rs. Y | Group | Expenditure | | The Party of P | |-------------------|------------------|-----------------
--| | Group | (W) | Group Index (P) | PW | | Food | X | 190 | 190X | | Clothing | 125 | 181 | 22625 | | Rent . | Y | 140 | 140Y | | Fuel and Lighting | 100 | 118 | 11800 | | Misc. | 75 | 104 | 7575 | | | $\Sigma W = 750$ | 7 | $\Sigma PW = 42000 + 190X + 140Y$ | As textile worker in the city earning Rs. 750 p.m. ∴ $$X+125+Y+100+75=750$$ ⇒ $X+Y=450$...(i) Cost of Living Index = $\frac{\Sigma PW}{\Sigma W} = 160 \text{ (given)}$ $160 = \frac{42000+190X+140Y}{750}$ $1,20,000 = 42,000+190X+140Y$ ⇒ $19X+14Y=7800$...(ii) Multiply (i) by 14 and subtract from (ii), we get $19X+14Y=7800$ $14X+14Y=7800$ $$5X = 1500$$ $$\Rightarrow X = 300$$ Put $X = 300$ in (i) $$300 + Y = 450 \Rightarrow Y = 150$$ Thus Fig. 7, $Y = 150$ Thus, Expenditure on Food = Rs. 300 Expenditure on Rent = Rs. 150 # **EXERCISE 4.4** XERCISE 7-3. 1. From the following data, calculate consumer price index numbers for 1980 on the basis of | Items | Quantity consumed | Unit | Prices | | |-------------|-------------------|-------|--------|----------| | Items | in 1970 | | 1970 | | | Wheat | 2 Qtls | Qtls | 50 | - 1- | | Rice | 25 Kg | Qtls | 100 | 1 | | Arhar * | 10 Kg | Qtls | 80 | -1 | | hee (Dalda) | 10 Kg | Kg | 6.50 | 1 | | il | 0.25 Qtls | Kg | . 2 | The same | | lothing | 50 Meter | Meter | 2 | _}. | | uel | 4 Qtls. | Qtls | 8 | | | ent | 1 House | House | 20 | - | - [Ans. 130.6] 2. Construct the consumer price index for 2000 on the basis of 1999 from the following data using: - (i) Family Budget method - (ii) Aggregative Expenditure method | Commodity: | Rice - | Wheat | Pulses | Ghee | Oil | |---------------------------------|--------|-------|--------|------|------| | Weights: | 40 | 20 | 15 | 20 | 5 | | Price (per unit)
1999 (Rs.): | 16.00 | 40.00 | 0.50 | 5.12 | 2.00 | | Price (per unit)
2000 (Rs.): | 20.00 | 60.00 | 0.50 | 6.25 | 1.50 | [Hint: See Example 41] [Ans. (i) P_{01} (FBM) = 123.15, (ii) P_{01} (AEM) = 137.188] 3. Construct cost of living index number from the following data for 1986 using (i) Family Budget Method; (ii) Aggregative Expenditure Method. | Items | Quantity consumed | Quantity consumed Unit | | Prices | | |-----------|-------------------|------------------------|------|--------|--| | Vheat | in 1985 | A. Bakara | 1985 | | | | ice | 4 Qtls | Kg | 1.50 | | | | loth | 50 Kg | Qtls. | 800 | -35 | | | l | 40 Meter | Meter | 20 | HI. | | | use Rent | 20 Litres | Litre | 1.80 | | | | ase Kelli | One House | House | 100 | in a | | Index Numbers-II The cost of living index uses the following weights— The cost of living index raised from 100 to 205.72. Over the same paried the Food 40, Rent 15, Croaming 25, 1 act 15, Princellaneous 15. During the period 2000-05, the cost of living index raised from 100 to 205.72. Over the same period the percentage rises in prices were: prices were: prices were: Rent-60, Clothing-180, Fuel-75, Miscellaneous-165. What is the percentage change in the price of food? [Hint: $\frac{40x + 7725}{100}$ = 105.72] An enquiry into the budget of the middle class families in Bombay gave the following | Expenses: | Food
35% | Rent
15% | Clothing 20% | Fuel | Misc. | |----------------------|-------------|-------------|--------------|------|-------| | Price in 2004 (Rs.): | 150 | 50 | 100 | 10% | . 20% | | Price in 2005 (Rs.): | 174 | . 60 | A | 20 | 60 | | What changes in the | | | 125 | 25 | 90 | What changes in the cost of living figures in 2005 have taken place as compared to 2004? 6. In calculation a certain cost of living index number, the following weights were used: Food 15, clothing 3, rent 4, fuel and light 2, misellaneous 1. Calculate the index for a data when the average percentage increases in price of items in the various groups over the base period were 32, 54, 47, 78 and 58 respectively. Suppose a business executive was earning Rs. 2000 in the base period, what should be his salary in the current period if his standard of living is to remain the same? - 7. An enquiry into the budgets of the middle class families in a certain city revealed that on an average the percentage expenses of different groups were: Food 45; Rent 15; Clothing 12; Fuel and Light 8 and Miscellaneous 20. The group index numbers for the current year as compared with a fixed base period were respectively 410, 150, 343, 248 and 285. Calculate the cost of living index for the current year. Suppose Mr. X was getting Rs. 240 in the base period and Rs. 430 in the current year. State how much he ought to have received as extra allowance to maintain his former standard of living? - In 2003 for working class people wheat was selling at an average price of Rs. 32 per 10 kg, cloth at Pe. 4 soft working class people wheat was selling at an average price cloth at Rs. 4 per metre, house rent Rs. 60 per house and other items at Rs. 20 per house and other items 2004 cost of wheat rose by Rs. 8 per 10 kg, house rent by Rs. 30 per house and other items doubled in price of the year 2004 (with 2003 as base) doubled in price. The working class cost of living index for the year 2004 (with 2003 as base) Was 160. By how much the cloth rose in during the period? [Hint: See Example 39] [Ans. Increase in price of cloth is by Rs. 2.60 per metre] | Food Item | Weightage | Percentage | |--------------|-----------|------------| | | . 33 | 180 | | Rice | , , 11 | 202 | | Wheat | 8 | 115 | | Dal
Ghee | 5 | 212 | | Oil | 5 | 175 | | Spices | 3 | 517 | | Milk | 7 | 260 | | Fish | 9 | 426 | | Vegetables | 9 | 332 | | Refreshments | 10 | 239 | Using the above food index and the information given below, calculate the consumer price index number: | Group | Index | Weight | |----------------|----------------------|--------------------------| | Food | The same of the same | Weight 60 | | Clothing- | 310 | 5 | | Fuel and Light | -220 | · va province - 8: mail | | Rent and Rates | 150 | t of members of 9 states | | Miscellaneous | 300 | . 18 | [Ans. $I_{Food} = 340$; CPI = 304.60] 10. Following information relating to works in an industrial town is given: | Items of Consumption | Consumer Price Index in 2005
(2000 = 100) | Proportion of Expenditure on the item | |--------------------------|--|---------------------------------------| | Food, drinks and tobacco | 132 | 60% | | Clothing | 154 | remaining of 12% and | | Fuel and Lighting | 147 | 16% | | Housing | 178 | Prophylana 78% IC. W | | Miscellaneous | 150 | 4% | Average wage per month in 2000 is Rs. 2000. What should be the dearness allowance expressed as percentage of wages? What should be the average wage per worker per month in 2005 in that town so that the standard of living of the workers does not fall below the 2000 level? [Ans. CPI = 141.76, Dearness allowance as % of wages = 141.76 - 100 = 41.76 Worker should get = 2000×141.76 = Rs. 2835.20] Index Numbers-II # MISCELLANEOUS SOLVED EXAMPLES Mischard Strample 31. An index is at 100 in 1991. It rises 5% in 1992, falls 6% in 1993, falls 5% in 1994, rises 4% in 1995 and 7% in 1996. Calculate the index numbers for all these years with 1991 as base. Solution: | 100 | Index Numbers | |-----|--------------------------------------| | | | | 105 | 100 = 100 | | | $\frac{105 \times 100}{100} = 105$ | | 94 | 94×105 | | | 100 = 98.7 | | 95 | 95×98.7 = 93.8 | | 104 | 100 | | 104 | $\frac{104 \times 93.8}{100} = 97.6$ | | 107 | 107×97.6 = 104.4 | | | 94
95
104 | Example 32. The average wholesale prices of three groups of commodities for the year 1988 to 1992 are given below. Compute chain base index number with 1988 as base: | - | Group | 1988 | 1989 | 1990 | 1991 | 1992 | |-----|-------------|------|------|------|------|------| | 0 | I | 6 | 9 | 15 | 21 | 24 | | , 6 | II consider | 24 | 30 | 36 | 42 | 54 | | | III | 12 | 15 | 21 | 27 | 36 | Solution: ### Computation of Chain Base Index | Group | 19 | 988 | 1 | 989 | 19 | 990 | 19 | 991 | 1 | 992 | |--------------|----|-----|-------
--------------|--------|-------------|--------|--------------|-------|--------------| | | P | LR | | I | 6 | 100 | 9 | 150 | 15 | 166.67 | 21 | 140 | 24 | 114.29 | | II | 24 | 100 | 30 | 125 | 36 | 120 | 42 | 116.67 | 54 | 128.57 | | III | 12 | 100 | 15 | 125 | 21 | 140 | 27 | 128.57 | 36 | 133.33 | | Total | | 300 | 14 | 400 | 15 | 426.67 | | 385.24 | | 376.19 | | verage of LR | 7 | 100 | ale a | 133.33 | | 142.22 | | 128.41 | | 125.4 | | Chain Index | 1 | 00 | 100 × | 133.33 | 133.33 | ×142.22 | 189.62 | ×128.41 | 243.4 | 9 × 125.4 | | i i | | | | 100
33.33 | | 00
39.62 | | 100
43.49 | | 100
05.34 | | | | | 1985 | 1986 | | |-------|-------|-----------|-------------|-----------------|------| | 110 - | 125 | 135 | 180 | | 1987 | | | 110 - | 110 - 125 | 110 125 135 | 110 125 135 180 | | Solution: | Year | Index No.
(Base 1980 = 100) | Index No.
(Base 1983 = 100) | |------|--------------------------------|------------------------------------| | 1980 | 100 | $\frac{100}{125} \times 100 = 80$ | | 1981 | 105 | $\frac{105}{125} \times 100 = 84$ | | 1982 | 110 | $\frac{110}{125} \times 100 = 88$ | | 1983 | 125 | 100 | | 1984 | 135 | $\frac{135}{125} \times 100 = 108$ | | 1985 | 180 | $\frac{180}{125} \times 100 = 144$ | | 1986 | 195 | $\frac{195}{125} \times 100 = 156$ | | 1987 | 205 | $\frac{205}{125} \times 100 = 164$ | Example 34. The price index of cosmetics was 110 in 2001 with base as 1995 and 120 in 2002 with 2001 as base. It further increased by 30% in 2003 in relation to the price index of 2002 and decreased by 10% in 2004 as compared to its level in 2003. Find the index for 2004 with 1005 as base. for 2004 with 1995 as base. Solution: $$\frac{P_{2001}}{P_{1995}} \times 100 = 110 \qquad \Rightarrow \qquad \frac{P_{2001}}{P_{1995}} = 1.1$$ Price index for 2004 with 1995 as base = $\frac{P_{2004}}{P_{1995}}$ $$= \frac{P_{2001}}{P_{1995}} \times \frac{P_{2002}}{P_{2001}} \times \frac{P_{2003}}{P_{2002}} \times \frac{P_{2004}}{P_{2003}} \times 100$$ $$= 1.1 \times 1.2 \times 1.3 \times 0.9 \times 100$$ $$= 154.44$$ Index Numbers-II An index is at 100 in 1981. It rises 4% in 1982, falls 6% in 1983, falls 4% in 1984 and rises 3% in 1985. Calculate the index numbers for five years with 1983 as base. | Year | Index No.
(Base 1981=100) | . Index No. | |------|--|---| | 1981 | = 100.00 | (Base 1983=100) | | | 100.00 | $\frac{100}{97.76} \times 100 = 102.29$ | | 1982 | 100 + 4 = 104.00 | $\frac{104}{97.76} \times 100 = 106.38$ | | 1983 | 94 | 4-007 | | | $\frac{94}{100} \times 104 = 97.76$ | $\frac{97.76}{97.76} \times 100 = 100.00$ | | 1984 | $\frac{96}{100} \times 97.76 = 93.85$ | 93.85 | | 1985 | | . 71.70 | | 1 | $\frac{103}{100} \times 93.85 = 96.67$ | $\frac{96.67}{97.76} \times 100 = 98.88$ | Example 36. From the Chain Base Index numbers given below, prepare Fixed Base Index numbers (i) when 1991 is not the base year and (ii) when 1991 is taken as the base year. | | **** | | | taken as the t | ase year. | |------------|-------|--------|------|----------------|-----------| | Year: | 1991 | 1992 . | 1993 | 1994 | 1995 | | Index No.: | 80 | 110 | 120 | and the | 2000 | | | part. | | 120 | 90 | 140 | Solution: | TAIR. | Conversion from | CBI to FBI | | |-------|-----------------|---|---| | Year | CBI | FBI
(1991 ≠100) | FBI
(1991=100) | | 1991 | (80 | 80 | 100 | | 1992 | 110 | $\frac{110 \times 80}{100} = 88$ | $\frac{110 \times 100}{100} = 110$ | | 1993 | 120 | $\frac{120 \times 88}{100} = 105.6$ | $\frac{120 \times 110}{100} = 132$ | | 1994 | 90 | $\frac{90 \times 105.6}{100} = 95.04$ | $\frac{90 \times 132}{100} = 118.8$ | | 1995 | 1,40 | $\frac{140 \times 95.04}{100} = 133.05$ | $\frac{140 \times 118.8}{100} = 166.32$ | tumple 37. For the following data of a firm, construct the index of wages at constant prices (Base year = 1986). | Year: | A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | |------------------------|---|------|------|------|------|------| | Waga | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | | Vages (in Rs.): | 300 | 340 | 450 | 460 | 475 | 570 | | Consumer price index.: | 100 | 120 | 220 | 230 | 250 | 300 | | Year | Wages | Consumer price index | Wages at constant prices | Index of wages
(1986 = 100) | |------|-------|----------------------|---------------------------------------|---| | 1986 | 300 | 100 | $\frac{300}{100} \times 100 = 300$ | 100 | | 1987 | 340 | 120 | $\frac{340}{120} \times 100 = 283.33$ | $\frac{283.33}{300} \times 100 = 94.44$ | | 1988 | 450 | 220 | $\frac{450}{220} \times 100 = 204.55$ | $\frac{204.55}{300} \times 100 = 68.18$ | | 1989 | 460 | 230 | $\frac{460}{230} \times 100 = 200$ | $\frac{200}{300} \times 100 = 66.67$ | | 1990 | 475 | . 250 | $\frac{475}{250} \times 100 = 190$ | $\frac{190}{300} \times 100 = 63.33$ | | 1991 | 570 | 300 | $\frac{570}{300} \times 100 = 190$ | $\frac{190}{300} \times 100 = 63.33$ | Example 38. The following three series of index numbers are given: | Year | Index A
(1954=100) | Index B
(1969=100) | Index C
(1975=100) | |------|--|-----------------------|-----------------------| | 1954 | 100 | tion — | 7007 | | 1960 | 120 | | and - | | 1969 | 200 | 100 | | | 1075 | Was the season of o | 200 | 100 | | 1985 | 78.0 | — net | 120 | Prepare a spliced series of index numbers with base 1975=100. ### Solution: | Year | Index A
(1954=100) | Index B
(1969=100) | Inde
(1975 | |------|-----------------------|-----------------------------------|----------------------------| | 1954 | 100 | $\frac{100}{200} \times 100 = 50$ | 100
200 × 5 | | 1960 | 120 | $\frac{100}{200} \times 120 = 60$ | $\frac{100}{200} \times 6$ | | 1969 | 200 | 100 | $\frac{100}{200} \times 1$ | | 1975 | | 200 | m 101 1 | | 1985 | | , which will be better | | Example 39. In 2003 for working class people wheat was selling at an average price Rs. 120 per 20kg. cloth Rs. 20 per metre, house rent Rs. 300 per house and other items Rs. 100 per libit. By 2004 cost of wheat rose by Rs. 180 per 20 kg, house rent by Rs. 450 and other items doubled in price. The working class cost of living index for the year 2004 with 2003 as base was 160. By how much the cloth rose in price during the period? Let the rise in price of cloth be X. Index Numb | - 314 | Index Number for | | | |---------------|------------------------------------|------------------------------------|---| | Commodity | Price in 2003
(P ₀) | Price in 2004
(p ₁) | $\left(\frac{p_1}{2} \times 100\right)$ | | Wheat | 120 | 180 | (P_0) | | Cloth | 20 | X | $\frac{180}{120} \times 100 = 150$ | | House rent | 300 | 450 | $\frac{X}{20} \times 100 = 5X$ $\frac{450}{300} \times 100 = 150$ | | Miscellaneous | 100 | - 200 | $\frac{300}{100} \times 100 = 150$ | | N = 4 | | | 100 | $$P_{01} = \frac{\sum \left(\frac{P_1}{P_0} \times 100\right)}{N}$$ Hence, $$160 = \frac{500 + 5X}{4}$$ $$\Rightarrow 640 = 500 + 5X$$ $$\therefore X = \frac{140}{5} = 28$$ Hence, the rise in the price of cloth was Rs. 8 per metre. i.e., Rs. $28 - \text{Rs.} \ 20 = \text{Rs.} \ 8$ Hence, the rise in the price of cloth was Rs. 8 per metre. i.e., Rs. 28 – Rs. 20 = Rs. 8 Example 40. In calculating a certain cost of living index, the following weights were used: Food 15, Clothing 3, rent 4, fuel and light 2, miscellaneous 1. Calculate the index for the period when the average percentage increase in prices of items in the various groups over the base period were 32, 54, 47, 78 and 58 respectively. Suppose a business executive was earning Rs. 2,050 in the base period. What should be his salary in the current period if his standard of living is to remain the same? # Computation of Cost of Living Index | Group | Average %
increase in price | Group Index | Weights (W) | IW | |---------------|-----------------------------|-------------|-------------|-------------| | ood | 32 | 132 | 15 | 1980 | | Clothing | 54 | 154 | . 3 | 462 | | ent | 47 | 147 | 4 | 588 | | uel and Light | 78 | 178 | 2 | ·· 356 | | Aiscellaneous | 58 | 158 | 4-1 | 158 | | | | | Σ'W = 25 | Σ IW = 3544 | Cost of Living Index $$(P_{01}) = \frac{\Sigma IW}{\Sigma W} = \frac{3544}{25} = 141.76$$ For maintaining the same standard, the business executive should get $=\frac{2050\times141.76}{}$ = Rs. 2906.08 Example 41. Construct the consumer price index number for 2000 on the basis of 1999 from the following data using: (i) Family Budget Method (ii) Aggregative Expenditure Method | Commodity | Rice | Wheat | Pulses | Ghee / | , Oil | |------------------------------|-------|-------|--------|--------|-------| | Weights: | 40 | 20 | 15 | 20 | 5 | | Price (per unit) 1999 (Rs.): | 16.00 | 40.00 | 0.50 | 5.12 | 2.00 | | Price (per unit) 2000 (Rs.): | 20.00 | 60.00 | 0.50 | 6.25 | 1.50 | Solution: (i) Family Budget Method Constructing Consumer Price Index Number | Commodity | Weights
(W) | Price
(Rs. per unit)
1999
(p ₀) | Price
(Rs. per unit)
2000
(p ₁) | Price Relatives $\frac{p_1}{p_0} \times 100$ (I) | Weighted
Relatives | |-----------|------------------|--|--|--|-----------------------| | Rice | 40 | 16.00 | 20.00 | 125 | 5,000 | | Wheat | 20 | 40.00 | 60.00 | 150 | 3,000 | | Pulses | 15 | 0.50 | 0.50 | 100 | 1,500 | | Ghee | 20 | 5.12 | 6.25 | 122 | 2,440 | | Oil | 5 | 2.00 | 1.50 | 21d 75 012 | 375 | | . | $\Sigma W = 100$ | 11.42 | | | $\Sigma IW = 12$ | Cost of Living Index for 2000 = $$\frac{\Sigma IW}{\Sigma W} = \frac{12315}{100}$$ = $\frac{12315}{100}$ 100 = 123.15 = 123.15 Thus, there is an increase of 23.15% in prices of 2000 with that of 1999. (ii) Aggregative Expenditure Method | Commodity | Weights | Price Price | Price | mber | | |-----------|-------------------|-------------------|--|--------------------------------|-----------------------| | | | (Rs.)
1999 | (Rs.)
2000 | | Weighted
Relatives | | | (q ₀) | (P ₀) | (P ₁) | (p_0q_0) | (= -) | | Rice . | 40 | 16.00 | 20.00 | 640.00 | (p_1q_0) | | Wheat | - 20 | 40.00 | 60.00 | | 800.00 | | Pulses | - 15 | 0.50 | 0.50 | 800.00 | 1200.00 | | Ghee | 20 | 5.12 | A STATE OF THE STA | 7.50 | 7.50 | | Oil | 5 | 1 | 6.25 | 102.40 | 125,00 | | Oil | $\Sigma W = 100$ | 2.00 | 1.50 | 10.00 | 7.50 | | ng bunda | Lw = 100 | 1-17-6 | | $\Sigma p_0 q_0$
= 1.559.90 | $\Sigma p_1 q_0$ | Consumer Price Index for 2000 = $$\frac{\sum p_1 q_0}{\sum p_0 q_0} \times 100 = \frac{2140}{1559.90} \times 100 = 137.188$$ Thus, there is increase of 37.188% in prices of 2000 with that of 1999. Example 42. During a certain period the cost of living index goes up from 110 to 200 and the salary of a worker is also raised from Rs. 500 to 900. Does the worker really gain, and if so, by how much in real terms? To maintain the same standard of living, the salary of the worker should be $$= \frac{500 \times 200}{110} = \text{Rs. } 909.09$$ The actual salary received by the worker at the end of the period = Rs. 900. $$Loss = 900 - 909.09 = -9.09$$ Thus, the worker really losses. If the worker has got an additional increase of $\frac{909.09 - 900}{9000} \times 100 = 1.01\%, \text{ then his standard of living may have remained the same.}$ hample 43. Mr. Ashok was getting Rs. 400 in the base year and Rs. 800 in the current year. If consumer price index is 350, what extra amount is required for maintaining the earlier standard of living? For former standard of living, Ashok should get = $$\frac{400 \times 350}{100}$$ = 1400 : Amount required for maintaining the same standard of living $$= Rs. 1,400 - Rs. 800$$ $$= Rs. 600$$ Food 55, Fuel 15, Clothing 10, Rent 12 and Miscellaneous 8. In October 1999, the Food 55, Fuel 15, Clothing 10, Rent 12 and wisserstaneous 8. In October 1999, the dearness allowance was fixed by a mill of the town at 182 per cent of workers' wages which fully compensated for the rise in the prices of food and rent but did not compensate for anything else. Another mill of the same town paid dearness allowance of 46.5 per cent which compensated for the rise in fuel and miscellaneous groups. It is known that the rise in food is double the rise in fuel and the rise in miscellaneous group is double the rise in rent. miscellaneous group is double the rise in rent. Find the rise in food, fuel, rent and miscellaneous groups. Let rise in fuel be x, \therefore the rise in food is 2x. Let rise in rent by y, \therefore rise in Misc. group is 2y. The first mill compensated fully for the rise in food and rent but not anything else, by paying 182% D.A. | Items | Index
(I) | Weights (W) | W×I | |----------|--------------|------------------|---------------------------------| | Food | 2x | 55 | 110x | | Fuel | (100 | 15 | 1500 | | Clothing | 100 | 10 | 1000 | | Rent | - y | 12 | 12y | | Misc. | 100 | 8 | 800 | | | 111 | $\Sigma W = 100$ | $\Sigma WI = 3300 + 110x + 12y$ | $$Index = \frac{3300 + 110x + 12y}{100} = 282$$ 110x + 12y = 24900 Similarly, the second mill compensated fully for fuel and misc. group by paying | Items | ems Index Weights (I) (W) | | W×I | |----------|---------------------------|------------------|-------------------------| | Food | 100 | 55 | 5500 | | Fuel | x | 15 | 15x | | Clothing | 100 | 10 | 1000 | | Rent | 100 | 12 | 16y | | Misc. | 2 <i>y</i> | 8 | $\Sigma WI = 7700 + 1$ | | | | $\Sigma W = 100$ | $\Sigma WI = 7700^{-1}$ | 273 $Index = \frac{7700 + 15x + 16y}{100} = 146.5$ 100 15x + 16y = 6950Solving (i) and (ii) for x and y, we get ...(ii) x = 199.37and Hence, the rise is as follows: $2x = 2 \times 199.37 = 398.74$ Food x = 199.37Fuel y = 247.44Rent 2y = 494.88Misc. # IMPORTANT FORMULAE 1. Chain Base Index: Chain Base Index = Average of LR of Current year × Chain Base Index of Previous year 2. Conversion of Chain Base Index to Fixed Base Index: Fixed Base Index = Current year's C.B.I. × Previous year's F.B.I. 100 3. Conversion of Fixed Base Index to Chain Base Index: Chain Base Index Number = $\frac{\text{Current year's F.B.I.}}{\text{Previous year's F.B.I.}} \times 100$ 4. Base Shifting: ...(i) New Index Number = Old Index Number of the Current year ×100 Old Index Number of the New year ^{5. Splicing} of Index Numbers: Spliced Index Number = Index Number of Current year × Old Index Number of New Base year 100 ^{6, Deflating} of Index Number: Real Income = Money Illicom Cost of Living Index Number # 7. Cost of Living Index Numbers/Cousumer's Price Index (i) Aggregative Expenditure Method: Consumer Price Index = $$\frac{\sum p_1 q_0}{\sum p_0 q_0} \times 100$$ (ii) Family Budget Method: Consumer Price Index = $$\frac{\sum PW}{\sum W}$$ (iii) When Group Indices and Weights are given: Group Indices and Weights at Consumer Price Index = $$\frac{\sum IW}{\sum W}$$ ### QUESTIONS - 1. Distinguish between fixed base and chain base methods of constructing index number and give their relative merits. - 2. Write a short note on 'Chain Base Index'. - 3. Explain the following terms: (i) Base Shifting (ii) Splicing and (iii) Deflating. - What is the cost of living index number? Discuss its uses. Give formulae you will use in the construction of cost of living index. - 5. Discuss the uses and construction of Consumer Price Index. - 6. Using suitable examples, explain the operations of base shifting, splicing and deflating in the context of index numbers. # Time Series Analysis-I # NTRODUCTION INTRODUCTION Time series has immense importance in the economic and business fields. Most of the economic adustiness data like prices, national income, population, imports, exports, production, consumption, sites, profits, etc.,
are collected on the basis of time (such as days, months, years). These data are subject to regular and irregular changes constantly with the passage of time. For example, sometimes prices show upward trend and sometimes the declining trend. For the measurement of such changes into values of the data over time, the study of time series is extremely useful. in the values of the data over time, the study of time series is extremely useful. # MEANING OF TIME SERIES The set of data collected on the basis of time (such as days, months, years) is called as time series. In other words, when data are observed on the basis of time (days, months or years), these are known as time series. Under time series, there are two types of variables: (i) Independent variables: This represents changes taking place in the value of data (population, sales, production, etc.) with the passage of time. The following examples illustrate the meaning of time series: | | BLEI | . / TA | BLEII | |------|---------------------------|--------|---------------------------| | Year | Production
(in tonnes) | Year | Population
(in crores) | | 1975 | 50 | 1931 | 27.9 | | 1976 | 52 | 1941 | 31.9 | | 1977 | 53 | 1951 | 36.1 | | 1978 | 55 | 1961 | 43.9 | | 1979 | 60 | 1971 | 54.5 | In the above said table I, production of some commodity is shown between time period 1975 to 1979. Table II contains the population figures of a country in different years. Both of them are the tramples of time series. # DEFINITION OF TIME SERIES Some important definitions of time series are as follows: A set of data depending on the time is called time series. A time series consists of data arranged chronological. A time series consists of data arranged chronological. A time series is a set of observations taken at speficied times, usually at equal intervals. —Speige -Kenny and Keeping Croxton and Cowden -Speigel # ■ UTILITY OF TIME SERIES UTILITY OF TIME SETURE The study of time series has great importance in economic and business world which is called the study of time series has great importance in economic and business world which is illustrated by the following points: - istrated by the Past Behaviour of the Data: With the help of time series, changes occurred in the past Behaviour of the Past Section 170 Study the Past Behaviour of the Various sorts of changes occurred in the past of the past of the past of the past of the Past Occurred in Occurred in the past of the Past Occurred in t (1) To Study the Past Behaviour of the Past as the various sorts of changes occurred in the past, economist the past are studied. Only by analyzing the various sorts of changes occurred in the past, economist the past are studied. the past are studied. Only by analyzing the past are studied. Only by analyzing and businessmen can frame their present policies by taking advantage of the past experience and businessmen can frame their present policies by taking advantage of the past experience - and businessmen can maintenance. With the help of time series anticipation of changes going to occur in the future becomes possible because studies about past prove to be very useful for forecasting about future. - (3) Estimation of Trade Cycles: Cyclical fluctuations in a time series give idea about the (3) Estimation of Trade System (1997) (3) Estimation of Trade System (1997) (4) (changes taking place in the distribution of action, by way of which potential losses can be can apply this knowledge to rationalise his course of action, by way of which potential losses can be - (4) Comparison with other Time Series: Time series analysis is also important for the comparison of various time series. By comparing different time series together, their cause and effect can be more elaborately analyzed. - (5) Study of Present Variations: Time series analysis is also helpful in studying the present variations in different economic variables like national income, export-import, price, output, etc. - (6) Universal Utility: Time series analysis benefits all classes like businessmen, farmers, rs, economists and government and accordingly they plan and direct their activities. ### ■ COMPONENTS OF TIME SERIES Many types of changes collectively exert influence on time series. Such changes are called as components of time series. A time series has the following four important components: - (1) Secular Trend/Trend T - (2) Seasonal Variations S - (3) Cyclical Variations C. - (4) Irregular Variations I - (1) Secular Trend/Trend-T: Secular trend refers to the general tendency of the data to grow of decline over a long period of time. Any time series shows various fluctuations from time to time but in long period. in long period, that series has the increasing or declining trend in one direction. This is secular trend. Secular trend in long declarations. For Secular trend includes or incorporates not short period variations but long-period variations. For example, if we study the incorporates not short period variations but long-period variations. example, if we study the industrial output statistics since 1951, we will find that except for offer two years the productions. two years the production of industrial goods has been subject to general rise. Similarly, prices of the commodities, money supply, bank denosite population at a commoditie, money supply, bank denosite population at a commoditie, and the supply to the upward tred. commodities, money supply, bank deposits, population, etc., are subject to the upward treatment of the similarly, since 1951 there have been subject to the upward treatment. Similarly, since 1951, there has been persistent decline in death rate per thousand in India. Death rate in some year has risen due to abnormal. rate in some year has risen due to abnormal causes but secular trend is towards decline. Thus, secular trend shows persistent growth or dealing. trend shows persistent growth or decline in a time series. Quite often, time series exhibit secular trend due to population growth, technologies in business. trend due to population growth, technological reforms, capital formation, improvements in business organisations, etc. Time Series Analysis-I Secular trend is usually of two types: Secular trend: When long-term rise or fall in a time series takes place by a constant of Long-term then that is called a linear trend. This is also known as a series takes place by a constant Linear Trenu: Trenu: Linear trend. This is also known as straight line trend. This is also known as straight line trend. This is amount, the following equation: $$Y = a + bX$$ (b) Parabolic Trend: The trend is said to be parabolic when long-term rise or fall in a time parabolic I Find. parabolic Area of the parabolic and a definite rate. It has many forms but most prominent of them is series is not taking place at a definite rate. It has many forms but most prominent of them is the second Degree Parabolic or Quadratic trend. Its equation is as follows: $$Y = a + bX + cX^2$$ (2) Seasonal Variations-S: Seasonal variations refer to periodic variations in time series which (2) Seasonary and the series which and series which whic occur regularly lost of the variations taking place in economic and business world are of this to be anticipated. The prices of foodgrains tend to be low at the time of harvesting and high at sowing time. During type. Prices of toolgan solutions rise in price and become cheap during summer. In India, utensils sale winter, woods up on the occasion of Diwali, sale of essential items tends to be high in the first week of the should up to the design of the month. Similarly production, consumption, prices of commodities, interest rates, etc., move up and down all the year due to seasonal variations. Seasonal variations are most perceptible during different months or weeks of the year. Seasonal variations are affected by the climate and customs. During summer, demand for fans, ice, coca-cola tends to be eater compared with other seasons. Demand for college text-books tends to be high during July-August each year. The time period of seasonal variations generally remains definite. (3) Cyclical Variations-C: Cyclical variations refer to the oscillatory variations in a time series which have a duration anywhere between 2 to 10 years. Cyclical variations arise due to trade cycles. "Business cycles have been described as successive waves of expansion and contraction that occur at about the same time in many economic activities."—Burns and Michell. Cyclical variations have four phases (1) Prosperity, (2) Recession, (3) Depression and (4) Recovery. These phases are illustrated by the following graph: Above graph makes it clear that business activities (Production, Prices, Employment, Sales, the like of lower in the like of the lower in i the state in the light during prosperity, then recession or the fall starts and guarantees the lowest limit of decline in trade activities. This is the stage of depression. This is always the lowest limit of decline in trade activities. This is the stage of depression. This is always the stage of depression of the stage s sees the lowest limit of decline in trade activities. This is the stage of depression. This is the stage of depression. According to a stimate, a trade of cyclical fluctuations but each cycle and its length of phase is different. According to a stimate, a trade of the cycle and the literature of the cycle and a cylinder of cyclical fluctuations but each cycle and its length of phase is different actions, the sequence goes on (4) Irregular Variations-I: Irregular variations refer to those short term variations in time (4) Irregular Variations I: Irregular variations in time series which occur irregularly due to certain accidental causes. These are also known as random fluctuations. Irregular variations take place due to accidental causes like war, earthquake, floods, fluctuations. Irregular variations take place due to accidental causes like war,
earthquake, floods, fluctuations etc. They don't happen in definite order or in a systematic way. Their measures series which are the series of flows industrial strikes, etc. They don't happen in definite order or in a systematic way. Their measurement and anticipation becomes very difficult. The decline in industrial output due to the strike in a factory and anticipation becomes very difficult. is an example of irregular variations. ■ ANALYSIS OR DECOMPOSITION OF TIME SERIES ANALYSIS OR DECOME Time series is composed of four components viz. Trend (T), Seasonal variations (S), Cyclical Time series is composed of four components viz. Trend (T), Seasonal variations (S), Cyclical Time series is composed of four components viz. Field (1), Seasonal variations (S), Cyclical variations (C) and Irregular variations (I). There is always some sort of relationship in these four components. To study the influence of these components on time series, they are measured to the components of the state of the components. components. To study the influence of these components of time series. According to Prof. Speigel: separately, which is cancel and special specia Models of Analysing Time Series: Analysis of time series is based on two models: (1) Additive model (2) Multiplicative model ### • (1) Additive Model This model is based on the assumption that time series is the sum of the four components, According to the formula: $$O = T + S + C + I$$ This model treats all the constituents as residuals on the basis of which, by deducting trend from the original data, short term fluctuations can be determined. Similarly, cyclical variations and irregular variations can be determined by deducting seasonal variations from short-term variations. On the basis of additive model, the analysis of various components is illustrated as given below: $$O-T=S+C+I$$ $O-T-S=C+I$ $O-T-S-C=I$ ### • (2) Multiplicative Model This model is based on the assumption that a time series is the product of four components. According to the formula: $$O = T \times S \times C \times I = TSCI$$ Whatever the component is to be separated, works as a divisor with respect to original data (0) alvsis of different component is to be separated. manager me component is to be separated, works as a divisor with respect to original unit of Analysis of different components on the basis of multiplicative model can be expressed in the following forms: following forms: $$\frac{O}{T} = SCI$$ $$\frac{O}{T \times S} = CI$$ $$\frac{O}{T \times S \times C} = I$$ Usually, multiplicative model is most often used for time series analysis. Time Series Analysis-I METHODS OF MEASURING TREND METITION The main methods of measuring trend in a time series are as follows: (1) Freehand Curve Method. (2) Semi-Average Method (3) Moving Average Method. (4) Least Square Method. Let us study these methods in detail. o (1) Freehand Curve Method 11 12.36 12:36 15 2:36 12:30 to 4130 This is the simplest method of trend-fitting. In this method first of all, the original data of the This is the simplest intended of the first of all, the original data of the ineseries is plotted on a graph paper. Thereafter, taking care of the fluctuations of data, a smooth curve is drawn which passes through the mid-points of the fluctuations of time series. Infact, this method is also called as freehand trend curve. This method is also called as freehand trend curve. curve is drawn whiter passes and curve. This method is also called as trend fitting by inspection. The procedure of this method can be illustrated by the following example: Example 1. Fit a trend line to the following data by the freeh | | | - 6 | 40,4 | ic nee | nana (| curve i | nethod | i: | | | |------------------------|------|------|------|-------------|--------|---------|--------|------|------|------| | Year: | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1077 | 1070 | | | | Production ('000 Rs.): | 100 | | 1.22 | Distance of | - | 1770 | 1911 | 1978 | 1979 | 1980 | | Troduction (000 Rs.): | 130 | 133 | 165 | 152 | 174 | 150 | 174 | 175 | 100 | | Fitting of Trend Line by Freehand Curve Method # Merits and Demerits of Freehand Curve Method (i) This method is simple. Solution: - (ii) This method is flexible. - (ii) No mathematical formula is used in this method. (b) This method is also used for forecasting about future. - (i) This method is based on subjective judgements. So bias may affect the findings. (ii) There is 1. (i) There is lack of accuracy in this method. - (iii) Long-run movement (trend) obtained from this method is not definite. This is because a number of current (trend) obtained from this method is not definite. This is because a number of curves can be fitted from the same original data. 1985 # **EXERCISE 5.1** wing data by freehand curve method: | 1. | Fit a trend line to the | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | | |----|------------------------------|------|------|------|------|------|------|------|------|------| | | Year:
Sales ('000 Units): | 22 | 28 | 24 | 30 | 18 | 26 | 20 | 32 | 1994 | | | Sales (000 Circle) | | | | | | | | _ | 16 | (2) Semi-Average Method In this method, first of all time series is divided into two equal parts and thereafter, separate arithmetic mean is calculated for each part. The two values of arithmetic means is plotted on graph corresponding to the time periods. Joining the two points, straight line thus obtained is called as trend line: The semi-average method can be applied in case of two situations: (1) When the number of years in a series is even: When the given number of years in a series (1) when the number of years in a series is even; when the given number of years in a series is even like 4, 6, 8, etc., then the series can be easily divided into two equal parts. In this situation, trend-fitting process can be illustrated with the following example: Example 2. Fit a trend line by the method of semi-average to the data given below: | Year: | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | |--------------------|------|------|------|------|-------|------|------|------| | Sales (Rs. lakhs): | 412 | 438 | 444 | 454 | - 470 | 482 | 490 | 500 | #### Solution: | Year | Sales
(Rs. lakhs) | Semi-Total | Semi-Average | Middle Year | |------|----------------------|------------|-------------------------------------|--------------| | 2000 | 412 | | | | | 2001 | 438 | | | → 2001.5 | | 2002 | 444 | > 1748 | $\overline{X}_1 = 1748 + 4 = 437$ | , and | | 2003 | 454 | m* h | yerten (O | A A STATE OF | | 2004 | 470 | 1 | | 4071 | | 2005 | 482 | | $\overline{X}_2 = 1942 + 4 = 485.5$ | | | 2006 | 490 | → 1942 | $X_2 = 1942 + 4$ | A 181 - 181 | | 2007 | 500 | ALC: Y | Abdition all the same | | # Time Series Analysis-I Trend Line by Semi-Average Method (2) When the number of years in a series is odd: When the number of years in a series is odd like 5, 7, 9, then there will be a problem in dividing the series into two equal parts. In such case, the mid-year figure is to be dropped. For example, if 1981 to 1989 (i.e., 9 years) figures are given, then we will delete 1985, i.e., 5th year and its corresponding figure and we will make 4-4 years' parts, in this case can be illustrated by the following example: Example 3.) Fit a trend line by the method of semi-averages to the data g | | | | | | and Brych | below. | | |--------------------|------|------|------|------|-----------|--------|------| | Year: | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | | Profit (1000 P | | | | 1000 | 1703 | 1780 | 1907 | | Profit ('000 Rs.): | 20 | 22 | 27 | 26 | 30 | 29 | 40 | Also estimate the profit for the year 1988. Since there are 7 years, the middle year 1984 will be left out and the arithmetic average of the two parts will be calculated as given below: | Year | Profit
('000 Rs.) | Semi-total | Semi-average | Middle year | |------|----------------------|------------|--------------------------------|-------------| | 1981 | 20 | | | M. T | | 1982 | 22 / | | $\overline{X}_1 = 69 + 3 = 23$ | 1982 | | 1983 | 27 | | | 1 | | 1984 | 26 | | Omitted . | | | 1985 | 30 / | | | | | 1986 | 29 | >99 | $\overline{X}_2 = 99 + 3 = 33$ | → 1986 | | 1987 | 40 | i = i | | | 46 The estimated profit for the year 1988 = Rs. 37,000. # ► Merits and Demerits of Semi-Average Method #### Merits: (i) This is an easy method. - (ii) This method is free from bias. (iii) Trend values thus obtained are definite. - (iv) Less time and effort is involved in drawing the trend line. ## Demerits: - (i) This method is based on straight line trend assumption which does not always hold true. - (ii) This method is affected by extreme values. (iii) This method ignores the effect of cyclical fluctuations. Notwithstanding above said demerits, this method is more suitable in comparison with freehand trend method ### **EXERCISE 5.2** Production ('000 tonnes): | 1. | Fit a trend line by | y the method of se | emi-avera | ge to the | data give | n below: | l inne | 1987: | |----|---------------------|--------------------|-----------|-----------|-----------|----------|--------|-------| | | Year: | 1981 | 1982 | | 1984 | 1985 | 1986 | 46 | 2. | . Fit a trend line to the | following da | ata by the se | mi-average | e method: | 1 | 1988 | |---------------------------|--------------|---------------|------------|-----------|------|------| | Year: | 1983 | 1984 | 1985 | 1986 | 1987 | 95 | | Profits ('000 Rs.): | 80 | 82 | 85 | 70 | 89 | 4,1 | | 3. | Fit a trend line for the f | ollowing | g data by | semi-av | erage m | ethod: | 1 198 | 36 1987 | |----|----------------------------|----------|-----------|---------|---------|--------|-------|---------| | | Year: | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 15 | | | Production ('000 units): | 12 | 14 | 1.6 | 20 | 20 | 31 | 100 | Also estimate the value for the year 1988. # Time Series Analysis-I (3) Moving Average Method Moving average method is very widely used in practice. Under this method, moving averages
method is very widely used in practice. Under this method, moving averages especially provided by the provided proving average depends upon the periodicity of data and there is no specific rule for that. The period is determined by plotting the data on the graph paper and noticing the average time interval of successive peaks or troughs. However, it is sessibled to consider while selecting the period of moving average that after how many years next is amph paper and notices and a successive peaks or troughs. However, it is secured to consider while selecting the period of moving average that after how many years most of the fluctuations occur in the data. Moving average method is studied in two different situations: (i) Odd Period Moving Average (ii) Even Period Moving Average. # (i) Odd Period Moving Average (i) Odd reflect the moving average is odd, say 3 years, then following steps are to be taken for the computation of moving average: (I) First of all, add up the values corresponding to first 3 years in the time series and put the sum hefore the middle year (i.e., 2nd year). (2) Thereafter, leaving the first year value, add up second, third and fourth year values and put (2) Thereatter, reaving the third year value, and up second, third and fourth year values and put the sum in front of middle year (i.e., 3rd year). Carry this process further till we reach the last value (3) Moving totals thus obtained are to be divided by the period of the moving average and show the trend values of different years. Similarly, five-yearly, seven-yearly moving averages can be obtained. The computation procedure of 3-yearly moving averages can be illustrated with the following Example 4. From the following data, calculate trend values using 3-yearly me | | and a state of the | | | | | | | |-------------|--|------|------|------|------|------|------| | Year: | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | | Production: | 412 | 438 | 446 | 454 | 470 | 483 | 490 | | | Thirte-ye | arly Moving Average | | |--------|------------|----------------------------|--| | Year | Production | Three-yearly moving totals | Three yearly moving average (Trend values) | | 1981 | 412 | 8 K - 7 S | il. – | | 1982 | 438 | | 1296+3=432 | | 1983 - | 446 | → 438+446+454=1338 | 1338+3=446 | | 1984 | 454 | ·→ 446+454+470=1370 | 1370+3=457 | | 1985 | 470 | → 454+470+483=1407 | 1407+3=469 | | 1986 | 483 | → 470+483+490=1443 | 1443 +3=481 | | 1987 | 400 | | _ | Example 5. From the following data calculate 3-yearly, 5-yearly and 7-yearly moving averages and plot the data on the graph: | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 1996 | 764 | |------|------------|--------------------|---------------------------|--|---------------|---|---| | +2 | +1 | 0 | -2 | *=1 | + 2 | +1 0 | 199 | | 1998 | 1990 | 2000 | 2001 | 2002 | 2003 | 1 2 101 130 | -2 | | -1 | + 2 | +1 | 0 | 2 | -1 | olds of T | - | | | +2
1998 | +2 +1
1998 1990 | +2 +1 0
1998 1990 2000 | +2 +1 0 -2 1998 1990 2000 2001 | +2 +1 0 -2 -1 | +2 +1 0 -2 -1 +2
1998 1990 2000 2001 2002 2003 | 1968 1970 | #### Solution: ## Colorlation of 3-Yearly, 5-Yearly and 7-Yearly Moving Averages | Year | - Cyclical
fluctuations | 3-yearly moving averages | 5-yearly moving averages | 7-yearly moving averages | |------|----------------------------|--------------------------|--------------------------|--------------------------| | 1989 | + 2 | | | And the o | | 1990 | +1 | + 1.00 | | 30 | | 1991 | 0 | -0.33 | 0. | the state of the state | | 1992 | -2 | -1.00 | 0 | + 0.43 | | 1993 | 1 | -0.33 | 0 | + 0.14 | | 1994 | + 2 | + 0.67 | 0 | - 0.28 | | 1995 | +1 | + 1.00 | 0 | - 0.43 | | 1996 | 0 | -0.33 | 0 | + 0.14 | | 1997 | 2 | -1.00 | 0 | + 0.43 | | 1998 | -1 | -0.33 | 0 | + 0.14 | | 1999 | + 2 | + 0.67 | 0 | - 0.28 | | 2000 | +1 | + 1.00 | 0 1 | - 0.43 | | 2001 | 0 | -0.33 | 0 | ne opinomaly | | 2002 | -2 | -1.00 | <u> </u> | | | 2003 | -1 | | 13 12 - 1 | mild Autom | # Ime Series Analysis-I (il) Even Period Moving Average - (ii) Even Period 1.2. When moving average peirod is even, say 4 years, then moving averages have to be centered. It can be computed by two methods: - (a) First Method - (b) Second Method. Let us study these methods in detail. - Let us study uncertainty and the computation procedure of 4 yearly moving
average is as follows: - (a) First of all, add up first 4 values corresponding to the first 4 years and put the sum in First of all, and up third year. Thereafter the next total (i.e., from 2nd to 5th year total) is to be put in between 3rd and 4th year. Carry on this process till the last value of the series. - (ii) Now add up the 1st and 2nd 4-year totals and put them in front of 3rd year. Similarly, add up 2nd and 3rd 4-year total and put them in front of 4th year. Carry on this process till the last value. - (iii) 8 years' totals thus obtained are to be divided by 8. These values are 4-yearly moving averages and show the trend values for different years. The computation procedure is made clear by the following example: Example 6. Calculate the trend values using 4-yearly moving average from the following data: | Year: | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | |----------------------|------|------|------|------|------|------|------|------|------|------| | Sales
(in crore): | 7 | 8 | 9 | -11 | 10 | 12 | 8 | 6 | 5 | 10 | ### Computation of 4-Yearly Moving Average (Trend) by Centering the Totals | Year | Sales
(in crore) | 4-yearly
moving totals | 2 period moving
totals of 4-yearly
moving totals | 4-yearly moving
average (centred)
(Trend values) | |------|---------------------|---------------------------|--|--| | (1) | (2) | (3) | (4) | (5) = (4) + 8 | | 1970 | 7 | | V-1 | _ | | 1971 | 8. | | | _ m _ | | 13 | 1.2 | → 7+8+9+11=35 | all research | 1 | | 1972 | 9 | 0.00 | → 35 + 38 = 73 | 73 +8 = 9.125 | | | | → 8+9+11+10=38 | P 1 | | | 1973 | li | | → 38 + 42 = 80 | 80+8 = 10.00 | | | | → 9+11+10+12=42 | | | | 1974 | 10 | | → 42 + 41 = 83 | 83 +8 = 10.375 | | | | → 11+10+12+8=41 | | | | 1975 | 12 | 1 1 | \longrightarrow 41 + 36 = 77 | 77+8=9.6 | |-------|-----|----------------|--------------------------------|----------------| | 1575 | 61. | → 10+12+8+6=36 | Bullet up | T shiptoutes | | 1976 | 8 | | \longrightarrow 36 + 31 = 67 | 67÷8 = 8. | | 157.0 | | —→ 12+8+6+5=31 | Francis . | Cherry P 18 | | 1977 | 6 | | → 31 + 29 = 60 | 60÷8 = 7 | | 1 7 | | → 8+6+5+10=29 | tellinging of the | म मित्रस्य भवा | | 1978 | 5 . | | | 1- 30 pc | | 1979 | 10 | | | 11-11-11 | - (b) Second Method: There is an alternative method of constructing 4-yearly centered moving averages, the procedure of which is given below: - rages, the procedure of which is given below: (i) First of all, add up the 4-values corresponding to the first 4 years and put the sum in between second and third year. Thereafter, the next total (i.e., from second to fifth year total) is to be put in between 3rd and 4th year. Carry on this process till the last value of the series. - (ii) 4-yearly moving totals thus obtained are divided by 4 to obtain 4-yearly uncentered - moving averages. (iii) Now add up 1st and 2nd 4-yearly moving averages and divide it by 2. Put this average in front of 3rd year. Similarly, add up 2nd and 3rd 4-yearly moving averages and divide it by 2 and put this average in front of 4th year. Carry on this process till the last value. These values so obtained are 4-yearly centered moving averages and show the trend values for different years. The computation procedure is made clear from the following examples: Example 7. Calculate trend values using 4-yearly moving average from the following data: | | Calculate trellu | values | using - | - your | , 111011 | | | 100 | | | 1070 | l | |-----|------------------|--------|---------|--------|----------|------|------|------|------|------|------|---| | - 1 | Year: | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | ł | | | Sales | 7 | 8 | 9 | 11 | 10 | 12 | 8 . | 6 | 5 | 10 | | Solution: | 4-yearly mov
average (centr
(Trend value | 2 period
moving total
of col. (4) | ving Average b 4-yearly moving average (not centered) | 4-yearly
moving totals | Sales
(in crore) | Year | |--|---|--|---------------------------|---------------------|------| | (0) | (5) | (4) = (3) + 4 | (3) | (2) | (1) | | | - + | | 1-0.71 | 7 | 1970 | | | 1 / / / / | -11 | | 8 | 1971 | | 9.125 | | 8.75 | → 35 | | | | 7 | → 18.25 | | | 9 | 1972 | | 10.00 | | 9.50 | > 38 | | | | 10. | → 20.00 | | | 11 | 1973 | Time Series Analysis-I | | | ─ → 42 | 10.50 | | | |------|--------|---------------|-------|---------|--------| | 1974 | 10 | | | | | | | 2 17 1 | > 41 | 10.25 | → 20.75 | 10.375 | | 1975 | 12 | | 77 | → 19.25 | | | | v | > 36 | 9.00 | 7 19.23 | 9.625 | | 1976 | , 8 | | | → 16.75 | 8.375 | | 11 | | > 31 | 7.75 | 10.75 | 0.373 | | 977 | 6 | | | → 15.00 | 7.500 | | | 1 1 1 | —→ 29 | 7.25 | 1 7 | 1,500 | | 978 | 5 | - | _ | | _ | | 979 | 10 | - | | 1 1 - | | Note: Answers obtained by using Method -I and Method -II are the same. Example 8. The figures of quarterly income of municipal corporation (in Rs. lakhs) for 2 years are given below: | Year: | Ist Quarter | IInd Quarter | IIIrd Quarter | IVth Quarter | |-------|-------------|--------------|---------------|--------------| | 1995 | 74 | 56 | 48 | 69 | | 1996 | 83 | 52 | 49 | 81 | Using a four-quarterly moving average, estimate the trend values. Calculating of Four Quarterly Moving Average | Years | Quarters | Value | 4-Quarterly
Moving
totals | 2-Quarterly
totals of
4-Quarterly
Moving totals | 4-Quarterly
Moving Average
(or Trend values) | |-------|------------|-------|---------------------------------|--|--| | 1995 | nul Iote i | 74 | Administration of | | 191 | | 1 | II | 56 | Del . | | | | | Ш | 48 | > 247 | —→ 503 | → 62.875 | | - | IV | 69 | → 256 | → 508 | → 63.5 | | 1996 | T. | 83 | > 252 | → 505 | → 63.125 | | | п | 52 | → 253 | <u></u> 518 | → 64.75 | | - | III | 49 | > 265 | | | | | IV | 81 | | | | • Use of Weights in the Calculation of Moving Averages O Use of Weights in the calculation of moving averages. Its objective is to assign Weights may also be used in the calculation of moving averages. Its objective is to assign different importance to the values of different years. The following examples illustrates the procedure of computing weighted moving averages. The following examples illustrates the procedure of computing weighted moving averages with project. Example 9. | Calculate 5 Jems | | NAME OF TAXABLE PARTY. | CALL DRIVE THE REAL PROPERTY. | THE PARTY. | | |------------------|------------------|------------------------|-------------------------------|------------|------| | following data: | 1973 | 1974 | 1975 | 1976 | 1977 | | Year: 1971 | 1972 1973 | 5 | . 3 | 7 | 2 | | Values: 2 | on of 3-yearly W | eighted Mo | ving Aver | age | | | Computatio | n of 3-yearry | o.g. | 211/ | 2 | | Solution: | Year | Computation
Values (Y) | 3-yearly Weighted Moving
Totals | Σ₩ | 3-yearly Weighted
M.A.*
(3) + (4) | |-------------|---------------------------|--|-----|---| | in the | (2) | (3) | (4) | (5) | | (1)
1971 | 2 - | $(2 \times 1 + 6 \times 4 + 1 \times 1) = 27$ | 6 | 27 ÷ 6 = 4.5 | | 1972 | 6 | $(2 \times 1 + 6 \times 4 + 1 \times 1)$ 2:
$(6 \times 1 + 1 \times 4 + 5 \times 1) = 15$ | - 6 | 15+6=2.5 | | 1973 | 1 | $(6 \times 1 + 1 \times 4 + 3 \times 1) = 24$ | 6 | 24 + 6 = 4.0 | | 1974 | 5 | $(1 \times 1 + 3 \times 4 + 3 \times 1)$ 2+
$(5 \times 1 + 3 \times 4 + 7 \times 1) = 24$ | 6 | 24 + 6 = 4.0 | | 1975 | 3 | $(5 \times 1 + 3 \times 4 + 7 \times 1) = 33$ | 6 | 33 + 6 = 5.5 | | 1976 | 7 | (3×1+/×4+2×1) 33 | | | | 1977 | 2 | | 100 | | * Weighted Moving Average = $\frac{\Sigma WY}{\Sigma^{W}}$ Example 10. For the following data, verify that the 5-yearly weighted moving average with weights, | 10. 1 | 1, 2, 2, 2, 1 resp | ectively | v is equ | ivalen | t to 4 y | ears ce | entered | HIOVI | 15 4 | | 19 | |-------|--------------------|----------|----------|--------|----------|---------|---------|-------|------|------|----| | i | Year: | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 13 | | | Sales | 2 | 6 | 1 | 5 | 3 | 7 | 2 | 6 | 18 | | | | (Rs. in lakhs) | | | | | | | - | | | | Solution: | ear | Sales | of 5-yearly Weighted Moving 5-yearly Weighted Moving Totals | ΣW | Weig | |------|-------|---|-----|------| | 989 | 2 | | | 1. 2 | | 1990 | 6 | The second | - 8 | 29 | | 1991 | 1 | $(1 \times 2) + 2(6+1+5) + (1 \times 3) = 29$ | 1 | - 01 | | 1992 | -5 | $(1 \times 6) + 2(1 + 5 + 3) + (1 \times 7) = 31$ | 8 | | | 1993 | 3 | $(1 \times 1) + 2(5 + 3 + 7) + (1 \times 2) = 33$ | 8 | | | 1994 | 7 | $(1 \times 5) + 2(3+7+2) + (1 \times 6) = 35$ | 8 | - | | 1995 | 2 | $(1 \times 3) + 2(7 + 2 + 6) + (1 \times 4) = 37$ | 8 | 37 | | 1996 | 6 | $(1 \times 7) + 2(2 + 6 + 4) + (1 \times 8) = 39$ | 8 | - | | 1997 | 4 | (1117) 12(2:0:1) | | - | | 1998 | 8 - | | | | Time Series Analysis-I Computation of 4-yearly Centered Moving Average | Year | Sales, | 4-y | early moving
totals | 2-1
to | yearly moving
otals of Col (3) | 4-yearly
centered moving
average
(Trend Values) | |------|--------|-----|------------------------|-----------|-----------------------------------|--| | (1) | (2) | _ | (3) | | (4) | (5) | | 1989 | 2 | 1 | | | | | | 1990 | 6 | | → 14 | 1 | | | | 1991 | 1 | | → 15 | 1 | → 29 | 29 + 8 = 3.63 | | 1992 | 5 | | → 16 | | → 31 | 31 + 8 = 3.88 | | 1993 | 3 | 4 | → 17 | -1 | → 33 | 33 ÷ 8 = 4.13 | | 1994 | 7 | | → 18 | | → 35 | 35 ÷ 8 = 4.38 | | 1995 | 2 | | → 19 | 10 | → 37 | 37 + 8 = 4.63 | | 1996 | 6 | - | → 20 | |
→39 | 39 + 8 = 4.88 | | 1997 | - 4 | | | | | | | 1998 | 8 | _ | 1 | | _ ' _ | - | Hence, both the results are the same. ### O Period of Moving Average While applying moving average method, sometimes the period of moving average is not given in the question. The most important question that arises here is about the determination of the period of the moving average. Should we take three yearly moving average or four yearly moving average or seven or nine yearly moving average or moving average of some other period, is a question not tay to answer? The general conclusion in this regard is that the period of moving average should be regalo the period of cyclical variations so that all types of cyclical fluctuations are eliminated or in any case refused. ay case reduced to the minimum. But sometimes the period of cycle in a series is not uniform. when the cycle in a series is not sometimes the period of cycle in a series is not sometimes the cycle may complete in five years, at others in seven years and at still others in eight of thing years. It is a cycle should be calculated and This years. Under such circumstances, the average duration of the cycle should be calculated and his should be taken and the such circumstances, the average duration of the cycle should be found out by William years. Under such circumstances, the average duration of the cycle should be calculated and should be taken as the period of moving average. The duration of the cycle can be found out by foliog original data. bughs the average of the cycle and this state of the cycle and winging the average of these time distances would give the average duration of the cycle and this bould be taken as the hold be taken as the period of moving average. The following example would make the procedure clear: Example 11. Determining the period of moving average, find trend values by moving averages for the following data: | Year | Annual Sales (in Rs. '000) | Year | Annual Sales (in Rs. '000) | |--------------|----------------------------|------|--| | | 40 | 1978 | 42 42 | | 1968 | 42 | 1979 | 45 | | 1969 | 40 | 1980 | the second secon | | 1970 | 44 | 1981 | 46
52 | | 1971 | 49 | 1982 | 58 | | 1972 | 46 | 1983 | 56 | | 1973
1974 | 42 | 1984 | 51 | | 1974 | 44 | 1985 | 57 | | 1976 | 44 | 1986 | 54 | | 1977 | 50 | 1987 | - 63 | We know that the appropriate period of moving average is the period of the cyclic variation. The given data does not reveal a regular cycle of any fixed period. To determine the appropriate period of moving average, we first plot the data as given below: | f we exami
Year: | 1969 | 1972 | 1977 | 1979 | -1171 | 1982 | 19 | 85 | |---------------------|------|------|------|------|-------|------|----|----| | Peak Value: | 42 | 49 | 50 | 45 | pl to | 58 | 5 | 7 | Thus, the data shows 6 cycles with varying periods 3, 5, 2, 3, 3 and 2 respectively. The appropriate period of moving average is given by the arithmetic mean of periods of different cycles shown by the data. Hence the period of the moving average is given by: Time Series Analysis-I Average Cyclical Period = $\frac{3+5+2+3+3+2}{6} = \frac{18}{6} = 3$ Computation of Three Yearly Man- | Year | Sales | 3-Yearly
moving
totals | 3-Yearly
moving
averages
(trend values) | Year | Sales | 3-Yearly
moving
totals | 3-Yearly
moving
averages | |------|-------|------------------------------|--|------|-------|------------------------------|--------------------------------| | 1968 | 40 | | - | 1978 | 42 | 140 | (trend values) | | 1969 | 42 | 122 | 122/3 = 40.66 | 1979 | 48 | | 140/3 = 46.66 | | 1970 | 40 | 126 | 126/3 = 42.00 | | | 136 | 136/3 = 45.33 | | | | | | 1980 | 46 | 146 | 146/3 = 48.66 | | 1971 | 44 | 133 | 133/3 = 44.33 | 1981 | 52 | 156 | 156/3 = 52.00 | | 1972 | 49 | 139 | 139/3 = 46.33 | 1982 | 58 | 166 | 166/3 = 55.33 | | 1973 | 46 | 137 | 137/3 = 45.66 | 1983 | 56 | 165 | 165/3 = 55.00 | | 1974 | 42 | 132 | 132/3 = 44.00 | 1984 | 51 | 164 | | | 1975 | 44 | 130 | 130/3 = 43.33 | | | 164 | 164/3 = 54.66 | | 1973 | 710 | 130 | 130/3 = 43.33 | 1985 | 57 | 162 | 162/3 = 54.00 | | 1976 | 44 | 138 | 138/3 = 46.00 | 1986 | 54 | 174 | 174/3 = 58.00 | | 1977 | 50 | 136 | 136/3 = 45.33 | 1987 | 63 | | 6 1 1 - m | Example 12. Determining the period of moving averages, find the trend values by moving average method for the following data: | Year | Value | Year | Value | Year | Value | |---------|-------|------|-------|------|-------| | 1 27 | 390 | 6 | 396 | H-7 | 459 | | 2 - 0.0 | 381 | 7 | 387 | 12 | 438 | | 3 | 372 | 8 | 381 | 13 | 435 | | 4 | 405 | 9 | 435 | 14 | 492 | | . 5 | 420 | 10 | 474 | 15 | 510 | Since the peaks of the given data occur at the years 1, 5, 10 and 15, the data exhibits a regular cyclic movement with period 5. Hence the period of the moving average for determining the trend values is also 5 years, viz., the period of the cyclic variations. Computation of Five Yearly Moving Average | - 0 | computation of | Five Yearly Moving Av | erage | |------|----------------|------------------------|--| | Year | Value | 5-Yearly moving totals | 5-Yearly moving averages
(Trend Values) | | 1 | 390 | | _ | | 2 | 381 | | | | 3 | 372 | 1968 | 393.6 | | 4 | 405 | 1974 | 394.8 | |------|-----|---------|---------| | - | 420 | - 1980 | 396.0 | | 6 | 396 | 1989 | 397.8 | | 7 | 387 | 2019 | 403.8 | | 8 | 381 | 2073 | 414.6 | | 9 | 435 | 2136 | 427.2 | | 10 | 474 | 2187 | 437.4 | | 11 - | 459 | 2241 | 448.2 | | 12 | 438 | 2298 | 459.6 | | 13 | 435 | 2334 | 466.8 | | 14 | 492 | x * *il | LAL - | | 15 | 510 | | Music F | # Measurement of Short-term Fluctuations Time series is the mixture of both trend and short-term fluctuations. Therefore, if trend component is eliminated from the original data, we can find out short-term fluctuations. We can use either additive model or multiplicative model to eliminate trend. The following examples make clear the measurement of short-term fluctuations: Example 13. Using three yearly moving averages, determine the trend and short-term fluctuations. Plot the original and trend values on the same graph paper: | Year: | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | |--------------------|------|------|------|------|------|------|------|------| | Profit ('000 Rs.): | 18 | 21 | 20 | 25 | 29 | 27 | 35 | 42 | Solution: # Calculation of Trend and Short-term Fluctuations using Additive Model | Year (1) | Profit ('000 Rs.)
(Y) | 3-yearly
moving totals | 3-yearly moving
averages
(Trend Values-T) | Short-term
Fluctuations
(Y-T)
(5) | |----------|--------------------------|---------------------------|---|--| | 1980 | 18 | | | · | | 1981 | 21 | 59 | 19.667 | 1.333 | | 1982 | 20 | 66 | 22.00 | -2 | | 1983 | 25 | 7 - 74 | 24.667 | 0.333 | | 1984 | 29 | 81 | 27.000 | -3.333 | | 1985 | 27 | 91 | 30.333 | ,0.333 | | 1986 | 35 | 104 | 34.667 | ,0.333 | | 1987 | 42 | | | | Deducting trend values from the original series (Y), the residual left is short-term fluctuations. These fluctuations have been shown in above said column (5). Time Series Analysis-I Example 14. Eliminate trend by 'moving average method': | Year | 1st Quarter | IInd Quarter | IIIrd Quarter | IVth Quarter | |------|-------------|--------------|---------------|--------------| | 2001 | 40 | 35 | 38 | 40 | | 2002 | 42 | 37 | 39 | . 38 | | 2003 | - 41 | 35 | 38 | 42 | Solution: | Quarter | Given
Values | 4-quarterly moving totals | 4-quarterly moving average | 4-quarterly
moving
average
centred | Given figure
percentage of moving
average or trend
eliminated values | |---------|-----------------|---------------------------|------------------------------|---
---| | | | | E. | F | $G = \frac{C \times 100}{F}$ | | - I - | 40 | | | 1 . ₄ 1. | a Localina. | | · · II | 35 | | 5.14 | | Land of the land | | | | 153 | 38.25 | | | | III | 38 | D | 4.10 | 38.5 | $\frac{38}{38.5} \times 100 = 98.7$ | | 11 | 1.18 | 9" | 1.00 | 100 | 38.5 | | TV | | 155 | 38.75 | | 40 102.50 | | IV | 40 | | | 39 | $\frac{40}{39} \times 100 = 102.56$ | | BOOK 10 | | 157 | 39.25 | pr. 1 | | | I | 42 | | | 39.375 | 42×100 = 106.66 | | 1 | - | | | 1 3 | 39.375 | | 100 | STATE OF | 158 | 39.5 | | 4= 100 | | II | 37 | | 5 5 | 39.25 | $\frac{37 \times 100}{39.25}$ = 94.2675 | | at gra | Ti, light | 156 | 39.0 | | 37.22 | | | В І | Values | Values moving totals B | Values moving totals moving average B | Values moving average moving average recented F I | 295 After eliminating the trend, we are left with short-term fluctuations. # ▶ Merits and Demerits of Moving Average Method #### Merits: - (i) This method is easy to understand and simple to use. - (ii) This method is flexible, i.e., if number of years are added in a series, previous calculations are not affected. - (iii) This method is most suitable for eliminating cyclical fluctuations. - (iv) This method has great practical usefulness. #### Demerits: - (i) It is difficult to ascertain the proper period of moving averages and if proper period is not ascertained, results will be misleading and inaccurate. - (ii) The second defect of this method is that some beginning years' and some terminal years' trend values remain beyond the scope of calculations. - (iii) The limitations of arithmetic mean affect this method adversely. - (iv) If periodicity in the series is not clearly visible, this method should not be used. ### **EXERCISE 5.3** Find trend values for the following data, by using 5-yearly moving averages. Also plot the actual data and trend unit. | actual data and | trend va | lues on | a graph | 1: | | | | | | 1978 | | |-----------------|----------|---------|---------|------|------|------|------|------|------|------|--| | Year: | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 821 | | | Production: | 672 | 679 | 600 | 702 | 712 | 902 | 807 | 809 | 816 | 0110 | | [Ans. 691.0, 717.0, 742.6, 766.4, 789.2, 811.6 Time Series Analysis-I late trend values by 4-yearly moving average for the | 2. Calculate de la constante d | 1981 | 1982 | 1983 | 1984 | the follo | wing dat | a: . | | |--|------|------|------|------|-----------|----------|------|------| | Year:
Production ('000): | 13 | 18 | 15 | 21 | 1985 | 1986 | 1987 | 1988 | | Produ | | | | live | | 20 | 24 | 27 | [Ans. 18, 19.5, 20.875, 22.75] Assume a 4-yearly cycle, eliminate the trend values from the following data by moving are method. Use additive model. | 100 105 115 90 95 95 95 1983 1984 1985 | ar: | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1000 | - | | - | | |--|------|------|------|------|------|------|------|------|------|------|------|------|-----| | | ues: | 100 | 105 | 115 | 90 | 95 | 85 | 80 | 65 | 1983 | 1984 | 1985 | 198 | [Ans. 101.88, 98.75, 91.88, 84.38, 78.75, 74.38, 71.88, 73.13 13.12, -8.75, 3.12, 0.62, 1.25, -9.38, 3.12, -3.13] For the following data, verify that the 5-yearly weighted moving average with weights 1, 2, 2, 2, 1 respectively is equivalent to 4 years centered moving averages. 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 | | Sales (Lakiis 143.). | | - | / | 0 | 4 | 8 | 9 | 10 | 0 | | 1.000 | 1 | |----|----------------------|-------|---------|-------|---------|--------|-------|---------|--------|--------|--------|--------|---| | 5. | Estimate the trend | value | es usin | g the | data gi | ven be | low t | y takin | g a fo | ur qua | rterly | moving |] | | Year/Quarter | I | п | III | | |--------------|----|----|-----|----| | 2002 | 78 | 62 | 56 | IV | | 2003 | 84 | 64 | 61 | 71 | | 2004 | 92 | 70 | 63 | 95 | [Ans. 67.5, 68.5, 69.375, 71.375, 73.750, 75.500, 76.50, 77.125] Determining the period of moving averages, find the trend values by moving averages for the following data: | Year: | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | |---------------------------------------|------|------|------|------|------|------|------|------|------|------| | Sales ('000 Rs.): | 26 | 29 | 35 | 47 | 51 | 26 | 32 | 37 | 46 | 53 | | Year: | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | | Sales ('000 Rs.):
Hint: 5-yearly N | . 25 | 30 | 36 | 46 | 54 | 28 | 31- | 36 | 46 | 54 | [Ans. 37.6, 37.6, 38.2, 38.6, 38.4, 38.8, 38.6, 8.2, 38, 38, 38.2, 38.8, 39, 39, 39, 39] # (4) Least Square Method This is the best method of trend-fitting in a time series and is most used in practice. This is a thematical method of trend-fitting in a time series and is most used in such a way that thematical method of trend-fitting in a time series and is most used in precious and a trend line in this method is fitted or obtained in such a way that blowing two conditions are fulfilled: (I) $\sum_{i} (Y - Y_c) = 0$, i.e., the sum of the deviations of the actual values of Y and computed trend $\log_2(Y_c)$ is 2000values (Y,) is zero. (2) $\Sigma(Y-Y_e)^2$ is least, *i.e.*, the sum of the squares of the deviations of the actual and computed $v_{\text{allues for }}$. values from this line is least. Trend line thus fitted under this method is called as the Line of Best Fit. Trend line thus fitted under this induced to the trend or parabolic trend or exponential Least square method can be used to fit straight line trend or parabolic trend or exponential # (A) Fitting of Straight Line Trend A straight line trend can be expressed by the following equation: $$Y = a + bX$$ Where, Y=Trend values, X=Unit of time a is the Y-intercept and b is the slope of the line. In the above equation, to determine two constants, a and b, the following two normal equations are solved: $$\begin{split} \Sigma Y &= Na + b \; \Sigma X \\ \Sigma XY &= a \; \Sigma X + b \; \Sigma X^2 \end{split} \tag{--(i)}$$ After determining the equation Y = a + bX, we find the trend values related to different years and plot them on the graph paper which show a straight line trend. There are two methods of computing straight line trend by using least square method: - (1) Direct Method - (2) Short-cut Method #### (1) Direct Method The procedure to compute straight line trend in this method is as follows: - (i) Any year is taken as the year of origin. Usually first year or before that is taken as zero, deviations of other years are marked on 1, 2, 3 ..., etc. Time deviations are denoted by X: - (ii) Then ΣX , ΣY , ΣXY and ΣX^2 are computed. - (iii) The values computed are put in the following normal equations: $$\Sigma Y = Na + b \Sigma X$$ $$\Sigma XY = a \Sigma X + b \Sigma X^{2}$$...(i) The values of a and b are determined by solving the above said two normal equations. (iv) Finally, the calculated values of a and b are put in Y = a + bX and trend values are computed. The following example makes clear the procedure of this method: quare (taking 1978 as year of origin) to Example 15. Fit a straight line trend by the method of least | the following data: | , | iod of iods | r square (| | 1000 | 7 | |-------------------------|------|-------------|------------|------|------|------| | Year: | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | | Production (lakh tons): | - 5 | 7 | 0 | 10 | 12 | 17 | Also obtain the trend values. Fitting of Straight I: | Year | Production (Y) | Deviations from 1978 | | | |-------|-----------------|----------------------|-------------------|----------------| | 1979 | 5 | (X) | XY | X ² | | 1980 | 7 | 2 | 5 | 1 | | 1981 | 9 | 3 | 14 | 4 | | 1982 | 10 | 4 | 27 | 9 | | 1983 | 12 | . 5 | 40 | 16 | | 1984 | 17 | 6 | 60 | 25 | | N = 6 | $\Sigma Y = 60$ | $\Sigma X = 21$ | 102 | 36 | | | | | $\Sigma XY
= 248$ | 5v2 0 | The straight line trend is defined by the equation: $$Y=a+bX$$ Two normal equations are Time Series Analysis-I $$\Sigma Y = Na + b \Sigma X$$ $$\Sigma XY = a \Sigma X + b \Sigma X^{2}$$ Substituting the values, we get $$60 = 6a + 21b$$ Solving the two equations (i) and (ii) Multiplying (i) by 7 and (ii) by 2 and then subtracting $$420 = 42a + 147b$$ $$496 = 42a + 182b$$ $$-76 = -35b$$ $$b = \frac{-76}{-35} = 2.17$$ By substituting the value of b in equation (i), we get $$60 = 6a + 21b$$ $$60 = 6a + 21(2.17)$$ $$6a = 14.43$$ $$a = 2.40$$ Hence, the trend equation is Y = 2.40 + 2.17X; origin = 1978, X unit = 1 Year. # Computation of Trend Values For 1980 $$Y = 2$$ $Y = 2.40 + 2.17$ (1) = 4.57 For 1980, $$X = 1$$, $Y = 2.40 + 2.17(1) = 4.57$ For 1980, $X = 2$, $Y = 2.40 + 2.17(2) = 6.74$ 299 ``` For 1981, X = 3, Y = 2.40 + 2.17(3) = 8.91 ``` For 1984, X = 0, 1 - 2.73 from the following data: | Y | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 100 | |--------------------------------------|------|------|------|------|------|------|------| | Year:
Production (in '000 units): | 125 | 128 | 133 | 135 | 140 | 141 | 1986 | | Production (in occ am , | | | | - | | | 143 | Estimate the values for the years 1987 and 1989. #### Solution: ### Fitting of Straight Line Trend | Year | Production (Y) | Deviations from 1980
(X) | XY | X ² | |--------|----------------|-----------------------------|-----------|-------------------| | 1980 | 125 | 0 | 0 | 0 | | 1981 | 128 | 1 | 128 | 1 | | 1982 | 133 | 2 | 266 | 4 | | 1983 | 135 | 3 | 405 | 9 | | 1984 - | 140 | 4 | 560 | 16 | | 1985 | 141 | 5 | 705 | 25 | | 1986 | 143 | - 6 | 858 | 36 | | N=7 | ΣY=945 | ΣX=21 | ΣXY=2,922 | $\Sigma X^2 = 91$ | The straight line trend is given by: $$Y = a + bX$$ Two normal equations are $\Sigma Y = Na + b \Sigma X$ $\Sigma XY = a \Sigma X + b \Sigma X^2$ Substituting the values, we get 945 = 7a + 21b 2922 = 21a + 91b Solving the two equations. Multiplying equation (ii) by 3, we will get 2835 = 21a + 63b Subtracting (iv) from (iii) we get, 2922 = 21a + 91b 2835 = 21a + 63b 28b $$b = \frac{87}{28} = 3.107$$ By substituting the value of b in equation (ii), we get From 945 = 7a + 21b7a = 879.753 a = 125.679 Thus, the straight line trend is Y = 125.679 + 3.107X Origin = 1980, X unit = 1 Year. Estimation for 1987 and 1989 For 1987, X = 7 $$Y = 125.679 + 3.107(7) = 125.679 + 21.749$$ $$Y = 147.428$$ For 1989, $$X = 9$$ #### EXERCISE 5.4 ...(i) ...(ii) ...(iii) .:(iv) 1. Fit a straight line trend by the method of least square (taking 1981 as year of origin) to the following data: | Year: | 1981 | 1982 | 1983 | 1984 | 1985 | |--------|------|------|------|------|------| | Value: | 15 | 21 | 25 | 33 | 40 | Also obtain the trend values. [Ans. Y = 14.4+6.2X, 14.4, 20.6, 26.8, 33, 39.2] 2. Fit a straight line trend by the method of least square to the following data: 1969 1970 1972 1973 1971 Sales (in lakhs): 75 45 46 56 78 Also obtain the trend values. (Take the year 1968 as the working origin) [Ans. Y = 45+5X; 50, 55, 60, 65, 70] Fit a straight line trend by the method of least square to the following data: 1986 1984 1985 Production (in '000 Qtls.): 1980 1981 1982 1983 92 (Take the year 1980 as the working origin) 90 83 [Ans. Y = 84 + 2X] (2) Short-Cut Method Short-Cut Method The process of computation in this method to find straight line trend is as follows: The process of computation in this mention to find stranger three tiend is as follows: (1) First of all, middle-year is taken as the year of origin with value zero and deviations for other years are computed. Sum of the deviations will be zero, i.e., $\Sigma X = 0$. Since deviations above middle year will be -1, -2, -3, etc., and deviations after middle year will be -1, -2, -3, etc., and deviations after middle year will be -1, -2, -3, etc., and deviations above and below middle year will balance out. This is made clear by the following example: | e and below n | niddle yea | r Will Dala | lice out | | 1056 | 1055 | O manil | |---------------|------------|-------------|----------|------|------|------|---------| | | 1952 | 1953 | 1954 | 1955 | 1956 | 1957 | 1958 | | Year: | 1932 | 1700 | 1 | 0 | +1 | +2 | +3 | | ν. | -3 | -2 | -1 | | | _ | .5 | - (2) ΣY , ΣXY and ΣX^2 are computed. - (3) For computing the values of a, b, we need not have normal equations but they are found by the following formulae: $$a = \frac{\sum Y}{N}; \quad b = \frac{\sum XY}{\sum X^2}$$ (4) Finally, the calculated values of a, b are put in the equation Y = a + bX and with its help, trend values are computed. Short-cut method is studied in two cases: - (i) When number of years is odd. - (ii) When number of years is even. # (i) When Number of Years is Odd When number of years is odd like 5, 7, 9..., etc. then the computation of straight line trend can be illustrated with the following examples: Example 17. Fit a straight line trend by the method of least squares to the following data and also | show on graph paper: | | | | 1 | | | | |-----------------------------|------|------|------|------|------|------|------| | Year: | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | | Production (in '000 units): | 80 | 90 | 92 | 83 | 94 | 99 | 92 | #### Solution: | Year | Production (Y) | Deviations from 1996 (X) | (XY) | |-------|----------------|--------------------------|------------------| | 1993 | 80 | -3 | -240 | | 1994 | 90 | -2 | -180 | | 1995 | 92 | -1 | -92 | | 1996 | 83 | 0 | 0-11 | | 1997 | 94 | 1 | +94 | | 1998 | 99 | | +198 | | 1999 | 92 | 3 | +276
2 | | N = 7 | Σ γ = 630 | $\Sigma X = 0$ | $\Sigma XY = 56$ | Time Series Analysis-I The equation of the straight line trend is: $$Y = a + bX$$ Since, $$\Sigma X = 0$$ $$a = \frac{\sum Y}{N}$$ $$b = \frac{\sum XY}{\sum X^2}$$ Substituting the values, we get $$a = \frac{\sum Y}{N} = \frac{630}{7} = 90$$ $$b = \frac{\Sigma XY}{\Sigma X^2} = \frac{56}{28} = 2$$ Thus, $$Y_c = 90 + 2X$$ Origin = 1996, X unit = One Year. ### **Computation of Trend Values** For 1993, $$X = -3$$, $Y_c = 90 + 2(-3) = 84$ For 1994, $$X = -2$$, $Y_c = 90 + 2 (-2) = 86$ For 1995, $X = -1$, $Y_c = 90 + 2 (-1) = 88$ For 1996, $$X = 0$$, $Y_c = 90 + 2(0) = 90$ For 1997 $$Y = \pm 1$$ $Y = 90 \pm 2 (1) = 90$ For 1997, $$X = +1$$, $Y_c = 90 + 2$ (1) = 92 For 1998, $X = +2$, $Y_c = 90 + 2$ (2) = 94 For 1999, $$X = +3$$, $Y_c = 90 + 2$ (3) = 96 ### **Graph Showing Trend Line** ...(i) ...(ii) Example 18. Fit a straight line trend to the following data by the method of least square taking (i) 1994 as origin, and (ii) 1997 as origin. Estimate the sales for 2002. | (i) 1994 as origin, | 1995 | 1996 | 1997 | 1998 | 1999 | |---------------------|------|-------------|-----------|-------------|------| | Year: | - 15 | 56 | 78 | 46 | 1999 | | Sales (Rs. lakh): | 45 | A Find Your | Sauare Me | thed (O : . | 15 | Solution: (i) Fitting of Straight Line Trend by Least Squ (Origin 1994 = 0) |) FI | Year | Sales
(Y) | Deviations from 1994
(X) | XY | X ² | |------|--------------|------------------|-----------------------------|-------------------|-------------------| | - | 1005 | 45 | 1 | 45 | 1 | | - | 1995 | 56 | 2 | 112 | 4 | | H | 1996
1997 | 78 | 3 | 234 | 9 | | - | 1997 | 46 | 4 | 184 | 16 | | - | 1998 | 75 | 5 | 375 | 25 | | + | N = 5 | $\Sigma Y = 300$ | $\Sigma X = 15$ | $\Sigma XY = 950$ | $\Sigma X^2 = 55$ | The equation of the straight line trend is $$Y = a + bX$$ Two normal equations are $\Sigma Y = Na + b\Sigma X$ $\Sigma XY = a\Sigma X + b\Sigma X^2$ Substituting the values, we get the values, we get $$300 = 5a + 15b$$ Solving the two equations. Multiplying equation (i) by 3 and substracting it from equation (ii) $$950 = 15a + 55b$$ $$900 = 15a + 45b$$ $$50 = 10b$$ $$b = \frac{50}{10} = 5$$ By substituting the value of 'b' in the equation (i), we get $$300 = 5a + 15 (5)$$ $$5a = 225$$ Hence the trend equation is: $$Y = 45 + 5X$$, Origin = 1994, X unit = 1 year. Time Series Analysis-I (ii) Fitting of Straight Line Trend by Least Square Method (Ocidental Control of | Sales | Daviation | c Method (Origin 1997 = 0) | | | |------------------|-----------------------------------|---|--|--| | (Y) | (X) | XY | X ² | | | 45 | -2 | - 00 | | | | 56 | -1 | | 4 | | | 78 | 0 | - 36 | 1 | | | 46 | +1 | 46 | 0 | | | 75 | +2 | | 1 | | | $\Sigma Y = 300$ | $\Sigma X = 0$ | | 4
Σν² – 10 | | | | (Y)
45
56
78
46
75 | (r) Deviations from 1997 (r) 45 -2 56 -1 78 0 46 +1 75 +2 | SANS Deviations from 1997 XY 45 -2 -90 56 -1 -56 78 0 0 46 +1 46 75 +2 150 | | The equation of the straight line trend is $$Y = a + bX$$ Since, $$\Sigma X = 0$$, $a = \frac{\sum Y}{N}$, $b = \frac{\sum XY}{\sum X^2}$ $$a = \frac{300}{5} = 60;$$ $b = \frac{50}{10} = 5$ Thus, the straight line trend is $$Y = 60 + 5X$$, Origin = 1997, X unit = 1 year. # Estimation of Trend Value for 2000 (a) Taking 1994 as orgin For 2000, $$X = 6$$, $Y = 45 + 5(6) = Rs. 75 lakh.$ (b) Taking 1997 as origin For 2000, $$X = 3$$, $Y = 60 + 5(3) = Rs$. 75 lakh. Note: It is clear that the value of 'b' remains the same whether we use 1994 as origin or 1997 as origin but the value of 'a' will differ. Change of origin does not affect the value of 'b' which is the slope of the trend line but it affects the value of 'a' (Y-intercept) # (ii) When Number of Years is Even When given number of Years is Even When given number of years is even (6, 10, 12..., etc.), in such a case, the selection of the middle Par becomes a problem. In such a case, mean of the two middle years is taken as year of origin and Surgeonding, deviations for other years are found out. Deviations will be -2.5, -1.5, -0.5, 0.5, 1.5 had 25. To simplify the computation process, these
deviations are divided by $\frac{1}{2}$ or multiplied by 2. The remaining steps are the same as before. hample 19. Fit a straight line trend by the method of least square to the following data and | y profits | for the | year 19 | /0. | | | | | | |----------------------|---------|---------|------|------|------|------|------|------| | Year: | 1961 | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | | Profits (Rs. crore): | | 1702 | 1700 | 0.0 | | 00 | 92 | 104 | | (40. Crore). | 90 | 00 | 02 | 6.5 | 94 | 99 | 12 | | #### Solution: # Fitting of Straight Line Trend | Year | Profits (Y) | Deviations
from 1964.5 | Deviations Multiplied by 2 (X) | XY | χ² | |-------|------------------|---------------------------|--------------------------------|-------------------|--------------------| | | 80 | -3.5 | -7 | -560 | 49 | | 1961 | | -2.5 | -5 | -450 | 25 | | 1962 | 90 | -1.5 | -3 | -276 | 9 | | 1963 | -92 | -0.5 | -1 | -83 | | | 1964 | 83 | +0.5 | | 94 | | | 1965 | 94 | +1.5 | 3 | 297 | 9 | | 1966 | 99 | | 5 | 460 | 25 | | 1967 | 92 | +2.5 | 7 24 14 | 728 | | | 1968 | 104 | +3.5 | - / | | 49 | | N = 8 | $\Sigma Y = 734$ | | $\Sigma X = 0$ | $\Sigma XY = 210$ | $\Sigma X^2 = 168$ | The equation of the straight line trend is: $$Y = a + bX$$ Since, $\Sigma X = 0$ $$a = \frac{\sum Y}{N} \text{ and}$$ $$b = \frac{\sum XY}{\sum X^2}$$ Substituting the values, we get $$a = \frac{734}{8} = 91.75$$ $$b = \frac{210}{168} = 1.25$$ (b gives half-yearly increment) The straight line trend is: $$Y = 91.75 + 1.25X$$; Origin = 1964.5, X unit = $\frac{1}{2}$ year. Estimation for 1970 For 1970, X = 11, $$Y = 91.75 + 1.25 (11)$$ = Rs. 105.5 lakh Thus, the estimated profits for the year 1970 are Rs. 105.5 lakh. Time Series Analysis-I Alternative Method: The same result will be obtained if we don't multiply the deviations by 2. But in that case the computation will be more lengthy as could be seen below: | Year | Profits (Y) | Deviations from 1964.5 (X) | XY | X ² | |-------|------------------|----------------------------|-----------|-------------------| | 1961 | 80 | -3.5 | | | | 1962 | 90 | - 2.5 | -280 | 12.25 | | 1963 | 92 | -1.5 | -225 | 6.25 | | 1964 | 83 | | -138 | 2.25 | | | 94 | -0.5 | -41.5 | 0.25 | | 1965 | | + 0.5 | 47.0 | 0.25 | | 1966 | 99 | + 1.5 | 148.5 | 2.25 | | 1967 | 92 | + 2.5 | 230 | 6.25 | | 1968 | 104 | + 3.5 | 364 | 12.25 | | N = 8 | $\Sigma Y = 734$ | $\Sigma X = 0$ | ΣXY = 105 | $\Sigma X^2 = 47$ | The equation of the straight line trend is: $$Y = a + bX$$ Since, $$\Sigma X = 0$$ $$\therefore \qquad a = \frac{\Sigma Y}{N} \text{ and } \qquad b = \frac{\Sigma XY}{\Sigma X^2}$$ Substituting the values, we get $$a = \frac{734}{8} = 91.75$$ $$b = \frac{105}{42} = 2.5 \text{ (b gives ye}$$ $$a = \frac{734}{8} = 91.75$$ $$b = \frac{105}{42} = 2.5$$ (b gives yearly increment) Thus, Y = 91.75 + 2.5X, Origin = 1964.5, X unit = 1 year. Estimation for 1970 For 1970, $$X = 5.5$$ Y = 91.75 + 2.5 (5.5) = KS. 103.3 IARJI.as in the first method, the value of b gives annual increment rather than 6 monthly increment as in the first method discussed above. It is clear from the example that in the first method, the value of b is half of what we obtained from the second method (b was 1.25 in the first case the property of the second case). bample 20. Fit a straight line trend by least square method to the data given below. Also find an estimate 6. | other for the ye | ar 2006. W | hat is the | annual and | monthly ir | crease in s | ales? | |--------------------|------------|------------|------------|------------|-------------|-------| | Year: | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | | Sales (Rs. lakhs): | 20 | | 20 | 25 | 40 | 50 | ...(iv) #### Solution: # Fitting of Straight Line Trend | | | - | | | | |------|------------------|---------------------------|--------------------------------------|-------------------|---| | Year | Sales
(Y) | Deviations
from 2002.5 | Deviations
Multiplied by 2
(X) | XY | | | 2000 | 28 | -2.5 | -5 | -140 | - | | 2000 | 32 | -1.5 | -3 | -96 | _ | | 2001 | 29 | -0.5 | -1 | -29 | | | 2002 | 35 | +0.5 | +1 | +35 | | | 2003 | 40 | +1.5 | +3 | +120 | | | 2004 | 50 | +2.5 | +5 | +250 | - | | 2005 | $\Sigma Y = 214$ | | $\Sigma X = 0$ | $\Sigma XY = 140$ | - | The equation of the straight line trend is: $$Y = a + bX$$ Since, $\Sigma X = 0$ $$a = \frac{\sum Y}{N}$$ and $$b = \frac{\sum X}{\sum X}$$ Substituting the values, we get $$a = \frac{214}{6} = 35.67$$ $$b = \frac{140}{70} = 2$$ Thus, Y = 35.67 + 2X; Origin = 2002.5, X unit = $\frac{1}{2}$ year. ### Estimation for 2006 For 2006, X = +7 $$Y = 35.67 + 2 (7)$$ Thus, the estimated sales for 2006 is Rs. 49.67 lakh. Annual increase in sales = $2 \times b = 2 \times 2 = 4$ Monthly increase in sales = $\frac{b}{6} = \frac{2}{6} = 0.33$ lakh Or $$= \frac{\text{Annual Increase}}{12}$$ $$= \frac{4}{12} = 0.33 \text{ lakh.}$$ Time Series Analysis-I # MPORTANT TYPICAL EXAMPLES When there is a gap in the given years 6 When the Below are given the figures of production (in thousand quintals) of the | Den | 1980 | 1982 | 1000 | 1 | umtais) of | ictory: | | |-------------|------|------|------|------|------------|---------|------| | Year: | 1700 | 1702 | 1983 | 1984 | 1985 | 1986 | | | Production: | 77 | 88 | 94 | 95 | | 1980 | 1987 | | Production: | | | | | . 91 | 98 | 90 | - thod of least square and also show the trend line (i) Fit a straight line tren on the graph paper. - (ii) Eliminate the trend using additive model. What components of the time series are left over? - (iii) What is the monthly increase in the production of sugar? (i) Since there is a gap in the given data. It is not necessary that deviations taken Solution: from the middle year would be zero. ### Fitting of Straight Line Trend | Year | Production
(Y) | X | XY | X ² | |-------|-------------------|-----------------|-------------------|-------------------| | 1980 | 77 | -4 | -308 | 16 | | 1982 | 88 | -2 | -176 | 4 | | 1983 | 94 | | -94 | 1 | | 1984 | 95 | 0 | 0 | 0 | | 1985 | 91 | +1 | 91 | 1 | | 1986 | 98 | +2 | 196 | 4 | | 1987 | 90 | +3 | 270 | 9 | | N = 7 | $\Sigma Y = 633$ | $\Sigma X = -1$ | $\Sigma XY = -21$ | $\Sigma X^2 = 34$ | The equation of the straight line trend is $$Y = a + bX$$ Since ΣX is not equal to zero, the values of a and b will be found out by solving the following two normal equations: | $\Sigma Y = Na + b\Sigma X$ | (i) | |---------------------------------------|-------| | $\Sigma XY = a\Sigma X + b\Sigma X^2$ | (ii) | | | () | | Substituting the values, we get | (::0 | | 633 = 7a + (-1)b | (iii) | $$-21 = -a + 35b$$ Multiplying equation (iv) by 7 and adding (iii) and (iv) $$633 = 7a - b$$ $$-147 = -7a + 245b$$ $$486 = 244b$$ $$\Rightarrow b = \frac{486}{244} = 1.991 = 2 \text{ (approx.)}$$ Putting the value of b in equation (iii), we get $$(244)$$ Putting the value of b in equation (iii), we get g the value of b in equal $$633 = 7a + (-1)(2)$$ \Rightarrow $635 = 7a$ Thus, $$a = \frac{635}{7} = 90.71$$ Thus, $$a = \frac{33}{7} = 90.71$$ So, the equation of the straight line trend is $$Y = 90.71+2X$$, Origin = 1984 Computation of Trend Values For 1980, $$X = -4$$, $Y = 90.71 + 2(-4) = 82.71$ For 1982, $X = -2$, $Y = 90.71 + 2(-2) = 86.71$ For 1982, $$X = -2$$, $Y = 90.71 + 2(-2) = 86.71$ For 1982, $$X = -2$$, $Y = 90.71 + 2(-1) = 88.71$ For 1983, $X = -1$, $Y = 90.71 + 2(-1) = 88.71$ For 1984, $$X = 0$$, $Y = 90.71 + 2(0) = 90.71$ For 1985, $$X = +1$$, $Y = 90.71 + 2(1) = 92.71$ For 1985, $$X = +2$$, $Y = 90.71 + 2(2) = 94.71$ For 1987, $$X = +3$$, $Y = 90.71 + 2 (3) = 96.71$ The straight line can be fitted by plotting trend values on the graph paper. ## **Graph Showing Trend Line** | (ii) | Elimination of Trend | using Additive Model | |------|----------------------|----------------------| | | | | | Elimination of Trend using Additive Model | | | | | | | |---|------|-------|--------------|--|--|--| | Year | γ | Yc | Elimination | | | | | 1980 | 77 | 82.71 | -5.7
+1.2 | | | | | 1982 | 88 | 86.71 | +1.2 | | | | | 1983 | 94 | 88.71 | +3.2 | | | | | 1984 | 95 | 90.71 | -1.7 | | | | | 1985 | 91 | 92.71 | +3.2 | | | | | 1986 | 98 | 94.71 | +3.2 | | | | | 1987 | . 90 | 06.71 | -0.1 | | | | Time Series Analysis-I Solution: After eliminating the trend, cyclical and irregular components are left over, since seasonal variations will be absent as the data given is annual. (iii) Annual increase in the production of sugar = b = 2,000 quintals. :. Monthly increase in the production of sugar = $\frac{b}{12} = \frac{2,000}{12}$ = 166.67 quintals. # o To Convert Annual Trend Equation to Monthly/QuarterlyTrend Equation (Odd Period) In certain problems, we require to convert the annual trend equation to monthly trend equation. For converting the annual trend equation to monthly trend equation, divide the value of 'a' by 12; and the value of 'b' by 144. For converting annual trend equation to quarterly trend equation divide the value of b by 16. 10 Convertin problems, we require to convert the annual trend equation to monthly trend equation, Example 22. Below are given the annual production (in thousand tons) of a fertili | | | | | | - remo) of a fertiliser factory: | | | | | |-------------|------|------|------|------|----------------------------------|-------|------|--|--| | Year: | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | | | | | 70 | 75 | | | - | .,,,, | 1503 | | | | Production: | 70 | 75 | 90 | 91 | 95 | 98 - | 100 | | | - (i) Fit a straight line trend by the method of least squares and tabulate the trend values. - (ii) Convert your annual trend equation into a monthly and quarterly trend equation. - (iii) What is the rate of growth of production per month? | Year | Production (Y) | Production (X) | XY | X ² | |-------|------------------|----------------|-------------------|----------------------| | 1977 | 70 | -3 | -210 | 9 | | 1978 | 75 | -2 | -150 | 4 | | 1979 | 90 | -l | -90 | 1 | | 1980 | 91 | 0 | 0
. | 0 | | 1981 | 95 | +1 - | +95 | 1 | | 1982 | 98 | +2 | +196 | 4 | | 1983 | 100 | +3, | +300 | 9 | | N = 7 | $\Sigma Y = 619$ | $\Sigma X = 0$ | $\Sigma XY = 141$ | $\Sigma \chi^2 = 28$ | The straight line trend is given by $$Y = a + bX$$ Since, $$\Sigma X = 0$$, $a = \frac{\Sigma Y}{N} = \frac{619}{7} = 88.43$ $b = \frac{\Sigma XY}{\Sigma X^2} = \frac{141}{28} = 5.04$ $$\Sigma X^2$$ 28 $Y = 88.43 + 5.04X$; Origin = 1980. # Computation of Trend Values # (ii) Monthly Trend Equation For 1963, $$X = 105$$ Monthly Trend Equation $$Y_c = \frac{a}{12} + \frac{b}{144}X$$ $$\therefore Y_c = \frac{88.43}{12} + \frac{5.04}{144}X$$ $$Y_c = 7.369 + 0.035X$$ Quarterly Trend Equation $$Y_c = \frac{4}{4} + \frac{b}{16}X$$ $$Y_c = \frac{88.43}{4} + \frac{5.04}{16}X$$ $$Y_c = 22.1075 + 0.315X$$ # (iii) Rate of growth per month $$= \frac{b}{12} = \frac{5.04}{12} = 0.42 \text{ thousand tons.}$$ # • To Convert Annual Trend Equation to Monthly/Quarterly Trend Equation (Even Period) For converting annual trend equation to monthly trend equation in case of even number of years, we divide the value of 'a' by 12 and the value of 'b' by 6×12 (= 72). For converting the annual trend equation into quarterly trend equation, divide the value of a by 4 and the value of b by 8. Example 2 | Year: | 2000 | 2001 | 2002 | 2003 | 2004 | 20 | |---------------------|------|------|------|------|------|----| | Profits (Rs. lakh): | 10 | 20 | 30 | 56 | 40 | 6 | Convert annual trend equation into monthly trend equation. What is the rate of growth of profit per month? #### Solution: | Year | Profits
(Y) | X | XY | |------|------------------|----------------|-------------------| | 2000 | 10 | -5 | -50 | | 001 | 20 | -3 | -60 | | 2002 | 30 | -1 | -30 | | 2003 | 56 | +1 | 56 | | 2004 | 40 | + 3 | 120 | | 2005 | 60 | + 5 | 300 | | /=6 | $\Sigma Y = 216$ | $\Sigma X = 0$ | $\Sigma XY = 336$ | Time Series Analysis-I The equation of the straight line trend is Since, $$\Sigma X = 0$$ $$\therefore \qquad a = \frac{\Sigma Y}{N} = \frac{216}{6} = 36$$ $$b = \frac{\Sigma XY}{\Sigma X^2} = \frac{336}{70} = 4.8$$ $$\therefore \qquad Y = 36 + 4.8X; \quad \text{Origin} = 2002.5; \quad X \text{ unit } = \frac{1}{2} \text{ year.}$$ (ii) Monthly Trend Equation will be as: $$Y_c = \frac{a}{12} + \frac{b}{72}X$$ $$Y_c = \frac{36}{12} + \frac{4.8}{72}X$$ $$Y_c = 3 + 0.066X$$ (iii) Monthly Increase in Profit = $\frac{b}{6} = \frac{4.8}{6} = 0.8$ lakh. ### Shifting the Trend Origin While computing trend values, a certain year (or unit of time) is assumed as point of origin. Sometimes it may be necessary to shift the origin of the trend equation to some other year in the sries. For this, there is no need of making all calculations again but there will be the following adjustment to shift the origin of the trend equation: $$Y = a + b (X \pm k)$$ Where k' is the number of time units shifted. If the origin is shifted forward in time k will be positive and if origin is shifted backward in time, k will be negative. Note: Shifting of origin affects the values of 'a' (Y-intercept). The value of 'b' remains the same as the slope of the trend line is the same irrespective of the year of origin. Example 24. You are given the following trend equation: Y = 45 + 5X (i) Shifting Origin to 1988: 1988 – 1990 = – 2 shift the origin by 2 years backwards. Replace X by X-2 in the above trend equation. $$Y = 45 + 5 (X - 2)$$ = $45 + 5X - 10$ $Y = 35 + 5X$, Origin: 1988 (ii) Shifting Origin to 1993: 1993 – 1990 = +3 shift the origin by 3 years forward. Replace X by X + 3 in the above trend equation. Y = 60 + 5X, Origin: 1993 Example 25. Sales of a particular commodity is given as: - 1996 1997 1998 Year: 78 45 56 46 Sales (lakhs Rs.): - (i) Fit a straight line trend to the above data assuming 1997 as the year of origin. Estimate the value for 2000. - (ii) How would you shift the year of origin to 1995 in the above problem? Explain. - (iii) Convert your annual trend equation into monthly trend equation. #### Solution: | Year | Sales (Y) | X | XY | X ² | |-------|-----------|----------------|------------------|---------------------| | 1995 | 45 | -2 | - 90 | 4 | | 1996 | 56 | -1 | -56 | 1 | | 1997 | 78 | 0 | 0 | . 0 | | 1998 | 46 | +1 | 46 | 1 | | 1999 | 75 | +2 | 150 | 4 | | N = 5 | ΣY = 300 | $\Sigma X = 0$ | $\Sigma XY = 50$ | ΣX ² =10 | (i) The equation of the straight line trend is $$Y = a + bX$$ Since, $\Sigma X = 0$ $$a = \frac{\sum Y}{N} = \frac{300}{5} = 60$$ $$b = \frac{\sum XY}{\sum X^2} = \frac{50}{10} = 5$$ Y = 60 + 5X, Origin = 1997, X unit = 1 year. Estimation for 2000, X = 3, Y = 60 + 5(3) = Rs. 75 lakh. (ii) Shifting Origin to 1995; 1995 – 1997 = –2, shift the origin by 2 years backwards Replace X by X-2 in above trend equation. $$Y = 60 + 5 (X - 2) = 60 + 5X - 10$$ $$Y = 60 + 5 (X - 2) = 60 + 5X - 10$$ ∴ $$Y = 50 + 5X;$$ Origin = 1995; X unit = 1 year. (iii) Monthly Trend Equation will be as follows: $$Y = \frac{60}{12} + \frac{5}{144}X = 5 + 0.034X$$ $$Y = 5 + 0.034X$$ Time Series Analysis-I EXERCISE 5.5 Odd Period Odd Formal Price of the following data and shall be straight line trend by method of least square to the following data and shall be straight line trend by method of least square to the following data and shall be straight line trend by method of least square to the following data and shall be straight line trend by method of least square to the following data and shall be straight line trend by method of least square to the following data and shall be straight line trend by method of least square to the following data and shall be straight line trend by method of least square to the following data and shall be straight line trend by method of least square to the following data and shall be straight line trend by method of least square to the following data and shall be straight line trend by method of least square to the following data and shall be straight line trend by method of least square to the following data and shall be straight line trend by method of least square to the following data and shall be straightful by the straightful by the square trend by the straightful | Year: | 1981 | 1982 | 1983 | 1984 | the third Si | low on gra | ph paper: | |-------------------------|------|------|------|------|--------------|------------|-----------| | Production ('000 tons): | 77 | 88 | 94 | 85 | 1985 | 1986 | 1987 | | From | | | | 0.5 | 91 | 98 | 90 | [Ans. Y = 89+2X; 83, 85, 87, 89, 91, 93, 95] 13 15 16 (Ans. Y = 89+2X; 83, 85, 87, 89, 91, 93, 95) Fit a trend line to the following data by the least square method and estimate the production for 1995 and 2000: | Year: | 1990 | 1992 | 1994 | 1000 | | |-------------------------|------|------|------|------|------| | Production ('000 tons): | 18 | 21 | 22 | 1996 | 1998 | | 11.00 | | 797 | 23 | 27 | 16 | What is the monthly increase in production. [Ans. Y = 21 + 0.1 X, Y₁₉₉₅ = 21.1 ('000 tons); Y₂₀₀₀ = 21.6 ('000 tons), 0.0083 thousand] Below are figures of sales ('000) tons: 1991 Year: 1992 1993 1995 1996 12 Sales ('000 tons): 10 11 Fit a straight line trend and calculate trend values: [Ans. Y = 13 + 0.75X, 10.75, 11.50, 12.25, 13.0, 13.75, 14.50, 15.25] 4. The sales of a particular commodity is given as: | | | 2 8 | e us | | | | | |--------------------|------|------|------|------|------|------|------| | Year: | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | | Sales ('000 tons): | 20 | 23 | 22 | | | | 1700 | | , , , , , , , | 20 | 23 | 22 | 25 | 26 | 29 | 30 | - (i) Fit a straight line trend to the above data assuming 1983 as the year of origin. Estimate the value for 2000. - (ii) How would you shift the year of origin to 1979 in the above problem? Explain. [Ans. Y = 25 + 1.642X; $Y_{2000} = 52.914$; Y = 18.432 + 1.642X] | | Tond val | ues by the | nemod of le | east square | from the da | ita given be | low: | |-----------------|----------|------------|-------------|-------------|-------------|--------------|------| | Year:
Value: | 1992 | 1995 | 1997 | 1998 | 2000 | 2001 | 2003 | | value: | 75 | 67 | 68 | 65 | 50 | 54 | 41 | [Ans. Y = 60-3X, 78, 69, 63, 60, 54, 51, 45] Calculate the trend values by least square method for the following time series: | Year: | | -mot out | | tilou io | | | | | | |-----------------------------|------|----------|------|----------|------|------|------|------|------| | A state of the state of the | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | | Sales (000' Rs.): | 53 | 79 | 76 | 66 | 69 | 87 | 79 | 95 | 104 | o calculate the trend values by taking 4-years moving average period. [Hint: See Example 39] [Ans. (i) Y = 78.67 + 4.65X, 60.07, 64.72, 69.37, 74.02, 78.67, 83.32, 87.97, 92.62, 97.27 (ii) -- 70.50, 73.50, 74.875, 78.875, 86.875, --] ing the value of sales of a company for the years 1988 to 1909 | 7. | The following data gr | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 1997 | | |----|---------------------------------------|------|------|------|------|------|------|------|------|-----------|------| | | Year (X):
Sales (in lakh Rs.) (Y): | 50.0 | 36.5 | 43.0 | 44.5 | 38.9 | 38.1 | 32.6 | | 41.7 41.1 | 1998 | | | Sales (in lakh RS.) (1) | - | | | _ | | . 11 | | | | 33.8 | - (i) Use the method of least square to fit a straight line trend to the data given above. Compute the trend values for 1991 and 1996 (Take X = 0 for the year 1993 and the unit of X as 1 year) - of X as 1 year) (ii) Construct a five year moving average and compare the trend values for the year 1991 and 1996. 1 1996. [Ans. (f) Linear trend equation: Y = 39.9 - 0.767X; x = X - 1993 Trend values for 1991 and 1996 are 41.4 (lacs Rs.) and 37.6 (lacs Rs.) respectively. (ii) 5-yearly M.A. values for 1990 to 1996 are (in lakhs Rs.): 42.6, 40.2, 39.4, 38.6, 38.0, 38.4, 37.6] 42.0, 40.2, 32.4, 32.4 8. Use the method of least square to fit a straight line trend for the following data. (Take 1986 as | origin).
Year: | 1984 | 1985 | 1986 | 1987 | 1988 |
-----------------------------|------|------|------|------|------| | Production (in '000 Qtls.): | 28 | 38 | 46 | 40 | 56 | Also compute the trend values. What are the annual and monthly increase in production? [Ans. Y = 41.6 + 5.8X; 30, 35.8, 41.6, 47.4, 53.2; Annual Increase = 5.8 thousands Qls. Monthly Increase = 0.483 thousand Qtls.] ### Even Period 9. Fit a straight line trend by the method of least square. Also estimate the production for the ase in production? | Year: | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | |------------------------------|------|------|------|------|------|------| | Production (in lakh tonnes): | 25 | 40 | 47 | 59 | 68 | 80 | [Ans. Y = 53.17 + 5.3X, 90.27, 0.883] [Ans. Y = 33.17 + 3.34, Section for the following time series by the method of least square and also obtain the trend values: | Year: | 1954 | 1955 | 1956 | 1957 | 1958 | |-------------------------------|------|------|-----------------|------|------| | Production (in crore of Rs.): | 7 | 10 | 12
14+1.54X; | 14 | 17 | | Fit a straight line | trend by th | e method of | least square | to the follow | ving data. | |---------------------|-------------|-------------|--------------|---------------|------------| | Year: | 1988 | 1989 | 1990 | 1991 | 1992 | | Sales (in lakhs): | 12 | 18 | 26 | 35 | 29 | Estimate the sales for the year 1995. [Ans. Y = 27 + 2.74X; $Y_{1995} = 51.66$] Time Series Analysis-I The weights of a calf taken at weekly intervals are given below. Fit a straight line using the | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 0 | | | |------------|---------|----------|----------|---------|----------|-----------|-------|------|-------|-------| | | 52.5 | 58.7 | 65.0 | 70.2 | 75.4 | 81.1 | 07.0 | - | 9 | 10 | | (Y): | * 1 | t of the | calfyyl | 10n aa- | : (2.1 | | 87.2 | 95.5 | 102.2 | 108.4 | | | | | | | | | | | | | | timate the | e weign | [An | s. (i) Y | = 79 62 | 15 (1) 1 | 2 (ii) 15 | weeks | | | | # Gap in the Given Years Below are given figures of production (in thousand tons) of a sugar factory | | | | | 0 | actory. | | |------|------------|------|------|------|--------------------------|----------------| | 1986 | 1988 | 1989 | 1990 | 1991 | 1992 | 1995 | | 77 | 88 | 04 | 0.5 | | | 1993 | | | | 74 | 85 | 91 | 98 | 90 | | | 1986
77 | | 1.02 | 1390 | 1986 1988 1989 1990 1991 | 77 88 94 85 71 | - (i) Fit a straight line trend by the least square method and tabulate the trend values. - (ii) Eliminate the trend. What components of the time series are thus left over? - (ii) What is the monthly increase in the production of sugar? [Ans. Y=88.803+1.38X; 83.28, 86.04, 87.42, 88.80, 90.18, 91.56, 95.73; Monthly increase = 0.115 thousand qtl.] | 14. | The following ti | me serie | S SHOW | s the co | svunit | (Rs.) of | a produ | act for t | he perio | od 1981 | -1995: | |-----|------------------|----------|--------|----------|--------|----------|---------|-----------|----------|---------|--------| | | Years: | 1981 | 1982 | 1984 | 1985 | 1987 | 1990 | 1991 | 1992 | 1993 | 1995 | | | Cost/Unit (Rs.): | 332 | 317 | 357 | 392 | 402 | 405 | 410 | 427 | 405 | 420 | Calculate the trend values by the least square method and estimate the cost per unit for 1997. [Ans. Y = 388.5 + 7.509X; $Y_{1997} = 456.081$] # Conversion of Annual Trend Equation to Monthly/Quarterly Trend Equation | - Ing date | relate to sai | es of Reliance | Liu | | | |--------------------|---------------|----------------|------|------|------| | Year: | 2000 | 2001 | 2002 | 2003 | 2004 | | Sales (Rs. lakhs): | 40 | 80 | 120 | 200 | 160 | - (i) Fit a straight line trend by the method of least square and tabulate the trend values. - (ii) Eliminate the trend using additive model. What components of the time series are thus left over? - (iii) Estimate the likely sales for the year 2006. - (iv) What is half yearly, quarterly and monthly increase in the sales? - (b) Convert the trend equation into (a) on monthly basis, (b) on quarterly basis. (vi) Shift the origin (a) to 2004, (b) to 2000. [Ans. (i) Y = 120 + 36X; (ii) only cyclical and irregular variations, (iii) $Y_{2006} = 264$, (iv) 18, 9, 3 (v) (a) Y = 10 + 0.25X, (b) Y = 30 + 2.25X (vi) (a) Y = 192 + 36X, (b) Y = 48 + 36X] # ▶ Measurement of Short Term Fluctuations/Elimination of Trend 16. | 5. Following da | ta relate to sales | Of Dilatat 2 | 1 | | | | |-----------------|--------------------|--------------|------|------|----------|------| | | 2000 | 2001 | 2002 | 2003 | 2004 | | | Year: | 2000 | 20 | 30 | 56 | 40 | 2005 | | Sales (Rs. lakh | s): 10 | 20 | | | 40 17 10 | 60 | - (i) Fit a straight line trend by the method of least square and tabulate the trend values, - (i) Fit a straight line trend by the investment of the time series are thug. (ii) Eliminate the trend using additive model. What components of the time series are thug. left over? - (iii) Estimate the likely sales for the year 2006. - (iv) What is annual increase in the sales? - (v) What is monthly increase in the sales? - (vi) By what year the company's expected sales would have equalled to its target of 84 lakhs. [Hint: See Example 38] mple 38] [Ans. (i) Y = 36 + 4.8X (ii) -2, -1.6, -1.2, 15.2, -10.4, O, C & I are left over.ins. (i) $Y = 36 + 4.8 \times (ii) - 2, -1.05$, (iii) 69.6 (iv) $4.8 \times 2 = 9.6$ (v) 0.8 lake (vi) Target is expected to be attained in the year 2007.5 (i.e., 2002.5 + 102)] 17. Fit a straight line trend to the following data by the method of least square after summing the quarterly data to yearly data: | Year | Q_1 | Q_2 | Q_3 | Q ₄ | |------|-------|-------|-------|----------------| | 1993 | 10 | 13 | 14 | 12 | | 1994 | 12 | 14 | 15 | 13 July 13 | | 1995 | 13 | 15 | 18 | 14 | | 1996 | 15 | 18 | 21 | 18 | | 1997 | 15 | 22 | 23 | 20 | Also find out short-term fluctuations for the given years using additive model. [Hint: See Example 36] [Ans. Y= 63+8X; Trend: 47, 55, 63, 71, 79; Short-term fluctuations: 2, -1, -3, 1, 1] #### Shifting of Origin | Year: | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | |-------------------------------------|------|------|------|------|------|------| | Production of Steel
(in tonnes): | 60 | 72 | 75 | 65 | 80 | 85 | - (i) Fit a straight line trend to the above data assuming 2000 as the year of origin, Estimals the value for 2004 the value for 2004. - (ii) How would you shift the year of origin to 1997 in the above problem? Explain. (iii) Convert your annual trend equation to monthly trend equation. [Ans. (i) Y = 76 + 4.857X, $Y_{200} = 95.428$, (ii) Y = 61.429 + 4.857X. Origin 1997; (iii) Y = 6.33 + 0.0317X] Ime Series Analysis-I The trend of the annual sales of ABC Co. Ltd. is described by the following equation: Y = 30 + 3.6X, Origin = 2001, X unit = 1 year, Y unit = annual sales. Convert the annual trend equation into monthly trend equation. [Ans. Y = 25.00] [Ans. Y = 2.5 + 0.025X] Convert the annual using equation into monthly trend Given the following trend equation: Given the following trend equation: Y₁=84.26 + 5.8 X (Origin = 1978, X unit = 1 year) Shift the origin to (i) 1985 and (ii), 1969 [Ans. (i) Y = 124.65 (a) (b) 1965 and (a), 1705 [Ans. (i) Y = 124.86 + 5.8X, Origin: 1985 (ii) Y = 32.06 + 5.8 X, Origin: 1969] 11. The annual trend equation is: The annual using equation is: y = 50 + 2X, Origin: 2000, X unit = 1 year. Shift the origin to 1997. [Ans. Y = 44+2X, Origin: 1997] Shift trend of annual sales of a company is described by the following equation: $\frac{1}{2} = \frac{1}{2} \frac{1$ Y = 15 + 0.5X (Origin: 1987, X unit = 1 year, Y unit = Annual Production) Convert the equation to quarterly trend equation. [Ans. Y = 3.75 + 0.03125X] ## (B) Fitting of Second Degree Parabolic Trend or Quadratic Trend There may be many such situations in economic and business fields in which a straight line need may not represent the long-term tendency of the time series data. In such cases, a second tend may not represent the long-term tendency of the time series data. In such cases, a second degree parabolic trend or quadratic trend is fitted. The equation of the second degree parabolic trend or the quadratic trend is: $$Y = a + bX + cX^2$$ Where, a is the Y-intercept, b is the slope of the curve at the origin and c is the rate of change in Under the method of least square, the values of the constants a, b and c are obtained by solving the following three normal equations: $$\Sigma Y = Na + b\Sigma X + c\Sigma X^{2}$$ $$\Sigma XY = a\Sigma X + b\Sigma X^{2} + c\Sigma X^{3}$$ $$\Sigma X^{2}Y = a\Sigma X^{2} + b\Sigma X^{3} + c\Sigma X^{4}$$ Short-cut Method: If the time deviations are taken from the middle year (or arithmetic mean of ho middle years), the values of ΣX and ΣX^3 would be zero (i.e. $\Sigma X = 0$ and $\Sigma X^3 = 0$) and the equations are reduced to the following: $$\Sigma Y = Na + c\Sigma X^2 \qquad ...(i)$$ $$\sum XY = b\sum X^{2} \qquad ...(ii)$$ $$\sum X^{2}Y = a\sum Y^{2} + a\sum Y^{4} \qquad ...(iii)$$ $$\sum X^2 Y = a \sum X^2 + c \sum X^4 \qquad ...(ii)$$ When further solved, these equations gives the following values of the constants a, b and c. From equation (ii) we get $$b = \frac{\sum XY}{\sum X^2}$$ From equation (i), we get $$a = \frac{\sum X^2}{N}$$ 319 and from equation (iii), we get $$c = \frac{N \Sigma X^2 Y - (\Sigma X^2)(\Sigma Y)}{N \cdot \Sigma X^4 - (\Sigma X^2)^2}$$ After finding the values of a, b and c in the above manner, the trend equation can be fitted to obtain the trend values of the given time series by substituting the respective values of X therein, obtain the trend values of the grant of the state of X there is a practice, short-cut method is widely used for fitting second degree parabolic trend. #### Procedure redure The computation of second degree parabolic trend/quadratic trend involves the following steps: The computation of sach year from the middle year and denote it by X. - (ii) Then $\Sigma X, \Sigma Y, \Sigma XY, \Sigma X^2Y, \Sigma X^2, \Sigma X^3$ and ΣX^4 are computed. - (iii) The values computed
are put in the above formulae of $b,\ a$ and c. - (iii) The values complete an earth of a, b and c are put in $Y = a + bX + cX^2$ and trend values are # Type I: Odd Number of Years Example 26. Fit a second degree parabolic trend $(Y = a + bX + cX^2)$ to the following data: | Year: | 1983 | 1984 | 1985 | 1986 | 1987 | |----------------------------|------|------|------|------|------| | Production (in crore Rs.): | 5 | 7 | 4 | 9 | 12 | Also compute the trend values. Predict the value for 1988. #### Solution: #### Fitting of Second Degree Parabolic Trend | Year | Production
(Y) | Deviations
from 1985
(X) | XY | X ² Y | X ² | X ³ | X ⁴ | |-------|-------------------|--------------------------------|------------------|---------------------|-------------------|------------------|----------------| | 1983 | 5 | -2 | -10 | 20 | 4 | -8 | 16 | | 1984 | 7 | -1 | -7 | 7 | 1 | -1 | 1 | | 1985 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | | 1986 | 9 | +1 | 9 | 9 | 1 | +1 | 1 | | 1987 | 12 | +2 | 24 | 48 | 4 | +8 | 16 | | N = 5 | $\Sigma Y = 37$ | $\Sigma X = 0$ | $\Sigma XY = 16$ | $\Sigma X^2 Y = 84$ | $\Sigma X^2 = 10$ | $\Sigma X^3 = 0$ | ΣΧ | The second degree parabolic trend is given by the equation $$Y = a + bX + cX^2$$ The three normal equations are: $$\Sigma Y = Na + b\Sigma X + c\Sigma X^{2}$$ $$\Sigma XY = a\Sigma X + b\Sigma X^{2} + c\Sigma X^{3}$$ $$\Sigma X^{2}Y = a\Sigma X^{2} + b\Sigma X^{3} + c\Sigma X^{4}$$ Time Series Analysis-I Substituting the values, we get $$37 = 5a + b(0) + c(10) \Rightarrow 37 = 5a + 10c$$ $$16 = a(0) + b(10) + c(0) \Rightarrow 16 = 10b$$ $$84 = a(10) + b(0) + c(34) \Rightarrow 84 = 10a + 34c$$ $$....(ii)$$ $$16 = 10b \Rightarrow b = \frac{16}{2} = 1.6$$(iii) From (ii) equation, $$16 = 10b \Rightarrow b = \frac{16}{10} = 1.6$$ Multiplying (i) by 2 and subtracting it from (iii) 84 = 10a + 34c $$74 = 10 a + 20c$$ $$10 = 14c$$ $$c = \frac{10}{14} = 0.71$$ Putting the value of c in (i), we get $$37 = 5a + 10(0.71)$$ $5a = 29.9$ $a = 5.98 \approx 6.0$ Thus, the second degree parabolic trend is $$Y = 6 + 1.6X + 0.71X^2$$, Origin = 1985, X unit = 1 year # Computation of Trend Values For 1983, $$X = -2$$, $Y = 6+1.6(-2)+0.71(-2)^2 = 5.64$ For 1984, $X = -1$, $Y = 6+1.6(-1)+0.71(-1)^2 = 5.11$ For 1985, $X = 0$, $Y = 6+1.6(0)+0.71(0)^2 = 6.00$ For 1986, $X = +1$, $Y = 6+1.6(1)+0.71(1)^2 = 8.31$ For 1987, $X = +2$, $Y = 6+1.6(2)+0.71(2)^2 = 12.04$ Predicted value for 1988 is given by: For 1988, $$X = +3$$, $Y = 6+1.6(3)+0.71(3)^2 = 17.19$ # Type II: Even Number of Years The price of a commodity during 1994-99 are given below. Fit a second degree parabola to the following data. Calculate the trend values and estimate the price of the commodify: commodity in 2001 | | 2001. | | | | | | |-------|-------|------|------|------|------|------| | ear: | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | | rice: | 100 | 107 | 128 | 140 | 181 | 192 | #### Solution: # Fitting of Second Degree Parabola | Year | Price
(Y) | Deviations
from 1996.5 | Deviations
multiplied
by 2
(X) | XY | Х²У | X ² | X3 | X ⁴ | |------|------------------|---------------------------|---|-------------|------------------------|-------------------|-----------------|----------------| | 1994 | 100 | -2.5 | -5 | -500 | 2500 | 25 | -125 | _ | | 1994 | 107 | -1.5 | -3 | -321 | 963 | 9 | -27 | 62 | | 1993 | :128 | -0.5 | -1 | -128 | 128 | ggs for: | 1 ₋₁ | _8 | | 1997 | 140 | +0.5 | +1 | +140 | 140 | 1 | +1 | | | 1998 | 181 | +1.5 | +3 | +543 | 1629 | 9 | +27 | - | | 1999 | 192 | +2.5 | +5 | +960 | 4800 | 25 | +125 | . 8 | | N=6 | $\Sigma Y = 848$ | | $\Sigma X = 0$ | ΣΧΥ
=694 | $\Sigma X^2 Y = 10160$ | $\Sigma X^2 = 70$ | | ξ:
=1 | The second degree parabolic trend is given by the equation $$Y = a + bX + cX^2$$ The three normal equations are: $$\Sigma Y = Na + b\Sigma X + c\Sigma X^{2}$$ $$\Sigma XY = a\Sigma X + b\Sigma X^{2} + c\Sigma X^{3}$$ $$\sum X^2 Y = a \sum X^2 + b \sum X^3 + c \sum X^4$$ Substituting the values, we get $$848 = 6a + b(0) + 70c$$ $\Rightarrow 848 = 6a + 70c$ $$694 = a(0) + b(70) + c(0) \Rightarrow 694 = 70b$$...(ii) $$10160 = 70a + b(0) + 1414c \Rightarrow 10160 = 70a + 1414c$$ From equation (ii), $$694 = 70b \Rightarrow b = \frac{694}{70} = 9.914$$ Multiplying (i) by 70 and (iii) by 6 and subtracting (i) from (iii) 60960 = 420a + 8484c $59360 = 420\,a + 4900\,c$ $$c = \frac{1600}{3584} = 0.4464$$ Putting the value of c in (i), we get $$848 = 6a + 70 (0.4464)$$ $$848 = 6a + 31.248$$ $$a = \frac{816.752}{6} = 136.125$$ Time Series Analysis-I Thus, the second degree parabola is $\gamma = 136.125 + 9.914X + 0.4464X^2$ Origin: 1996.5, Computation of Trend Values Computation of A 1-36. Since X = -5, $Y = 136.125 + 9.914(-5) + 0.4464(-5)^2 = 97.715$ For 1995, X = -3, $Y = 136.125 + 9.914(-3) + 0.4464(-3)^2 = 110.4006$ For 1996, X = -1, $Y = 136.125 + 9.914(-1) + 0.4464(-1)^2 = 126.6574$ For 1997, X = +1, $Y = 136.125 + 9.914(1) + 0.4464(1)^2 = 146.4854$ For 1998, X = +3, $Y = 136.125 + 9.914(3) + 0.4464(3)^2 = 169.884$ For 1999, X = +5, $Y = 136.125 + 9.914(5) + 0.4464(5)^2 = 196.855$ Predicted value for 2001: Predicted value for 2001. For 2001, X = +9, $Y = 136.125 + 9.914(9) + 0.4464(9)^2 = 261.5094$ Thus, the likely price of the commodity for the year 2001 is 261.5094. ### EXERCISE 5.6 ...(i) 1. Fit a parabolic trend $Y = a + bX + cX^2$ to the following data | | | | _ | | 6 autu | | | | - | |-------------------------|------|------|------|------|--------|------|------|------|------| | Year: | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | | Output (in '000 units): | 2 | 6 | . 7 | | | 22 | 1707 | 1700 | 1989 | | | - | U | , | 8 | 10 | 11 | 11 | 10 | 9 | Also compute the trend values. Predict the value for 1990. (Take the year 1985 as working origin) [Ans. $Y = 10.02 + 0.85X - 0.27X^2$, Trend values: 2.3, 5.04, 7.24, 8.9, 10.02, 10.60, 10.64, 10.14, 9.1, $Y_{1990} = 7.52$] The prices of a commodity during 1981–1986 are given below. Fit a second degree parabola to the following data. Calculate the trend values and estimate the price of the commodity in | Year:
Price: | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | |-----------------|------|------|------|------|------|------| | rrice; | 110 | 114 | 120 | 138 | 152 | 218 | [Ans. $Y = 124.15 + 9.6X + 1.53X^2$, Trend values: 114.40, 109.12, 3. Fit a second degree parabola 116.08, 135.28, 166.72, 210.40, Y₁₉₈₇ = 266.32] | y. | a(I = a + bX + | cX) for the fol | lowing data: | | |------|----------------|------------------|--------------|------| | V. 1 | 2 | 3 | 4 | 5 . | | 25 | 28 | 33 | 39 | 46 ' | [Hint: See Example 40] [Ans. $Y = 22.78 + 1.46X + 0.64X^2$] 4. Fit a parabolic curve of the second degree to the data given below and estimate the value for | 1999. | | 1994 | 1995 | 1996 | 1997 | | |----------------------|------|------|-----------------|--------------------|------------------|-------| | Year: | 1993 | 12 | 13 | 10 | Co8 Pittle | 1998 | | Sales (in '000 Rs.): | 10 | [A | ns. Y = 11.03 | 1-0.143 <i>X</i> - | $0.3125X^2$ | -11 | | Sales (iii | | [A | ns. $Y = 11.03$ | 1-0.143% - | $0.3125X^{2}, Y$ | 1999= | is given as: | Sales of a particula | | 1982 | 1983 | 1984 | 1985 | 1986 | 987 | |--|------|------|------|------|---------|-------------|-----| | Year: | 1981 | 1702 | 22 | 21 | 54 | 60 | 987 | | Sales ('000 tons): | 13 | 13 | 0 | 2 | - 1 100 | D. F. TELEY | 83 | (i) Fit a second degree parabola $(Y = a + bX + cX^2)$ to the above data assuming 1984 as the year of origin and estimate the value for 1988. (ii) How would shift the year of origin to 1980 in the above problem? Explain. The year of origin to $X = X + 2X^2$, Origin: 1984; 110 (ii) $Y = 14 - 4X + 2X^2$ 6. Calculate trend values for the following data using second degree equation: 1985 1986 1987 1988 1989 1990 1984 181 140 192 200 128 100 107 Output ('000 tons): Also make a forecast for 1993. [Ans. $Y = 149.10 + 18.68X + 0.16X^2$, Trend values: 94.49, 112 38, 130.58, 149.10, 167.94, 187.10, 206.58, Forecasted value = 266.94] # ► (C) Fitting of Exponential Trend If the time series is increasing or decreasing by a constant percentage rather than constant absolute amount, the fitting of exponential trend is considered appropriate. Such tendency is found in many economic and business data. The equation of the exponential trend is $$Y = ab^X$$ where a is Y-intercept and b the slope of the curve at the origin of X. In the logarithmic form, the above equation is written as under: $$\log Y = \log a + X \log b$$ When plotted on a semi-logarithmic graph, the curve gives a straight line (or called logarithmic ight line). However, on an orithmic straight line). However, on an arithmatic scale chart, the curve gives a non-linear trend. Under the method of least square, the values of the constants a and b are obtained by solving the lowing two normal equations: following two normal equations: $$\Sigma \log Y = N \cdot \log a + \log b\Sigma X$$ $$\Sigma(X \log Y) = \log a\Sigma X + \log b\Sigma X^{2}$$ Time Series Analysis-I Short-cut Method: If the time deviations are taken from the middle year (or arithmetic mean of model evers), the value of ΣX would be zero (i.e., $\Sigma X = 0$) and the normal equations are reduced to the following: Short-cut Method: If the time deviations are taken from the middle year (or arithmetic mean of the provided years), the value of ΣX would be zero (i.e., $\Sigma X = 0$) and the normal equations are reduced to the following: Short-cut Method: If the time deviations are taken from the middle year (or arithmetic mean of ΣM), the value of ΣM would be zero (i.e., $\Sigma M = 0$) and the popular $$\sum_{\sum \log Y} \log a \qquad \text{or} \quad \log a = \frac{\sum \log Y}{N} \qquad \Rightarrow a = \text{Antilog} \left[\frac{\sum \log Y}{N} \right] \quad \dots(i)$$ $$\sum (X \log Y) = \log b \Sigma X^{2} \text{ or } \log b =
\frac{\sum (X \log Y)}{\sum X^{2}} \Rightarrow b = \operatorname{Antilog} \left[\frac{\sum X \log Y}{\sum X^{2}} \right] ...(ii)$$ After obtaining the values of a and b in the above manner and substituting their values in the After obtaining under this method and with such an equation we can fit the trend equation under this method and with such an equation we can obtain equation, we can in the time series and predict the values for the future year, the trend values of the time series and predict the values for the future year. the trens value. Note: The annual rate of growth in case of exponential trend is obtained as $r = (Antilog b - 1) \times 100$. # > Procedure The computation of exponential trend involves the following steps: - (i) Find the time deviation of each year from the middle year and denote it by 'X'. - (ii) Obtain the logarithms of the variable Y. - (iii) Multiply $\log Y$ by the corresponding time deviation 'X' and obtain $X \log Y$. - (iv) Square up the time deviation X and obtain ΣX^2 . - (v) The values computed are put in the above formulae of $\log a$ and $\log b$. - (vi) Finally in calculated values of $\log a$ and $\log b$ are put in $\log Y = \log a + X \log b$. - (vii) Take the antilogs of these logs to arrive at the actual trend values. #### 0 Type I: Odd Number of Years Example 28. Fit an exponential trend $Y = ab^{X}$ to the following data: | Year: | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | |--------------------|------|------|------|------|------|------|------| | Sales (Rs. crore): | - 12 | 10 | - 14 | 18 | 20 | - 24 | 30 | Solution . Estimate the sales for the year 1997. | 18.1 | W. F | itting of Ex | ponential Tren | d | | |-------|--------------|--------------|----------------|----------------------------|-------------------| | Year | Sales
(Y) | X | log Y | X log Y | X ² | | 1990 | 12 | -3 | 1.0792 | - 3.2376 | - 9 | | 1991 | 10 | -2 | 1.0000 | -2.0000 | 14 | | 1992 | 14 | | 1.1461 | -1.1461 | 1 | | 1993 | 18 | 0 | 1.2553 | 0 | 0 | | 1994 | 20 | +1 | 1,3010 | 1.3010 | 1 | | 1995 | 24 | +2 | 1.3802 | 2.7604 | 4 | | 1996 | . 30. | +3 | 1,4771 | 4.4313 | 9 | | N = 7 | - | FW 0 | ∑lagV=8 6389 | $\Sigma X \log Y = 2.1090$ | $\Sigma X^2 = 28$ | ···(i) ···(ii) The equation of the exponential trend is $Y = ab^X$ Taking logarithms of both sides, we have $\log Y = \log a + X \log b$ Since, $\Sigma X = 0$ $$\log a = \frac{\sum \log Y}{N} = \frac{8.6389}{7} = 1.2341$$ $$\log b = \frac{\sum X \log Y}{\sum X^2} = \frac{2.1090}{28} = 0.075$$ Thus, the equation of the exponential trend in logarithmic form is: $$\log Y = 1.2341 + 0.075X$$ or $Y_c = \text{Antilog } [1.2341 + 0.075X]$ Estimation for 1997 $Y_c = \text{Antilog} [1.2341 + 0.075X]$ For 1997, X = +4, $$\Rightarrow Y_c = \text{Antilog} [1.5341] = 34.20 \text{ crore}$$ Thus, the estimated sales for 1997 is 34.20 crore. The select of a company (in lakes of Rs.) for the seven years are given below Example | Year: | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | |--------|------|------|------|------|------|------|------| | Sales: | 32 | 47 | 65 | 88 | 132 | 190 | 275 | Find out the trend values by using the equation $Y = ab^{X}$ and annual rate of growth. Solution: | Year | Sales
(Y) | X | log Y | X log Y | | |-------|--------------|----------------|---------------------------|--------------------------|-----| | 1990 | 32 | -3 | 1.5052 | -4.5153 | | | 1991 | 47 | -2 | 1.6721 | -3.3442 | 1 | | 1992 | 65 | -1 | 1.8129 | - 1.8129 | 160 | | 1993 | 88 | 0 | 1.9445 | 0 | _ | | 1994 | 132 | +1 | 2.1206 | 2.1206 | _ | | 1995 | 190 | +2 | 2.2788 | 4.5576 | _ | | 1996 | 275 | +3 | 2.4393 | 7,3179 | _ | | N = 7 | | $\Sigma X = 0$ | $\Sigma \log Y = 13.7733$ | $\sum X \log Y = 4.3237$ | ΣX | The equation of the exponential trend is $$Y = ab^X$$ In the logarithms form, the equation is written as $$\log Y = \log a + X \log b$$ Time Series Analysis-Since, $\Sigma X = 0$ $$\log a = \frac{\Sigma \log Y}{N} = \frac{13.7733}{7} = 1.9676$$ $$\log b = \frac{\Sigma X \log Y}{\Sigma X^2} = \frac{4.3237}{28} = 0.154$$ b = Antilog [0.154] = 1.4256 Thus, the exponential trend equation in logarithmic form is: $\log Y = 1.9676 + 0.154X$ Origin: 1993; X unit = 1 year # Computation of Trend Values Comparison (Comparison 1990, X = -3, $Y_c = \text{Antilog}[1.9676 + 0.154(-3)] = \text{Antilog}[1.5056] = 32.03$ For 1991, X = -2, $Y_c = \text{Antilog}[1.9676 + 0.154(-2)] = \text{Antilog}[1.596] = 45.66$ For 1992, X = -1, $Y_c = \text{Antilog}[1.9676 + 0.154(-1)] = \text{Antilog}[1.8136] = 65.10$ For 1993, X = 0, $Y_c = \text{Antilog}[1.9676 + 0.154(0)] = \text{Antilog}[1.9676] = 92.81$ For 1994, X = +1, $Y_c = \text{Antilog}[1.9676 + 0.154(1)] = \text{Antilog}[2.1216] = 132.31$ For 1995, X = +2, $Y_c = \text{Antilog}[1.9676 + 0.154(2)] = \text{Antilog}[2.2756] = 188.62$ For 1996, X = +3, $Y_c = \text{Antilog}[1.9676 + 0.154(3)] = \text{Antilog}[2.4296] = 268.91$ ### Computation of Annual Growth Rate $r = (Antilog b - 1) \times 100$ $r = (b-1) \times 100$ $= [Antilog(0.154) - 1] \times 100$ = (1.4256 - 1) × 100 = 42.56% $=(1.4256-1)\times100=0.4256\times100=42.56\%$ # 0 Type II: Even Number of Years Example 30. Fit an exponential trend $(Y = ab^X)$ to the following data: | Year: and Ingarie him | 1941 | 1951 | 1961 | 1971 | 1981 | 1991 | |---------------------------------|------|------|------|------|------|------| | Population of India (in crore): | 31.9 | 36.1 | 43.9 | 54.8 | 68.3 | 84.4 | Also predict the population for 2001. | | - 48 | ting of Ex | ponential Trend | | | |--------|----------------|------------|---------------------------|----------------------------|-------------------| | Year | Population (Y) | X | log Y | X log Y | X ² | | 1941 | 31.9 | -5 | 1.5038 | -7.5190 | 25 | | 1951 | 36.1 | -3 | : 1.5575 | -4.6725 | 9 . | | 1961 | 43.9 | -1- | 1.6425 | -1.6425 | 1 | | 1971 | 54.8 | +1- | 1.7388 | 1.7388 | - 11 | | 1981 | 68.3 | +3 | 1.8344 | 5.5032 | 9 | | 1991 | 84.4 | + 5 | 1.9263 | 9.6315 | 25 | | 'N = 6 | | ZV = 0 | $\Sigma \log Y = 10.2033$ | $\Sigma X \log Y = 3.0395$ | $\Sigma X^2 = 70$ | In the logarithmic form, the equation is written as $\log Y = \log a + X \log b$ Since, $\Sigma X = 0$ $$\log_{100} a = \frac{\Sigma \log Y}{N} = \frac{10.2033}{6} = 1.70$$ $$\log a = \frac{2 \log Y}{N} = \frac{1.70}{6} = 1.70$$ $$\log b = \frac{\sum X \log Y}{\sum X^2} = \frac{3.0395}{70} = 0.043$$ Thus, the exponential trend equation in the logarithmic form is: $\log Y = 1.70 + 0.043X$; Origin: 1966; X unit = 5 years. Y = Antilog [1.70 + 0.043X] Further $\log a = 1.70$ \Rightarrow a = Antilog [1.70] = 50.12 $\log b = 0.043 \implies b = \text{Antilog} [0.043] = 1.10$ Thus, the equation of the exponential trend is $Y = 50.12(1.10)^X$ Prediction for 2001 For 2001, X = +7, Y = Antilog [1.70 + 0.043(7)] = Antilog [2.001] = 100.2 crore. Example 31. Fit a logarithmic straight line to the following data: | Year: | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | |---------------------------|------|------|------|------|------|------| | Production ('000 tonnes): | 64 | 70 | 75 | 82 | 88 | 95 | #### Solution: #### Fitting of I agarithmia Studight I inc | Year | Production (Y) | X | log Y at all | X log Y | |------|----------------|----------------|---------------------------|----------------------------| | 1991 | 64 | -5 | 1.8062 | -9.031 | | 1992 | 70 | -3 | 1.8451 | -5.5353 | | 1993 | 75 | -1 | 1.8751 | -1.8751 | | 1994 | 82 | 1 | 1.9138 | 1.9138 | | 1995 | 88 | 3 | 1.9445 | 5.8335 | | 1996 | 95 | 5 | 1.9777 | 9.8885 | | N=6 | | $\Sigma X = 0$ | $\Sigma \log Y = 11.3624$ | $\Sigma X \log Y = 1.1944$ | The equation of the exponential trend is $$Y = ab^X$$ Time Series Analysis-I In the logarithmic form, the equation is written as $$\log Y = \log a + X \log b$$ [Logarithmic Straight Line Form] Since, $$\Sigma X = 0$$ $$\therefore \qquad \log a = \frac{\Sigma \log Y}{N} = \frac{11.3624}{6} = 1.8937$$ $$\log b = \frac{\Sigma X \log Y}{N} = \frac{1.1944}{6} = 0.017$$ ΣX^2 Thus, the equation of the logarithmic straight line is: log $$Y = 1.8937 + 0.017X$$; Origin: 1993.5; X unit = $\frac{1}{2}$ year. 70 or $$Y = Antilog [1.8937 + 0.017X]$$ Merits and Demerits of Least Square Method Merits: - (i) This method is far better than moving average method because the trend values for all the years are obtained. Not even a single initial or terminal trend values is left over in this method. - (ii) It results in a mathematical equation which may be used for forecasting. - (iii) It is widely used method of fitting a curve to the given data. The results obtained are reliable and appropriate. - (i) The computation process in this method is complex which is not easily understandable. - (ii) This method does not have the attribute of flexibility. If some figures are added to or subtracted from the original data, all computations have to be redone. - (iii) It is difficult to select an appropriate type of equation in this method. Results based on inappropriate selection of equation are likely to be misleading. # EXERCISE 5.7 1. Fit an exponential trend $Y = ab^X$ to the following data and calculate the trend values. Also estimate the trend for 1992. | ir: | | | | | 7 | |----------------|------|------|------|------|------| | Section 6 | 1985 | 1986 | 1987 | 1988 | 1989 | | s (Rs. crore): | 100 | 105 | 112 | 120 | 130 | [Ans. $\log Y = 2.0527 + 0.0286X$ or $Y = 112.90(1.07)^X$, Trend values: 98.97, 105.71, 112.90, 120.59, 128.80, Sales for 1992 = 156.93 crore] | The population figure | 1911 | 1921 | 1931 | 1941 | 1951 | 1961 | |------------------------|------|------|------|------|------|------| | Census Year: | | 25.1 | 27.9 | 31.9 | 36.1 | 43.9 | | Population (in crore): | 25.0 | | | | | 54.7 | Fit an exponential trend $Y = ab^X$ to the above data by the method of least square and find the trend values. Estimate the population in 1981. [Ans. $Y = 33.60 (1.142)^X$, $Y_{[9s]} = 57.15$] 3. In the following exponential trend equation (origin: 2001, X-unit= 1 year, Y -
annual profits) shift the origin to 2005. [Ans. $Y = 12.528 (1.7)^X$ The consumption of electricity in the agriculture sector during the period 1991-1999 was | recorded as under: | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | |---------------------------------|------|------|------|------|------|-------|-------|------| | Year: | 1991 | 1772 | | | 00. | 14407 | 21077 | | | Consumption ('000 lakh tonnes): | 50 | 65 | 70 | 85 : | 82 | 75 | 65 | 90 | Find: (i) The second degree polynomial equation. (ii) The exponential trend equation. [Ans. (i) $Y_i = 77.4 + 3.9X + (-0.32)X^2$; (ii) $Y_i = (70.13)(1.053)^2$] # MISCELLANEOUS SOLVED EXAMPLES Example 32. Calculate trend values from the following data by using four yearly moving average: | Year | Value | Year | Value | |------|-------|------|-----------------| | 1972 | 411 | 1979 | 60 | | 1973 | 61 | 1980 | 67 | | 1974 | 55 | 1981 | - विक्तापुरा 73 | | 1975 | 48 | 1982 | 78 | | 1976 | 53 | 1983 | 76 | | 1977 | 67 | 1984 | 84 | | 1978 | 62 | 97 | 1 | Solution: | ear | Υ . | 4-yearly moving totals | 2 period moving
total of cols. (3) | |------|-----|------------------------|---------------------------------------| | 1) | (2) | (3) | (4) | | 972 | 41 | | | | 973 | 61 | _ | . – | | 1974 | | 200 | -422 | Time Series Analysis-I | 1976 | . 53 | 223 | 440 | 55.00 | |------|------|-----|-----|--------| | 1977 | 67 | 230 | 453 | 56.625 | | 1978 | 62 | 242 | 472 | 59.00 | | 1979 | 60 | 256 | 498 | 62.25 | | 1980 | - 67 | 262 | 518 | 64.75 | | 1981 | 73 | 278 | 540 | 67.50 | | 1982 | 78 - | 294 | 572 | 71.50 | | 1983 | 76 | 311 | 605 | 75.625 | | 1984 | 84 | 311 | | - x - | | , | | | | | Example 33. Determine the trend for the following data by (i) moving average of length 4, and (ii) the least square method. | 1 II III
1991 210 191 216 | ear | | Quar | ters | 75 | |------------------------------|-----|-------------------|----------------|------|-----| | 1991 210 191 216 | | I | II 1 | III | | | 1002 | 991 | 210 | 191 | | IV | | 1992 218 197 200 | 992 | 218 | 197 | 1 | 200 | | 1993 246 215 235 | 993 | NAMES OF BUILDING | Andrew Control | | 211 | (i) | Year | Quarter | Given Figures | Four-figure
moving total | Two-figure moving total | Four-figure
moving
Average | |-----------|---------|---------------|--|-------------------------|----------------------------------| | 1991 | I | 210 | N | | - | | | ш | 191 | 017 | - | | | | Ш | 216 | 817
825 | 1642 | $\frac{1642}{8}$ = 205.25 | | | IV 7. | 200 | 831 | 1656 | 207.00 | | 1992 | 1 | 218 | 845 | 1676 | 209.50 | | | II | 197 | 856 | 1701 | 212.62 | | de pris p | m | 230 | | 1740 | 217.50 | | | IV | 211 | 884 | 1786 | 223.25 | | 1993 | I | 246 | 902 | 1809 | 226.12 | | | II | 215 | 907 | 1828 | 228.50 | | | ш | 235 | 721 | | | | | IV | 225 | Contract of the th | | | ...(iii) | | | | Least Squ | are Method | 1 | | | |------|------------------|----|-------------------|---------------------------|--------------------|-------------------|------------------| | (ii) | Year/
Quarter | - | у | $X = \frac{t - 6.5}{0.5}$ | X ² | XY | Trend
Value | | | | | 210 | -11 | 121 | -2310 | | | | 1991 I | 2 | 191 | -9 | 81 | - 1719 | 200.88 | | | II | 3 | 216 | 7 | 49 | -1512 | 203.66
206.44 | | | III
IV | 4 | 200 | -5 | 25 | - 1000 | 209.22 | | | | 5 | 218 | -3 | 9 | -654 | 212.00 | | | 1992 I
II | 6 | 197 | 1 | 1 | - 197 | 214.78 | | | ш | 7 | 230 | - 1 | 1 | 230 | 217.56 | | | IV | 8 | 211 | 3 | 9 | 633 | 220.34 | | | 1993 I | 9 | 246 | - 5 | 25 | 1230 | 223.12 | | | 1995 I | 10 | 215 | 7 | 49 | 1505 | 225.90 | | | Ш | 11 | 235 | 9 | 81 | 2115 | 228.6 | | | IV | 12 | 225 | 11 | 121 | 2475 | 231.4 | | | | | $\Sigma Y = 2594$ | $\Sigma X = 0$ | $\Sigma X^2 = 572$ | $\Sigma XY = 796$ | | Let Y = a + bX be the trend equation, where a and b be are calculated from the normal equations. quantons. $$\Sigma Y = Na + b\Sigma X$$ $$\Sigma XY = a\Sigma X + b\Sigma X^{2}$$ $$\Sigma XY = a\Sigma X + b\Sigma X^{2}$$...(i) Putting respective values from the above tables, we get 2594 = 12a + 0 $$a = \frac{2594}{12} = 216.17$$ Again $$796 = 0 + b(572)$$ or $b = \frac{796}{572} = 1.39$ or \therefore Trend equation is Y = 216.17 + 1.39X For finding trend values we put $X = -11, -9, \dots$, in order and the corresponding trend values have been shown in the last column of the above table. Example 34. From the given data, compute 'trend' and short-term fluctuations by moving average method (Periodicity = 4 years) | Years: 1980 1981 1982 1983 1984 1985 | | | | | | | | | 1 | 1989 | 1990 | 1 | |--------------------------------------|------|------|------|------|------|------|------|------|------|------|------|---| | Years: | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 620 | 645 | 1 | | Production: | 462 | 510 | 525 | 470 | 515 | 550 | 575 | 560 | 580 | | | ر | Time Series Analysis-I | Year | Y | 4-yearly moving totals | 2-period moving
total of cols.(3)
(centered) | 4-yearly moving average (centered) | |------|-----|------------------------|--|------------------------------------| | (1) | (2) | (3) | (4) | (5) | | 1980 | 462 | _ | | (5) | | 1981 | 510 | 1967 | 1000 | | | 1982 | 525 | 2020 | 3987 | 400.375 | | 1983 | 470 | 2060 | 4080 | 498.375
510.000 | | 1984 | 515 | 2110 | 4170 | 521.250 | | 1985 | 550 | 2200 | 4310 | 538.750 | | 1986 | 575 | 2265 | 4465 | 558.125 | | 1987 | 560 | 2335 | 4600 | 575.000 | | 1988 | 580 | 2405 | 4740 | 592,500 | | 1989 | 620 | | | | | 1990 | 645 | | | | #### Computation of Short-term fluctuations The short-term fluctuations for the given years are obtained by deducting the trend values computed by using 4-yearly moving average from the actual values of the series using additive model. | Years | Actual Values (Y) | Trend Values
(Yc) | Short-term
fluctuation: | |-------|-------------------|---------------------------|----------------------------| | 1980 | 462 | | Nan | | 1981 | 510 | | LINE S | | 1982 | 525 | 498.375 | 26.625 | | 1983 | 470 | 510.000 | -40.00 | | 1984 | 515 | 521.250 | - 6.25 | | 1985 | 550 | 538.750 | 11.25 | | 1986 | 575 | 558.125 | 16.875 | | 1987 | 560 | 575.000 | - 15.00 | | 1988 | 580 | 592.500 | - 12.50 | | 1989 | 620 | THE STATE OF THE STATE OF | PER AU | | 1990 | 645 | | 1 42 1 1 1 | | | I Quarter | II Quarter | III Quarter | | |-------|-----------|------------|-------------|--| | ear | 60 | 80 | 72 | | | 994 | | 104 | 100 | | | 995 | 68 | 116 | 108 | | | 996 , | 80 | 152 | 136 | | | 997 | 108 | 1 | 172 | | | 998 | 160 | 184 | 172 | | Solution: Calculation of Annual Trend by the Method of Least Square | Year | Yearly
Total | Yearly
Average
(Y) | Deviations
from Mid-Year
i.e., 1996 | XY | X ² | Trend
Value
Y _c | |------|-----------------|--------------------------|---|-------------------|-------------------|----------------------------------| | 1994 | 280 | 70 | -2 | - 140 | 4 | 64 | | 1995 | 360 | 90 | 1 | - 90 | 1 | 88 | | 1996 | 400 | 100 | 0 | 0 | -0 | 112 | | 1997 | 520 | 130 | +1 | 130 | 1 | 136 | | 1998 | 680 | 170 | + 2 | 340 | 4 | 160 | | N=5 | | $\Sigma Y = 560$ | $\Sigma X = 0$ | $\Sigma XY = 240$ | $\Sigma X^2 = 10$ | = . | Equation of straight line is Trend Equation $Y_c = 112 + 24X$; Origin = 1996 The trend values have been obtained by the equation (i). Yearly increment = 24 Yearly increment = $\frac{24}{4}$ = 6 ## Calculation of Quarterly Trend Values Calculation of Quarterly Trend Values Now, we calculate the quarterly trend values. Consider the year 1994. Trend value is 46. This is the value for the middle of the year 1994, i.e., middle second and hid quarter. The quarterly increment is 6. Therefore, the trend value for the second quarter of 1994 would be 64 - 3 or 61 and for the third quarter it would be 64 + 3 or 61 and for the third quarter it would be 64 + 3 or 61. The value for the first quarter
of 1994 would be 61 - 6 = 55 and for the last quarter of 67 + 6 = 73. Similarly, trend values of the various quarters of other years can be calculated. These values are tabulated below: Time Series Analysis-I Quarterly Trend Valu | Year | I Quarter | II Quarter | | 12 1 | |-------|-----------|------------|-------------|------------| | 1994 | 55 | 61 | III Quarter | IV Quarter | | 1995 | 79 | 85 | 67 | . 73 | | 1996 | 103 | 109 | 91 | 97 | | 1997 | 127 | 133 | 115 | 121 | | 1998 | 151 | 157 | 139 | 145 | | 1,,,, | | | 163 | 169 | Example 36. Fit a straight line trend to the following data by the method of least square after summing the quarterly data to yearly data: | Year | I Quarter | II Quarter | III Quarter | IV Quarter | |------|-----------|------------|-------------|------------| | 1983 | 10 | 13 | 14 | 12 | | 1984 | 12 | . 14 . | 15 | 13 | | 1985 | 13 | 15 | 18 | 14 | | 1986 | 15 | 18 | 21 | 18 | | 1987 | 15 | 22 | 23 | 20 | Also find out short-term fluctuations for the given years using additive model. ...(i) | - 1 - · | | | / | | |---------|------------------|----------------|------------------|-----------------------| | Year | Yearly total (Y) | X | XY | <i>x</i> ² | | 1983 | 49 | -2 | -98 | 4 | | 1984 | 54 | -1 | - 54 | 1 | | 1985 | 60 | 0 | 0 | . 0 | | 1986 | 72 | +1 | 72 | ī | | 1987 | 80 | +2 | 160 | 4 | | N = 5 | ΣY=315 | $\Sigma X = 0$ | $\Sigma XY = 80$ | $\Sigma \chi^2 = 10$ | The equation of the straight line trend is $$Y = a + bX$$ Since, $$\Sigma X = 0$$ $$a = \frac{\Sigma Y}{N} = \frac{315}{5} = 63$$ and $$b = \frac{\Sigma XY}{\Sigma X^2} = \frac{80}{10} = 8$$ Thus Thus, $$Y = 63 + 8Y$$. Origin = 19 $$Y_c = 63 + 8X$$; Origin = 1985; X unit = 1 year. ## Computation of Trend Values Computation of Trend Values For 1983, $$X = -2$$, $Y_c = 63 + 8(-2) = 47$ For 1984, $X = -1$, $Y_c = 63 + 8(-1) = 55$ For 1985, $X = 0$, $Y_c = 63 + 8(0) = 63$ For 1986, $X = 1$, $Y_c = 63 + 8(1) = 71$ For 1987, X = 2, $Y_c = 63 + 8(2) = 79$ ## Calculation of Short-term fluctuations | | Year | Y | Yc | Short-term fluctuations using additive model $(Y-Y_c)$ | |---|------|----|----|--| | - | 1983 | 49 | 47 | +2 | | - | 1984 | 54 | 55 | -1 | | - | 1985 | 60 | 63 | -3 | | - | 1986 | 72 | 71 | 41 | | | 1987 | 80 | 79 | 181 - +1 | Example 37. Fit a straight line trend by the method of least square and estimate the value for 2001 | Year: | 1951 | 1961 | 1971 | 1981 | 1991 | |---------------------|------|------|------|------|------| | Population (crore): | 34 | 50 | 67 | 75 | 85 | #### Solution: ## Fitting of Straight Line Trend | Year | Y | . X | XY | X ² | |---------|----------|----------------|--------------------|---------------------| | 1951 | 34 | -20 | -680 | 400 | | 1961 | 50 | -10 | -500 | 100 | | 1971 | 67 | 0 | 0 | 0 | | 1981 | 75 | +10 | 750 | 100 | | 1991 | 85 | +20 | 1700 | 400 | | · N = 5 | ΣV = 311 | $\Sigma X = 0$ | $\Sigma XY = 1270$ | $\Sigma X^2 = 1000$ | The straight line trend is given by Since, $$\Sigma X = 0$$ $$a = \frac{\Sigma Y}{N}$$ and $b = \frac{\Sigma XY}{\Sigma X^2}$ $a = \frac{311}{5} = 62.2;$ $b = \frac{1270}{1000} = 1.27$ $Y = 62.2 + 1.27X;$ Origin = 1971 Y = 62.2 + 1.27X; Origin = 1971 ## Estimation for 2001 For 2001, $$X = +30$$, \therefore $Y = 62.2 + 1.27 (30)$ $Y_{2001} = 100.3$ crore Time Series Analysis-I . - data relate to sales of Bharet I . . Example 38. Fol | ving data ici | 2000 | 2001 | 2002 | - | | | |----------------|------|-----------|------|------|------|------| | (Rs. lakhs): | 10 | 20 | 30 | 2003 | 2004 | 2005 | | to ctraight li | | the math- | 1 0 | 56 | 40 | 60 | - east square and tabulate the trend values. - (i) Fit a straight interest of the straight of the straight and tabulate the trend values. (ii) Eliminate the trend using additive model. What components of the time series - (iii) Estimate the likely sales for the year 2006. - (iv) What is annual increase in the sales? - (v) What is monthly increase in the sales? - (v) By what is montain increase in the sales? (vi) By what year the company's expected sales would have equalled to its target of 84 lakh. Solution: Fitting of Striaght Line Trend | Year | Deviations
from
2002.5 | X | Sales | Y | XY | Trend
Values
$Y_c = a + bX$ | Short-term fluctuations Y-Y | |-------|------------------------------|----------------|-------------------|------------------|-------------------|-----------------------------------|-----------------------------| | 2000 | -2.5 | -5 | 25 | 10 | -50 | 12.0 | -2.0 | | 2001 | - 1.5 | -3 | 9 | 20 | -60 | 21.6 | -1.6 | | 2002 | -0.5 | -1 | 1 | 30 | -30 | 31.2 | -1.0 | | 2003 | + 0.5 | 1 | 1 | - 56 | - 56 | 40.8 | 15.2 | | 2004 | + 1.5 | 3 | 9 | 40 | 120 | 50.4 | -10.4 | | 2005 | + 2.5 | 5 | 25 | 60 | 300 | 60.0 | 0 | | N = 6 | 10 | $\Sigma X = 0$ | $\Sigma X^2 = 70$ | $\Sigma Y = 216$ | $\Sigma XY = 336$ | | T(V_V)- | The straight line trend is given by $$Y = a + bX$$ $$a = \frac{\Sigma Y}{N} = \frac{216}{6} = 36$$ $$a = \frac{\sum Y}{N} = \frac{216}{6} = 36$$ $$b = \frac{\sum XY}{\sum X^2} = \frac{336}{70} = 4.8$$ Hence, the annual trend equation is given by: $$Y = 36 + 4.8X$$ [Origin = 2002.5, X unit = Half year, Y unit = Annual sales in lakh of Rs.] Trend values for different years are shown in the 7th column of the table. - (ii) Eliminates trend values as shown in the 8th column of the table. After eliminating the trend only cyclical and irregular variations are left since seasonal variations are absent as the annual data is given. - (iii) Likely sales for the year 2006: For 2006, X = 7 $$Y_{2006} = 36 + 4.8 \times 7 = 69.6$$ (iv) Annual increase in sales = $4.8 \times 2 = 9.6$...(i) (v) Monthly increase in the sales $$=\frac{b}{6} = \frac{4.8}{6} = 0.8$$ lakh or Anual Increase $$=$$ $\frac{9.6}{12}$ $=$ 0.8 lakh (v) Monthly increase in the 6 to $$\frac{\text{Anual Increase}}{\text{12}} = \frac{9.6}{12} = 0.8 \text{ lakh}$$ (vi) $84 = 36 + 4.8X \Rightarrow X = \frac{(84 - 36)}{4.8} = 10 \text{ half years from origin (i.e., 2002.5)}$ Hence, target is expected to be attained in the year 2007.5 (i.e., 2002.5+102). of cement by a firm is given below: Example 39 | | duction of cellient | | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | | |-------|---------------------|---|------|------|------|------|------|------|------| | Year: | ction (tonnes): 4 | 5 | 5 | 6 | 7 | . 8 | 9 | 8 | 1988 | | Produ | ction (tonnes). | | | | | - | _ | - | 10 | Calculate the trend values by taking 3-yearly moving average. Also calculate the trend values of the above data by least square method. Calculation of 3-yearly moving average Solution: | (i) | | Carcuman | Jii Ol 5 year | | | |----------|------|---------------------|---------------|------------------------|---------------------------------| | Γ | Year | Year Production (Y) | | 3-yearly moving totals | 3-yearly moving average (trend) | | r | 1980 | 4 1 | | | | | - | 1981 | 5 1 | → . | 14 | 4.67 | | ŀ | 1982 | 5 | \rightarrow | 16 | ₹ -5.33 | | H | 1983 | 6 | \rightarrow | 18 | 6.00 | | ۲ | 1984 | 7 | 1 → | 21 | 7.00 | | + | 1985 | 8 | 1 → | 24 | 8.00 | | H | 1986 | 9 | 1 → | 25 | 8.33 | | \vdash | | | - 1 → | 27 | 9.00 . | | | 1987 | 0 | | | | | | Fitting of | Linear Trend | Equation | |-------|-----------------|----------------|------------------| | Year | Y | X | XY | | 1980 | 4 | -4 | -16 | | 1981 | 5 | -3 | -15 | | 1982 | 5 | -2 | -10 | | 1983 | 6 | -1 | -6 | | 1984 | 7 | 0 | 0 | | 1985 | 8 | +1 | +8 | | 1986 | 9 | +2 | +18 | | 1987 | 8 | +3 | +24 | | 1988 | 10 | +4 | +40 | | N = 9 | $\Sigma Y = 62$ | $\Sigma X = 0$ | $\Sigma XY = 43$ | Time Series Analysis-I The linear trend equation is given by $$Y = a + bX$$ Y = $$a + bX$$ Since $\Sigma X = 0$, $\therefore a = \frac{\Sigma Y}{N} = \frac{62}{9} = 689$; $b = \frac{\Sigma XY}{\Sigma X^2} = \frac{43}{60} = 0.72$ Thus, $Y = 6.89 + 0.72X$; Origin: 1984; X unit = 1 year. Thus, ## Computation of Trend Values For 1982, $$X = -2$$, $Y = 6.89 + 0.72$ (-2) = 5.45 For 1983, $$X = -1$$, $Y = 6.89 + 0.72$ (-1) = 6.17 For 1984, $$X = 0$$, $Y = 6.89 + 0.72$ (0) = 6.89 For 1985, $$X = +1$$, $Y = 6.89 + 0.72$ (1) = 7.61 For 1986, $$X = +2$$, $Y = 6.89 + 0.72$ (2) = 8.33 For 1987, $X = +3$, $Y = 6.89 + 0.72$ (3) = 9.05 For 1988, $$X = +3$$, $Y = 6.89 + 0.72$ (3) = 9.05 For 1988, $X = +4$, $Y = 6.89 + 0.72$ (4) = 9.77 Example 40. Fit the equation of the form $$Y = a + bX + cX^2$$ to the data given below: | | | | | 0 | | |----|----|----|----|----|----| | X: | 1 | 2 | 3 | 4 | 5 | | Y: | 25 | 28 | 33 | 39 | 46 | ## Fitting of Parabolic Trend | X | Y | t $t = X - 3$ | t ² | r ³ | r ^A | tY | t ² Y | |-------|------------------|----------------|-------------------|------------------|-------------------|-------------------|----------------------| | 1 | 25 | -2 | 4 | -8 | 16 | -50 | 100 | | 2 - | - 28 | nen-Le | 1 | 1 | 1 | -28 | 28 | | 3 | 33 | 0 | 0 | 0 | 0 | . 0 | 0 | | 4 | 39 | 1 1 | 1 | 1 | 1- | 39 | 39 | | 5 | 46 | 2 | 4 | 8 | 16 | 92 | 184 | | N = 5 | $\Sigma Y = 171$ | $\Sigma t = 0$ | $\Sigma t^2 = 10$ | $\Sigma t^3 = 0$ | $\Sigma r^4 = 34$ | $\Sigma t Y = 53$ | $\Sigma t^2 Y = 351$ | Let the second degree trend equation between Y and t be: $$Y = a + bt + ct^2 \text{ where } t = X - 3$$ The three normal equations are: $$\Sigma Y = Na + b\Sigma t + c\Sigma t^2$$ \Rightarrow 171 = 5a+10c $$\sum tY = a\sum t + b\sum t^2 + c\sum t^3 \qquad \Rightarrow \qquad 53 = 10b \qquad \dots (ii)$$ $$\Sigma t^2 Y = a\Sigma t^2 + b\Sigma t^3 + c\Sigma t^4 \quad \Rightarrow 351 = 10a + 34c \qquad \dots(iii)$$ From (ii), $$b = \frac{53}{10} = 5.3$$ Multiplying (i) by 2 and subtracting from (iii), we get $$351=10a+34c$$ $$351 = 10a + 34c$$ $$342 = 10a + 20c$$ $$\frac{342 = 10a + 20c}{9 = 14c}$$ $$9 = 14c \Rightarrow c = \frac{9}{14} = 0.64$$ - $$c$$ the value of c in (i) , we get e value of c in (1), we get $$171 - 10 \times 0.64$$ 171- Putting the value of c in (i), we get $$a = \frac{171 - 10 \times 0.64}{5} = \frac{171 - 6.4}{5} = 32.92$$
Thus, $$Y = 32.92 + 5.3t + 0.64 t^2 \text{ where } t = X - 3 t^2 + 0.64 t^2 \text{ where }$$ Thus, $$Y = 32.92 + 5.3t + 0.64 \text{ P}$$ where $t - X - 3$ Hence, the second degree trend equation of Y on X becomes $$Y = 32.92 + 5.3 (X - 3) + 0.64 (X - 3)^{2}$$ $$Y = 32.92 + 5.3X - 15.9 + 0.64(X^2 - 6X + 9)$$ $$Y = 22.78 + 1.46X + 0.64X^2$$ Example 41. Find average of quarterly trend values for the given years from the data given below: | Illu average or q | | Quarters | | | | | | |-------------------|---|----------|-----|----|--|--|--| | Year | I | п | Ш | IV | | | | | 1990 | 4 | 6 | 5 1 | 4 | | | | | 1991 | 5 | . 8 | 6 | 6 | | | | | 1992 | 3 | 5 | 2 | 3 | | | | | 1993 | 6 | 9 | 4 | 5 | | | | | 1994 | 6 | 8 | 5 | 5 | | | | Solution: We compute the following table to find the trend equation: | Year | Yearly
total | Quarterly
average
(Y) | Deviations
from 1992
(X) | XY | |-------|-----------------|-----------------------------|--------------------------------|--------------------| | 1990 | 19 | 4.75 | -2 | -9.5 | | 1991 | 25 | 6.25 | -1 | - 6.25 | | 1992 | 13 | 3.25 | 0 | 0.00 | | 1993 | 24 | 6.00 | and the | 6.00 | | 1994 | 24 | 6.00 | 2 | 12.00 | | N = 5 | T I | $\Sigma Y = 26.25$ | $\Sigma X = 0$ | $\Sigma XY = 2.25$ | The values of a and b with equation Y = a + bX are $$a = \frac{\Sigma Y}{N} = \frac{26.25}{5} = 5.25$$ $$b = \frac{\Sigma XY}{\Sigma X^2} = \frac{2.25}{10} = 0.225$$ Therefore, $Y_c = 5.25 + 0.225X$; Origin = 1992; X unit = 1 year. | 2015 214 4 | 1990 | 100. | | | 1 | |--|-------|-------|-------|-------|-------| | Year: | 1990 | 1991 | 1992- | 1993 | 1994 | | Average of quarterly
trend values : | 4.800 | 5.025 | 5.250 | 5.475 | 5.700 | Example 42. The total annual fertiliser consumption in tonnes during 1995-2001 in XYZ village of Karnataka state was recorded as given below: | ear: | 1995 | 1996 | 1997 - | 1998 | 1999 | 2000 | 2001 | |--------------|------|------|--------|------|------|------|------| | Consumption: | 50 | 56 | 60 | 68 | 70 | 76 | 78 | | Consumption: | 50 | 56 | 60 | 68 | 70 | 7 | 5 | - (i) Fit a straight-line trend by the method of least squares and compute the trend quantities. - (ii) What has been the annual increase in fertiliser consumption? - (iii) Eliminate the trend variations from the fertiliser consumption data using multiplicative method. Solution: | Fitting of Straight Line Trend | | |--------------------------------|--| |--------------------------------|--| | Year | Consumption (Y) | X | XY | <i>x</i> ² ; | |-------|------------------|----------------|-------------------|-------------------------| | 1995 | 50 | -3 | -150 | 9 | | 1996 | 56 | -2 | -112 | 4 | | 1997 | - 60 | -1 | -60 | 1 | | 1998 | 68 | 0 | 0 | 0 | | 1999 | 70 | +1 | + 70 | 1 | | 2000 | 75 | +2 | + 150 | . 4 | | 2001 | 78 | +3 | + 234 | 9 | | N = 7 | $\Sigma Y = 457$ | $\Sigma X = 0$ | $\Sigma XY = 132$ | $\Sigma X^2 = 28$ | The straight line trend is given by $$Y = a + bX$$ Since, $$\Sigma X = 0$$, $a = \frac{\Sigma Y}{N} = \frac{457}{7} = 65.29$ $$b = \frac{\Sigma XY}{\Sigma X^2} = \frac{132}{28} = 4.71$$ $$b = \frac{\Sigma XY}{\Sigma X^2} = \frac{132}{28} = 4.71$$ $$Y = 65.29 + 4.71X$$; Origin = 1998; X unit = 1 year. Computation of Trend Values: For 1995, X = -3, Y = 65.29 + 4.71 (-3) = 51.16 For 1996, X = -2, Y = 65.29 + 4.71 (-2) = 55.87 For 1997, X = -1, Y = 65.29 + 4.71 (-1) = 60.58 Y = 65.29 + 4.71(0) = 65.29For 1998, X = 0, Y = 65.29 + 4.71(1) = 70.00For 1999, X = 1, Y = 65.29 + 471 (2) = 74.71 For 2000, X = 2, Y = 65.29 + 4.71(3) = 79.42For 2001, X = 3, (ii) Annual increase in fertiliser consumption = b = 4.71 tonnes. (iii) | Year | Y | Trend (T) | Elimination of Trend
Detrended values | |------|-----|-----------|--| | 1995 | 50 | 51.16 | $\frac{50}{5116} \times 100 = 97.73$ | | 1996 | 56. | 55.87 | $\frac{56}{55.87} \times 100 = 100.23$ | | 1997 | 60 | 60.58 | $\frac{60}{60.58} \times 100 = 99.04$ | | 1998 | 68 | 65.29 | $\frac{68}{65.29} \times 100 = 104.15$ | | 1999 | 70 | 70.00 | $\frac{70}{70} \times 100 = 100$ | | 2000 | 75 | 74.71 | $\frac{75}{74.71} \times 100 = 100.3$ | | 2001 | 78 | 79.42 | $\frac{78}{70.42} \times 100 = 98.2$ | ## IMPORTANT FORMULAE ### 1. Components of Time Series: - (i) Secular Trend or Trend T - (ii) Seasonal Variations S (iv) Irregular Variations - I - (iii) Cyclical Variations C - 2. Models of Analysis of Time Series: - (i) Additive Model: - O = T + S + C + I - (ii) Multiplicative Model: - $O = T \times S \times C \times I$ ## Time Series Analysis-I 3, Methods of Measuring Trend: - (i) Freehand Curve Method (ii) Method of Moving Averages - (ii) Method of Semi-Averages - (iv) Method of Least Square. ## Fitting of Linear Trend by Least Square Method: $$Y = a + bX$$ Two Normal Equations: $$\Sigma Y = Na + b\Sigma X$$ $$\Sigma Y$$ and $h = \Sigma XY$ $$\Sigma XY = a\Sigma X + b\Sigma X^{2}$$ If $\Sigma X = 0$, then $a = \frac{\Sigma Y}{N}$ and $b = \frac{\Sigma XY}{\Sigma X^{2}}$ ## 5. Fitting of Quadratic Trend by Least Square Method: $$Y = a + bX + cX^2$$ Three Normal Equations: $$\Sigma Y = Na + b\Sigma X + c\Sigma X^2$$ $$\Sigma XY = a\Sigma X + b\Sigma X^2 + c\Sigma X^3$$ $$\sum X^2 Y = a \sum X^2 + b \sum X^3 + c \sum X^4$$ If $\Sigma X = 0$, $\Sigma X^3 = 0$, then $$b = \frac{\sum XY}{\sum X^2}, \quad a = \frac{\sum Y - c\sum X^2}{N}$$ $$c = \frac{N \cdot \Sigma X^2 Y - (\Sigma X^2)(\Sigma Y)}{N \cdot \Sigma X^4 - (\Sigma X^2)^2}$$ ## 6. Fitting of Exponential Trend by Least Square Method: $$Y = ab^X$$ $$\log Y = \log a + X \log b$$ Two Normal Equations: $$\sum \log Y = N \cdot \log a + \log b \Sigma X$$ $$\sum X \log Y = \log a \sum X + \log b \sum X^2$$ If $\Sigma X = 0$, then $$\log a = \frac{\sum \log Y}{N}$$ $$\log a = \frac{\sum \log Y}{N}$$ $$\log b = \frac{\sum X \log Y}{\sum X^2}$$ ## QUESTIONS - What is time series? Explain any one method of measuring trend in a time series. - What is time series? What is the need for analysis of time series? - 3. Explain briefly the components of time series. - Explain briefly the components of units of the components c - 5. Explain the meaning and importance of time series. Explain the meaning and importance of the series. Which of these models of time series. Which of these models is explain briefly the additive and multiplicative models of time series. - is more popular in practice? - is more popular in practice? 7. Explain briefly the various methods of determining a trend in a time series. Explain ments. and demerits of each method. - and demerits of each intention. Compare the moving average and least square methods of measuring trend in a given time. series. Which method is better and why? - 9. Distinguish between seasonal and cyclical fluctuations with suitable examples. - 10. Explain the utility of time series analysis to a businessman and an economist. Also state the different components in a time series. - 11. Define a time series. Explain the components of time series. - Explain the procedure of fitting linear trend, quadratic trend and exponential trend using least square method. Or Discuss least square method of fitting linear, quadratic and exponential trend. 13. What is time series? State its utility in business. # Time Series Analysis-II ## INTRODUCTION INTRODUCE For a trader, along with trend analysis, the knowledge about seasonal variations is also very seful. With its help he can, on the one hand, make short-term planning for his business activities and on the other hand, he can immune himself from the effects of short-period variations. Therefore, and on the other hand, the content hand, the content hand the critects of short-period variations. Therefore, analysis of seasonal variations is very important. In this chapter, we will discuss the methods of measuring seasonal variations. ## MEASUREMENT OF SEASONAL VARIATIONS The main methods of
measuring seasonal variations are as follows: - (1) Method of Simple Averages - (2) Method of Moving Average - (3) Ratio to Moving Average (4) Ratio to Trend Method - (5) Link Relatives Method - Let us consider them in detail. ## 0 (1) Method of Simple Averages This is the simplest method of measuring seasonal variations. This method is used in those situations where trend is assumed to be absent in the data. This method involves the following steps: - (1) The given data is arranged monthwise or quarterwise for different years. - (2) The totals of each month or quarter for different years are obtained and then dividing the sum by 12 or 4, the average of each month or quarter is computed. - (3) The average of the monthly average or quarterly average is then computed. - (4) Taking the general average as base, seasonal indices for each month or quarter are computed using the fe.l. by using the following formulae: ## (i) When monthly data is given: Seasonal Index for Jan. = $$\frac{\text{Average of Jan.}}{\text{General Average}} \times 100$$ Seasonal Index for Feb. = $$\frac{\text{Average of Feb.}}{\text{General Average}} \times 100$$ Similarly, seasonal indices for other months can also be computed: (ii) When quarterly data is given: When quarterly data is given: $\frac{\text{Average of I Quarter}}{\text{General Average}} \times 100$ Seasonal Index for II Quarter = Average of II Quarter General Average × 100 Similarly, seasonal indices for III and IV quarters can also be computed. The following examples illustrate the procedure of this method: The following examples illustrate the personal first there is any seasonality in the data given Example 1. Assuming that trend is absent, determine if there is any seasonality in the data given | Ist Quarter | 2nd Quarter | 3rd Quarter | 4th Quarte | | | | |-------------|----------------|----------------|----------------------|--|--|--| | 37 | 41 | 33 | 35 | | | | | 37 | 39 | 36 . | 36 | | | | | 40 | 43 | 33 | 31 | | | | | | 37
37
40 | 37 41
37 39 | 37 41 33
37 39 36 | | | | What are the seasonal indices for various quarters? Computation of Seasonal Indices Solution: | | Compa | tation of Sene | | | |---------|-------------|----------------|-------|-------| | Years | ϱ_1 | Q_2 | Q_3 | Q_4 | | 1982 | 37 | 41 | 33 | 35 | | 1983 | 37 | 39 | 36 | 36 | | 1984 | 40 | 43 | 33 | 31 | | Total | 114 | 123 | 102 | 102 | | Average | 38 | 41 | 34 | 34 | Average of Average = $\frac{38 + 41 + 34 + 34}{4} = 36.75$ (Grand Average) Seasonal Index = $\frac{\text{Quarterly Average}}{\text{General Average}} \times 100$ Seasonal Index for 1st Quarter = $\frac{38}{36.75} \times 100 = 103.40$ Seasonal Index for 2nd Quarter = $\frac{41}{36.75} \times 100 = 111.56$ Seasonal Index for 3rd Quarter = $\frac{34}{36.75} \times 100 = 92.52$ Seasonal Index for 4th Quarter = $\frac{34}{36.75} \times 100 = 92.52$ Time Series Analysis-II Compute the seasonal indices for the following time series data by using method of simple averages: | /ear | Jan. | Feb. | Mar. | Apr. | May | June | 7.1 | | | | 0 | | |------|------|------|------------|------|-----|------|-----|------|-------|------|------|------| | 981 | 15 | 16 | Mar.
18 | 18 | 23 | 23 | 20 | Aug. | Sept. | Oct. | Nov. | Dec. | | 982 | 23 | 22 | 28 | 27 | 31 | 28 | 22 | 20 | 29 | 33 | 33 | 38 | | 983 | 25 | 25 | 35 | 36 | 36 | 30 | 30 | 28 | 32 | 37 | 34 | 44 | | ,00 | | - | | | | | 30 | 34 | 38 | 47 | 41 | 52 | Solution: | 981
115
116
118
118
223 | 1982
23
22
28
27
31 | 1983
25
25
35
36
36 | 3-yearly
Totals
63
63
81
81 | Monthly Average 21 21 27 27 30 | Seasonal Index $ \frac{21}{30} \times 100 = 70 $ $ \frac{21}{30} \times 100 = 70 $ $ \frac{27}{30} \times 100 = 90 $ $ \frac{27}{30} \times 100 = 90 $ | |--|------------------------------------|--------------------------------------|--|--|--| | 116 | 22
28
27
31 | 25
35
36
36 | 63
81
81 | 21
27
27 | $\frac{21}{30} \times 100 = 70$ $\frac{27}{30} \times 100 = 90$ $\frac{27}{30} \times 100 = 90$ | | 18 23 23 | 28
27
31 | 35
36
36 | 81 | 27 | $\frac{21}{30} \times 100 = 70$ $\frac{27}{30} \times 100 = 90$ $\frac{27}{30} \times 100 = 90$ | | 18
23
23 | 27 | 36 | 81 | 27 | $\frac{27}{30} \times 100 = 90$ $\frac{27}{30} \times 100 = 90$ | | 23 | 31 | 36 | | | $\frac{27}{30} \times 100 = 90$ | | 23 | | | 90 | 30 | | | | 28 | | | | $\frac{30}{30} \times 100 = 100$ | | | | 30 | 81 | 27 | $\frac{27}{30} \times 100 = 90$ | | 20 | 22 | 30 | 72 | 24 | $\frac{24}{30} \times 100 = 80$ | | 28 | 28 | 34 | 90 | 30 | $\frac{30}{30} \times 100 = 100$ | | 29 | 32 | 38 | 99 | 33 | $\frac{33}{30} \times 100 = 110$ | | 33 | 37 | 47 | 117 | 39 | $\frac{39}{30} \times 100 = 130$ | | 33 | 34 | 41 | 108 | 36 | $\frac{36}{30} \times 100 = 120$ | | 88 | 44 | 53 | 135 | 45 | $\frac{45}{30} \times 100 = 150$ | | 100 | To | tals | | 360 | | | 3 | 3 3 8 | 9 32 3 37 3 34 8 44 To Average of M. | 9 32 38 3 37 47 3 34 41 8 44 53 Totals Average of Monthly Aver | 9 32 38 99 3 37 47 117 3 34 41 108 8 44 53 135 Totals | 9 32 38 99 33 3 37 47 117 39 3 34 41 108 36 8 44 53 135 45 Totals 360 Average of Monthly Averages = $\frac{360}{3}$ = 30 | Seasonal Index = $\frac{\text{Monthly Average}}{\text{Convert Average}} \times 100$ General Average Seasonal Index for Jan. = $\frac{\text{Average of Jan.}}{\text{General Average}} \times 100 = \frac{21}{30} \times 100 = 70$ | | | 221 | | → 1077 | 135 | +86 | | |------|---|-----|--------|---------|-----|-----|----------| | | W | 221 | 548 | | | | +68.4375 | | | - | 56 | | → 1126 | 141 | -85 | - | | N | S | 36 | → 578 | | | | -74.8125 | | | - | 172 | -7510 | —→ 1170 | 146 | +26 | 127 | | | M | 172 | —→ 592 | | | | +25.4375 | | | A | 129 | | | 149 | -20 | -19.0625 | | | 4 | | → 603 | | | | 17.0025 | | _ | w | 235 | | —→ 1235 | 154 | +81 | +68.4375 | | | + | | | | | | | | 1980 | s | 67 | | —→ 1271 | 159 | -92 | -74.8125 | | 1500 | | | | | | | | | | М | 201 | | —→ 1345 | 168 | +33 | +25.437 | | | | | → 706 | | | | | | _ | Α | 136 | | | | | -19.062 | | | w | 302 | | i fee | | | +68.437 | ## Calculation of Seasonal Variations (from short-term fluctuations) | Years | Summer | Monsoon | Autumn | Winter | |------------------------|-------------------------------|-----------------------------------|------------------------------------|-------------------------| | 1976 | _ | _ | -11 | +42 | | 1977 | -50 | +12 | -14 | +64 | | 1978 | -73 | +30 | -32 | +86 | | 1979 | -85 | +26 | -20 | +81 | | 1980 | -92 | +33 | | | | Total | -300 | 101 | -77 | +273 | | Average | -75 | + 25.25 | -19.25 | + 68.2 | | Seasonal
Variations | -75 - (-0.1875)
= -74.8125 | 25.25 - (- 0.1875)
= + 25.4375 | -19.25 - (-0.1875)
= -19.0625 | 68.25 - (-0
= + 68.4 | General Average = $\frac{-75 + 25.25 - 19.25 + 68.25}{-19.25 + 68.25}$ $$=\frac{-0.75}{4}=-0.1875$$ EXERCISE 6.2 Time Series Analysis-II Find the seasonal fluctuations by the method of moving averages from the following | Year | Ist Quarter | 2nd Quarter | 3rd Quarter | 4th Quarte | |------|-------------|-------------|-------------|-------------| | 1983 | 74 | 76 | 74 | viii Quarte | | 1984 | 82 | 68 | 50 | 80 | | 1985 | 70 | 74 | - 50 | 62 | 2. Find the seasonal fluctuations by using the following data: | Year | Ist Quarter | 2nd Quarter | 3rd Quarter | 414.0 | |------|-------------|-------------|-------------|----------------| | 1983 | 16.00 | 13.50 | /14.70 | 4th Quarte | | 1984 | 15.90 | 12.20 | 15.60 | 17.00 | | 1985 | 16.30 | 11.90 | 16.90 | 18.00 | | 1986 | 17.10 | 13.20 | 15.00 | 19.20
18.70 | 0 (3) Ratio to Moving Average Method This is the most popular method of measuring seasonal variations. It is based on the multiplicative model of time series. The following steps are taken up under this method: (1) Obtain the trend values by the moving averages method. If given data are quarterly, then 4-quarterly moving averages are found out. As against it, if given data are monthly, then 12-monthly moving averages are computed. (2) After this, using multiplicative model each figure relating to the time-periods of original data is divided by the corresponding trend value and the quotient is multiplied by 100 to get ratio-to-moving average: Ratio to Moving Average = $$\frac{O}{T} \times 100$$ Where, O = Original Value T = Moving Average (3) Next, arithmetic averages are computed after arranging the ratio-to-moving averages related of different periods in a separate table. (4) All averages relating to ratio-to-moving averages are summed up and treated to get a general tage. $^{(5)}$ Finally, making the general average as base, the seasonal indices for quarters are found by $_{\rm following}$ formula: Seasonal Indices = $\frac{\text{Quarterly Average}}{\text{Quarterly Average}} \times 100$ This method can be illustrated with the following examples: Example 4. From the following data, calculate seasonal indices by the Ratio to Moving Average | 985 68 62 61 | I Quarter | II Quarter | III Quarter | |--------------|-----------|------------|-------------| | | eat 49 | 62 | 61 | | 65 58 61 | | 58 | 61 | | 63 63 | | 63 | 63 | Solution: | Calculation of Seasona | l Indices by | Ratio-to-Moving | Average Method | |------------------------|--------------|-----------------|----------------| | Calculation | | | ропласт | | Year | Quarter | Values | 4 Quarterly
Moving
Totals | 2 Period
Totals
Centralized
Totals | 4 Quarterly
Moving
Average | Ratio to
Moving
Average | |------|---------|--------|---------------------------------|---
--|-------------------------------| | (1) | (2) | (3) | (4) | Totals | (or Trend
Values)
(T) | $(\frac{O}{T} \times 10)$ | | | | (O) | | | (-) | | | 1985 | - 1 | 68 | _ | and . | No. of the last | Ť | | - | п | 62 | | / | | - | | | | | → 254 | | | - 1 | | | Ш | 61 | | > 505 | 63.125 | 96.6 | | | | | > 251 | A | anivoul of | | | | IV | 63 | | > 498 | 62.25 | 101.2 | | | | | > 247 | 1.000 | ir to Isboo. | - 1 | | 1986 | I | 65 | | → 494 | 61.75 | 105. | | | | | → 247 | 1 × 145 € | gi 1574 tri - | 60 | | | 11 | 58 | 247 | 100 | 61.50 | 94.3 | | | -11 | 36 | | → 492 | reduce s | | | | | | > 245 | The books of | Sea with an | 99. | | | III | 61 | | —→ 493 | 61.625 | 37. | | | | | > 248 | - more visit | DALLACING DE | 1 1 | | | IV | 61 | | > 501 | 62.625 | 97. | | | | | → 253 | 4 | are diminist | 107 | | 1987 | 1 | 68 | | > 508 | 63.50 | 10 | | | | | > 255 | to make he had been de- | | 97 | | | II | 63 | | → 516 | 64.50 | | | | | | > 261 | | departs | - | | | Ш | 63 | A MAIN TO | P - NU | A SERBER | | | | IV | 67 | | - | | _ | Time Series Analysis-II Calculation of So | Year | I Quarter | Quarter II Quarter | | | |------------------|-----------|--------------------|-------------|------------| | 1985 | | Quarter | III Quarter | IV Quarter | | 1986 | 105.3 | 94.3 | 96.6 | 101.2 | | 1987 | 107.1 | 97.7 | 99.0 | 97.4 | | Totals · | 212.4 | 192 | | | | A. Average | 106.2 | 96.0 | 195.6 | 198.6 | | Seasonal Indices | 106.4 | 96.2 | 97.8 | 99.3 | | | 106.2+ | 96+97 8+00 2 | 98.0 | 99.5 | General Average = $\frac{106.2 + 96 + 97.8 + 99.3}{4} = 99.825$ # Calculation of Seasonal Indices: Seasonal Indices for Indices for I Quarter = $$\frac{106.2}{99.825} \times 100 = 106.4$$ II Quarter = $\frac{96}{99.825} \times 100 = 96.2$ III Quarter = $\frac{97.8}{99.825} \times 100 = 98$ IV Quarter = $\frac{99.3}{99.825} \times 100 = 99.5$ Example 5. Calculate seasonal indices for each quarter from the following percentages of wholesale prices to their moving averages: | Year | Quarters | | | | | | |------|----------|--------|-------|--------|--|--| | | I | II | m | IV | | | | 1987 | - | У | 85.71 | 90.25 | | | | 1988 | 128,12 | 91.71 | 96.10 | 103.90 | | | | 1989 | 112.33 | 100.35 | 78.13 | 97.88 | | | | 1990 | 105.26 | 103.50 | 76.13 | 77.00 | | | ## Calculation of Seasonal Indices | | Calculation | oi Seasonai ind | ices | | |------------------|-------------|-----------------|--------|----------------| | Year | ϱ_1 | Q_2 | Q_3 | Q ₄ | | 1987 | - H | _ | 85.71 | 90.25 | | 1988 | 128.12 | 91.71 | 96.10 | 103.90 | | 1989 | 112.33 | 100.35 | 78.13 | 97.88 | | 1990 | 105.26 | 103.50 | | · – | | Totals | 345.71 | 295.56 | 259.94 | 292.03 | | Average | 115.23 | 98.52 | 86.64 | 97.34 | | Seasonal Indices | 116.00 | 00.09 | 87 13 | 97.89 | General Average = $$\frac{115.23 + 98.52 + 86.64 + 97.34}{4} = \frac{397.73}{4} = 99.43$$ Salutation of Seasonal Indices $$Seasonal Indices for I Quarter = \frac{115.23}{99.43} \times 100 = 115.89$$ II Quarter = $$\frac{98.52}{99.43} \times 100 = 99.08$$ III Quarter = $$\frac{86.64}{99.43} \times 100 = 87.13$$ $$II Quarter = \frac{98.52}{99.43} \times 100 = 99.08$$ $$III Quarter = \frac{86.64}{99.43} \times 100 = 87.13$$ $$IV Quarter = \frac{97.34}{99.43} \times 100 = 97.89$$ ## **EXERCISE 6.3** 1. Calculate the seasonal index for the data given below by Ratio-to-Moving Average Method. | Ist Ouarter | 2nd Quarter | 3rd Quarter | 4th Quarter | |-------------|----------------|----------------------------------|--| | | 62 | 61 | 63 | | | 58 | 56 | 61 | | | 63 | 63 | 67 | | | 59 | 56 | 62 | | | 55 | 51 | 58 | | | 68 65 68 70 60 | 68 62
65 58
68 63
70 59 | Section Sect | [Ans. 107.0, 96.4, 94.5, 102.1] 2. Eliminate trend by moving average method: | Year | Ist Quarter | IInd Quarter | IIIrd Quarter | Г | |------|-------------|--------------|---------------|----------| | 2001 | 40 | 35 | 38 | _ | | 2002 | 42 | 37 | 39 | - | | 2003 | 41 | 35 | 38 | <u>_</u> | [Ans. 98.7, 102.56, 106.66, 94.2675, 94.2675, 98.70, 10 ### O (4) Ratio to Trend Method Under this method, the following steps are taken up for the measurement of seasonal variations - (1) Obtain the trend values season-wise (quarterly) by the method of least squares. (2) By dividing the each value of original data (O) relating to all the periods by the corresponding trend value (T), ratio-to-trend is computed. Symbolically, Ratio to Trend = $$\frac{O}{T} \times 100$$ Time Series Analysis-II (3) The arithmetic mean of each quarterly or monthly period ratio-to-trend is computed. (3) The artium of the article th Seasonal Index = $$\frac{\text{Quarterly Average}}{\text{General Average}} \times 100$$ This method can be illustrated with the following example: This memory and the data given belo transple 6. Find out seasonal index by ratio-to-trend method from the data given belo | Year | Ist Quarter | 2-10 | | ociow. | |------|-------------|-------------|-------------|-------------| | | | 2nd Quarter | 3rd Quarter | 4th Quarter | | 1987 | 30 | 40 | 36 | 4th Quarter | | 1988 | 34 | 52 | | 34 | | 1989 | 40 | 58 | 50 | 44 | | 1990 | 54 | | 54 | 48 | | | | 76 | 68 | 62 | | 1991 | 80 | 92 | 86 | 92 | First we have to determine the trend values for yearly data by fitting a straight line Solution: trend by the method of least squares. | Year | Yearly
Total | Quarterly
Average
(Y) | Deviations
from 1989
(X) | XY | X ² | Trend
values
(Yc) | |-------|-----------------|-----------------------------|--------------------------------|-------------------|-------------------|-------------------------| | 1987 | 140 | 35 | -2 | -70 | 4 | 32 | | 1988 | 180 | 45 | -1 | -45 | L | 44 | | 1989 | 200 | 50 | 0 | 0 | 0 | 56 | | 1990 | 260 | 65 | +1 | +65 | | 68 | | 1991 | 340 | 85 | +2 | +170 | 4 | 80 | | N = 5 | | $\Sigma Y = 280$ | $\Sigma X = 0$ | $\Sigma XY = 120$ | $\Sigma X^2 = 10$ | | The equation of the straight line trend
is Since, $$\Sigma X = 0$$, $a = \frac{\Sigma Y}{N}$, $b = \frac{\Sigma XY}{\Sigma X^2}$ \therefore $a = \frac{280}{5} = 56$ and $b = \frac{170}{10} = 12$ $$Y = 56 + 12X$$ $$Y = 56 + 12X$$ For 1987, $X = -2$, $Y = 56 + 12$ (-2) = $56 - 24 = 32$ Other trend yellow Other trend values can be found by adding the value of b in the preceding trend values Yearly increment = $$b = 12$$ Thus, quarterly increment = $$\frac{12}{4}$$ = 3 Calculation of Quarterly Trend Values: Consider 1987: Trend value for the middle quarter, i.e., half of the 2nd and half of the 3rd is 32. Quarterly increment is 3. So the trend value of 2nd quarter is 32 – 3/2, i.e., 30.5 and for 3rd quarter is 32 + 3/2, i.e., 30.5. Trend value for the 1st quarter is 30.5 – 3, i.e., 27.5 and of 4th quarter is 3.5 + 3, i.e., 36.5. We thus get quarterly trend values which are given below: Ouarterly Trend Values ## Quarterly Trend Values | | Ist Quarter | 2nd Quarter | 3rd Quarter | 4th | |------|-------------|-------------|-------------|-----| | Year | 27.5 | 30.5 | 33.5 | | | 1987 | 39.5 | 42.5 | 45.5 | 203 | | 1988 | 51.5 | 54.5 | 57.5 | | | 1989 | 63.5 | 66.5 | 69.5 | | | 1990 | 75.5 | 78.5 | 81.5 | | | 1991 | 13.3 | 0.000 | | | The given values (O) are to be expressed as the percentages of the corresponding trend values. ## Quarterly Values as % of Trend Values | Year | Ist Quarter | 2nd Quarter | 3rd Quarter | 4th Quarter | |------------------|--|--|--|---| | 1987 | 109.1 | 131.1 | 107.5 | 93.1 | | 1988 | 86.1 | 122.4 | 109.9 | 90.7 | | 1989 | 77.7 | 106.4 | 93.9 | 79.3 | | 1990 | 85.0 | -114.3 | 97.8 | 85.5 | | 1991 | 106.0 | 117.1 | 105.5 | 97.0 | | Total | 463.9 | 591.3 | 514.6 | 445.6 | | Average | 92.78 | 118.26 | 102.92 | 89.12 | | Seasonal Indices | $\frac{92.78}{100.77} \times 100$ = 92.0 | $\frac{118.26}{100.77} \times 100$ = 117.4 | $\frac{102.92}{100.77} \times 100$ = 102.1 | $\frac{89.12}{100.77} \times 100.$ = 88.4 | $92.78 + 118.26 + 102.92 + 89.12 = \frac{403.08}{100.77} \frac{403.08}{$ General Average = 4 ## **EXERCISE 6.4** 1. Using 'Ratio-to-Trend' method, determine the quarterly seasonal indices for the following data | Year | Ist Quarter | 2nd Quarter | 3rd Quarter | |------|-------------|-------------|---------------------| | 1984 | 60 | 80 | 72 | | 1985 | 68 | 104 | 100 | | 1986 | 80 | 116 | 108 | | 1987 | 108 | 152 | 136 | | 988 | 160 | 184 | 172
[Ans. 92.03, | Time Series Analysis-11 o (5) Link Relatives Method (5) Link Return. This is another method of measuring the seasonal variations. The steps involved in this method are as follows: as follows: (1) Calculate the link relatives of the seasonal figures - monthly or quarterly. For this, the following formula is used: Current season's figure × 100 Link Relatives = Previous season's figure (2) Then the average of the link relatives for each month or quarter is computed, (2) Then the average of the link relatives are then converted into chain relatives. For this, the following formula is used: Chain Relatives = Average of LR of the current season's figure × Chain Relatives of the previous season's figure 100 (4) The chain relative for the Ist term is calculated on the basis of chain relatives of the last term. For this, the following formula is used: Chain Relatives of the Ist term = Chain Relatives of the last seasonal's figure × Average of LR of the 1st season 100 (5) Theoretically, chain relative of the first period should be 100 but sometime, due to the influence of the trend, this can be more than or less than 100. The difference in this case be found out by deducting 100 from the revised chain relative of the first term. This difference is divided by the number of periods and the quotient is multiplied by 1, 2, 3, etc. Values thus obtained are subtracted from the chain relative of 2nd term, chain relative of the 3rd term and the chain relative of the 4th (6) Finally, arithmetic mean of the adjusted or corrected chain relatives is computed. By taking general average as base, seasonal indices are computed by the following formula: ## Seasonal Indices = $\frac{\text{Corrected Chain Relatives}}{\times 100}$ General Average This method is illustrated by the following examples: Etample 7. Calculate seasonal indices from the following data by using link relatives method: | Year | Ist Quarter | 2nd Quarter | 3rd Quarter | 4th Quarter | |------|-------------|-------------|-------------|-------------| | 1984 | 20 | 40 | 60 | - 80 | | 1985 | 30 | 30 | 40 | 90 | | 1986 | 40 | 60 | 30 | 120 | | 1987 | 50 | 50 | 70 | 150 - | Solution: ### Solution: | Calculation of Seasonal Indices by | Link Relative Method | |------------------------------------|----------------------| | Calculation of Seasons | | | Calculat | Ist Quarter | 2nd Quarter | 3rd Quarter | Atha | |------------------------------------|------------------------------|---|---|---------------------------------| | Year | Ist Quarter | 200 | 150 | 4th Quarter | | 1984 | 37.5 | 100 | 133.3 | 133.3 | | 1985 | | 150 | 50 | 225 | | 1986 | 44.4 | 100 | 140 | 400 | | 1987 | 41.7 | 550 | 473.3 | 214.3 | | Total
of L.R. | 123.6 | 330 | 473.3 | 972.6 | | | 41.2 | 137.5 | 118.3 | 243.2 | | Average of L.R.
Chain Relatives | 100 | $ \frac{100 \times 137.5}{100} \\ = 137.5 $ | $ \frac{137.5 \times 118.3}{100} \\ = 162.7 $ | 162.7×243
100
= 395.7 | | Corrected Chain
Relatives | 100 | 137.5 – 15.75
= 121.75 | 162.7 - 31.5
= 131.2 | 395.7 - 47.3
= 348.45 | | Seasonal Indices | 100×100
175.35
= 57.03 | 121.75×100
175.35
= 69.43 | $ \begin{array}{r} 131.2 \times 100 \\ \hline 175.35 \\ = 74.82 \end{array} $ | 348.45×10
175.35
= 198.72 | Chain relative of the first quarter = $\frac{41.2 \times 395.7}{100} = 163$ (on the basis of the last quarter) The difference between these chain relatives = 163 - 100 = 63 Difference per quarter = $\frac{63}{4}$ = 15.75 Adjusted (or corrected) chain relatives are obtained by subtracting 1×15.75, 2×15.75, 3×15.75 from the chain relatives of the 2nd, 3rd and 4th quarters respectively. Average of corrected chain relatives = $\frac{100 + 121.75 + 131.2 + 348.45}{100 + 121.75 + 131.2 + 348.45} = 175.35$ (or General Average) Seasonal variation indices have been calculated as follows: Seasonal variation indices = $\frac{\text{Corrected Chain Relative}}{\text{Corrected Chain Relative}} \times 100$ General Average Example 8. Calculate seasonal indices by link relative method from the following data: | | | Link Relat | ives | 1995 | |--------------|------|------------|-------|---------| | Quarter/Year | 1991 | 1992 | 1993 | 1994 83 | | I | _ | 80 - | 88 | 80 117 | | II | 120 | 117 | 129 | 125 120 | | III | 133 | 113 | - 111 | 115 79 | | IV | 83 | 89 | 93 | 96 | Time Series Analysis-II Calculation of Seasonal Indices by Link Pol | Year | Q_1 | - Q ₂ | Relative Method | A PARTY PARTY | |-----------------------------|---|--|---|--| | 1991 | _ | 120 | Q ₃ | ''24 | | 1992 | 80 | 117 | 133 | -83 | | 1993 | 88 | 129 | 113 | 89 | | 1994 | 80 | 125 | 111 1 | 93 | | *** | 83 | | 115 | - 96 | | 1995 | | 117 | 120 | 79 | | Total of L.R. | 331 | 608 | 592 | 440 | | Average of L.R. | 82.75 | 121.6 | 118.4 | 88 | | Chain Relatives | 100 | 121.6×100 | 121.6×118.4 | 143.97×88 | | | 4 1000 | 100
= 121.6 | 100
= 143.97 | 100
= 126.69 | | Adjusted Chain
Relatives | 100 | 121.6 – 1.21
= 120.39 | 143.97 – 2 × 1.21
= 141.55 | 126.69 – 3 × 1.21
= 123.06 | | Seasonal Indices | $\frac{100}{121.25} \times 100$ = 82.47 | $\frac{120.39}{121.25} \times 100$ = 99.29 | $\frac{141.55}{121.25} \times 100$ = 116.74 | $\frac{123.06}{121.25} \times 100$ $= 101.5$ | In the above table, the correction factor has been calculated as follows: Chain relative of the first quarter = 100 (on the basis of the first quarter) (on the basis of the last quarter) = 104.84 The difference between these two chain relatives = 104.84 - 100 = 4.84 Difference per quarter = $\frac{4.84}{4}$ = 1.21 Adjusted (or corrected) chain relatives are obtained by subtracting 1×1.208, 2×1.208, 3×1.208 from the chain relatives of the 2nd, 3rd and 4th quarters respectively. Average of corrected chain relatives = $\frac{100+120.39+141.55+123.06}{100+120.39+141.55+123.06} = 121.25$ (or General Average) Seasonal indices have been calculated as follows: Seasonal indices = $\frac{\text{Corrected Chain relative}}{\text{Corrected Chain relative}} \times 100$ General Average ## EXERCISE 6.5 Apply method of link relatives to the following data and calculate seasonal indices: | | | Quarterly Figure | S | |------|------|--|--| | 1992 | 1993 | 1994 | 1995 | | 6.0 | 5.4 | 6.8 | 7.2 | | 6.5 | 7.9 | 6.6 | 5.8 | | 7.8 | 8.4 | 9.3 | 7.5 | | 8.7 | 7.3 | 6.4 | 8.5 | | | 6.5 | 1992 1993
6.0 5.4
6.5 7.9
7.8 8.4 | 1992 1992 6.8
6.0 5.4 6.8
6.5 7.9 6.6
7.8 8.4 9.3 | [Ans. 88.09, 94.44, 113.05, 104.43] 2. Apply the method of link relatives to the following data and obtain seasonal indices: Link Relatives | Year | Ist Quarter | 2nd Quarter | 3rd Quarter | 4th Quarter | |-------|-------------|-------------|-------------|-------------| | 1987 | | 120 | 133 | 83 | | 1988 | 80 | 117 | 113 | 89 | | 1989 | 88 | 129 | . 111 | 92 | | 1990 | 80 | 125 | 115 | 96 | | -1991 | 83 | 117 | 120 | 79 | [Ans. 82.5, 99.4, 116.8, 101.4] ## ■ DESEASONALISATION OF DATA There are two objectives of studying seasonal variations: (a) to measure them and (b) to eliminate them from the given series.
Elimination of the seasonal effects from the series is termed as deseasonalisation of data. If multiplicative model is assumed, the following formula will be used for deseasonalisation: Deseasonalised value = $\frac{O}{Seasonal\ Index} \times 100$ where, $O = Time\ Series\ Data$ Example 9. Deseavnalise the following data with the help of the seasonal index given against | Quarter: | 1 st | 2nd | 3rd | |-------------------|--------|-------|-------| | Sales (Rs. '000): | 40 | 35 | 38 | | Seasonal Index: | 108.26 | 92.07 | 96.98 | # Time Series Analysis-II Solution: | | | Sales (O) | Quarter | |--|--------------------------|------------|---------| | Deseasonalised V: $\left(\frac{O}{S.I.} \times 100\right)$ | Seasonal Index
(S.I.) | (Rs. '000) | | | , | 108.26 | 40 | 1st | | $\frac{40}{108.26} \times 100 = 36$ | 92.07 · | 35 | 2nd | | $\frac{35}{92.07} \times 100 = 38$ | 96.98 | 38 | 3rd | | $\frac{38}{96.98} \times 100 = 39$ $\frac{40}{102.69} \times 100 = 38$ | 102.69 | 40 | 4th | ## EXERCISE 6.6 1. Deseasonalise the following data with the help of the seasonal index given against: | May | June | |-----|------| | 350 | 550 | | | 100 | | | 70 | [Ans. 300, 500, 500, 400, 500, 500] 2. Find the seasonal index from the following table by ratio to moving average method. Also deseasonalize the data. | Quarter | 1983 | 1984 | 1985 | 1986 | 1987 | |---------|------|------|------|------|------| | I | 40 | 42 | 41 | 45 | 44 | | II | 35 | 37 | 35 | 36 | 38 | | III | 38 | 39 | 38 | 36 | 38 | | IV - | 40 | 38 | 42 | 41 | 42 | [Ans. (i) 108.26, 92.07, 96.98, 102.69 (ii) 36.95, 38.01, 39.18, 38.95; 38.80, 40.19, 40.21, 37.00; 37.87, 38.01, 39.18, 40.90; 41.57, 39.10, 37.12, 39.93; 40.64, 41.27, 39.18, 40.90] feeles of a firm during 1996 are as under: | cample 10. 11 | le scasonar | Seasonal Index | Month | Seasonal I | |---------------|-------------|----------------|-------|------------| | | Month | 106 | July | 93 | | | Jan. | 105 | Aug. | 89 | | | Feb. | 101 | Sept. | 92 | | | Mar. | 104 | Oct. | 102 | | | Apr. | 98 | Nov. | 106 | | | May | - 96 | Dec. | 108 | If the firm is expecting total sales of Rs. 42,00,000 during 1996, estimate the sales for the individual in months of 1996. Solution: Estimated Monthly Sales = Average Monthly Sales × Seasonal Effect, Estimated Monthly Sales – Average Monthly Sales = $\frac{\text{Annual Sales}}{12} = \frac{42,00,000}{12} = 3,50,000$ and Seasonal Effect or S.E. = $\frac{\text{Seasonal Index}}{\text{Seasonal Index}}$ On the basis of the above formulae, the estimates of the monthly sales are computed as follows: **Estimation of Monthly Sales** | Month | Seasonal Index | Seasonal Effect
(S.E.) | Estimated monthly sale | |-----------|----------------|---------------------------|---| | January | 106 | $\frac{106}{100} = 1.06$ | 3,50,000 × 1.06 = 3,71,0 | | February | 105 | 1.05 | $3,50,000 \times 1.05 = 3,67,5$ | | March | 101 | 1.01 | $3,50,000 \times 1.01 = 3,53,5$ | | April | 104 | 1.04 | $3,50,000 \times 1.04 = 3,64,0$ | | May | 98 | 0.98 | $3,50,000 \times 0.98 = 3,43,0$ | | June | 96 | 0.96 | $3,50,000 \times 0.96 = 3,36,0$ | | July | 93 | 0.93 | $3,50,000 \times 0.93 = 3,25,5$ | | August | 89 | 0.89 | $3,50,000 \times 0.89 = 3,11,5$
$3,50,000 \times 0.89 = 3,11,5$ | | September | - 92 | 0.92 | $3,50,000 \times 0.02 = 3,22,0$
$3,50,000 \times 0.92 = 3,22,0$ | | October | 102 | 1.02 | $3,50,000 \times 0.92$
$3,50,000 \times 1.02 = 3,57,0$
$3,50,000 \times 1.02 = 3,71,0$ | | November | 106 | 1.06 | $3,50,000 \times 1.02 = 3,71,0$
$3,50,000 \times 1.06 = 3,71,0$
$3,50,000 \times 1.06 = 3,78,0$ | | December | 108 | 1.08 | $3,50,000 \times 1.00 \times 3$ $3,50,000 \times 1.08 = 3,78$ $42,00$ | | Total | 1200 | 12.00 | | Time Series Analysis-II Example 11. The seasonal indices of the sale of garments of a particular type in a certain shop are given below: | | Quarter | | |-----|------------|----------------| | 1 | Jan.—March | Seasonal Index | | П | April—June | 97 | | III | July-Sept. | 85 | | IV | Oct.—Dec. | 83 | | | 200. | 135 | If the total sales in the first quarter of a year be worth Rs. 15,000, determine how much worth of garments of this type should be kept in stock by the shop owner to meet the demand in each of the three quarters of the year. Calculation of Estimated Stocks | | Zotimated Stocks | | |------------|------------------|---| | Quarters | Seasonal Index | Estimated value of stock (in Rs.) | | Jan.—March | 97 | 15,000 | | April—June | 85 | $15,000 \times \frac{85}{97} = \text{Rs. } 13,144$ | | July—Sept. | 83 | $15,000 \times \frac{83}{97} = \text{Rs. } 12,835$ | | Oct.—Dec. | 135 | $15,000 \times \frac{135}{97} = \text{Rs. } 20,876$ | Aliter: The deseaonalised sale for the first quarter is given by $S = \frac{\text{Observed Value}}{\text{Seasonal Effect}} = \frac{15,000}{0.97} = 15463.9175$ On the basis of this deseasonalised sale of the 1st quarter, the stocks of the remaining three quarters will be computed as under: | Quarter | Seasonal Index | Seasonal Effect (S.E.) | Estimated value of stock | |---------|----------------|------------------------|---------------------------------| | II | 85 | 0.85 | 15463.9175 × 0.85 = 13,144 app. | | III | 83 | 0.83 | 15463.9175 × 0.83 = 12,835 app. | | IV | 135 | 1.35 | 15463.9175 × 1.35 = 20,876 | Etumple 12. Given the following ratio of observed to trend values (%), calculate the seasonal indices. If the annual sales for 1991 are expected to be Rs. 2000 lakh, what are the likely sales for the individual quarters. | Year | Q, | Q ₂ | / Q1 | Q ₄ | |------|-----|----------------|------|----------------| | 1987 | 80 | 95 | 80 | 110 | | 1988 | 101 | 104 | 90 | 110 | | 1989 | 100 | 95 | 90 | 100 | | 1990 | 115 | 110 | 100 | 120 | We rewrite the given percentage to the trend in the following form. Computation of Seasonal Indices Solution: | | Ist Quarter | 2nd Quarter | 3rd Quarter | 411.0 | |---------------------------------------|----------------------------------|------------------------------------|----------------------------------|------------------------------| | Year | | 95 | 80 | 4th Qua | | 1987 | 80
101 | 104 | 90 | 110 | | 1988 | 100 | 95 | 90 | 110 | | 1989 | 115 | 110 | 100 | 120 | | 1990 | 396 | 404 | 360 | 440 | | Total | 99 | 101 | 90 | 110 | | Quarterly Average
Seasonal Indices | $\frac{99}{100} \times 100 = 99$ | $\frac{101}{100} \times 100 = 101$ | $\frac{90}{100} \times 100 = 90$ | $\frac{110}{100} \times 100$ | General Average = $\frac{99+101+90+110}{4}$ = 100 Expected annual sales for 1991 is 2,000 lakh. Expected quarterly sales = $\frac{\text{Annual Sales}}{4} = \frac{2,000}{4} = 500$ The estimates of the quarterly sales are computed as | Quarters | S.I. | Expected Sales | |-----------------------|------|---| | Q_1 | 99 | $500 \times \frac{99}{100} = \text{Rs. } 495 \text{ lakh}$ | | Q_2 | 101 | $500 \times \frac{101}{100} = \text{Rs. } 505 \text{ lakh}$ | | Q_3 | - 90 | $500 \times \frac{90}{100} = \text{Rs. } 450 \text{ lakh}$ | | <i>Q</i> ₄ | 110 | $500 \times \frac{110}{100} = \text{Rs.} 550 \text{ lakh}$ | Example 13. Calculate the seasonal index number from the following data: | Ratios of Obse | rved to Tre | end Values% | |----------------|-------------|-------------| | Year/Quarter | I | II | III | | |--------------|-----|-----|-----|------| | 1999 | 108 | 130 | 107 | | | 2000 | 86 | 120 | 110 | J.D. | | 2001 | 92 | 118 | 104 | | | 2002 | 78 | 100 | 94 | | | 2003 | 82 | 110 | 98 | | | 2004 | 106 | 118 | 105 | _ | If the sales of a good X by a firm in the first quarter of 2005 is worth Rs. 92,000, determine how much worth of the good should be kept in stock by the firm to met the demand in each of the remaining three quarters of 2005 by using the seasonal index numbers calculated above. numbers calculated above. Time Series Analysis-II Calculation of Seasonal Index by Ratio to T | Ist Quarter | IInd Quarter | to Trend Metho | Ju . | |-------------|------------------------------------|---|--| | 108 | | IIIrd Quarter | IVth Quarter | | 86 | | | 93 | | 92 | | | 91 | | 78 | 100 | | 88 | | 82 | 110 | | 78 | | 106 | 118 | | . 86 | | 552 | 696 | | 98 | | 92 | 116 | | 534 | | | 86
92
78
82
106
552 | 108 130
86 120
92 118
78 100
82 110
106 118
552 696 | 108 130 107
86 120 110
92 118 104
78 100 94
821 110 98
106 118 105
552 696 618 | Total of averages 92 + 116 + 103 + 89 = 400. Since, the total is 400, no adjustment is required. The actual sales in the first quarter is worth Rs. 92,000. So, the sales without considering the seasonal, effect, *i.e.*, deseasonalised sales will be effect, i.e., deseasonalised $$\frac{92,000\times100}{92} = 1,00,000$$ | Quarter | Deseasonalised sales | Seasonal index | Estimated stock | |---------|----------------------|----------------|--| | П | 1,00,000 | 116 | $1,00,000 \times \frac{116}{100} = 1,16,000$ | | Ш | 1,00,000 | 103 | $1,00,000 \times \frac{103}{100} = 1,03,00$ | | IV | 1,00,000 | 89 | $1,00,000 \times \frac{89}{100} = 89,000$ | Example 14. The trend equation for quarterly sales of a firm is estimated to be as follows: Y = 20 + 2X, where Y is sales per quarter in millions of rupees, the unit of X is one quarter and the origin is the middle of the first quarter (Jan.–March) of 2001. The seasonal indices of sales for the four quarters are as follows: | Quarter: | I | Ш | III | IV. | |--------------------|-----|-----|-----|-----| | Seasonal indices : | 120 | 105 | 85 | 90 | Estimate the acutal sales for each
quarter of 2006. First quarter of 2001 is the origin X = 0 in the first quarter of 2001 X = 20 in the first quarter of 2006 X = 21 in the second quarter of 2006 X = 22 in the third quarter of 2006 X = 23 in the fourth quarter of 2006 | 2006 | X | Yc | Seasonal
index | Estimated actual | |---------|----|-------------------------|-------------------|---| | Quarter | 20 | $20 + 2 \times 20 = 60$ | 120 | | | 1 | 21 | 20 + 2 × 21 = 62 | 105 | $60 \times 1.20 = 72.0$ $62 \times 1.05 = 65.1$ | | II | 22 | 20 + 2 × 22 = 64 | 85 | $64 \times 0.85 = 54.4$ | | III | 23 | 20 + 2 × 23 = 66 | 90 | 66 × 0.90 = sh | Example 15. The seasonal indices of the sales of garments of a particular type in a certain shop are | given cons | I | II | III | IV | |-----------------|------|----|-----|-----| | Quarter: | 97 - | 85 | 83 | 125 | | Seesonal index: | | | | 133 | If the total sales in the first quarter of a year be worth Rs. 15,000 and sales are expected to rise by 4% in each quarter, determine how much worth of garments of this type be kept in stock by the shopowner to meet the demand for each of the three quarters of the year. #### Solution: | Computation | of | Stock | | |-------------|----|-------|--| |-------------|----|-------|--| | Quarter | Expected sales | Seasonal index | Estimated stock | |---------|--|----------------|---| | I | 15,000 | 97 | $\frac{15,000\times97}{100} = 14,550$ | | п | $\frac{15,000\times104}{100} = 15,600$ | 85 | $\frac{15,600\times85}{100} = 13,260$ | | Ш | $\frac{15,600\times104}{100} = 16,224$ | 83 | $\frac{16,224 \times 83}{100} = 13,466$ | | IV | $\frac{16,224\times104}{100}$ =16,873 | 135 | $\frac{16,873\times135}{100} = 22,77$ | Note: Since, sales are expected to rise by 4% in each quarter, the expected sales of previous quarter will become the base for calculating sales of the next quarter. #### **EXERCISE 6.7** A company estimates its sales for a particular year to be Rs. 36,00,000. The seasonal indixes for sales are as follows: | Month | Seasonal Index | Month | |---------|----------------|-----------| | anuary | 80 | July | | ebruary | 90 | August | | March | 95 | September | | April | 130 | October | | 1ay | 140 | November | | June | 120 | December | Time Series Analysis-II Using this information, calculate estimates of monthly sales of the company. (Assume that there is no trend.)) [Ans. 2.40, 2.30, 2.85, 3.90, 4.20, 3.60, 3.00, 3.15, 3.00, 3.30, 2.10, 1.80 lakhs] The quarterly seasonal indices of the sales of a popular brand of colour television of a company in Delhi are given below: | uarter : | 1 | II - | m | | |----------------|-----|----------------------|-------|-----| | asonal index : | 130 | 90 | - III | IV | | | | f 1997 is Rs 6 50 00 | 75 | 105 | If the total sales for the Hirst quarter of 1277, is as, 15,25,000, estimate the worm of television to be kept in store to meet the demand in other quarters. Assume that there is no trend. [Ans. 4,50,000; 3,75,000 and 5,25,000] The seasonal indices of the sale of garments of a particular type in a | | | | | o po ma store a | re given belo | |----------------|---|----|------|-----------------|---------------| | Quarter | : | 1 | . П | III | 777 | | Seasonal index | : | 98 | . 89 | | IV | | Seasonar maex | | | 37 | 83 | 130 | Seasonal index If the total sales for the first quarter of a year be worth Rs. 10,000, find how much worth of garments of this type should be kept in stock to meet the demand in each of the remaining quarters. [Ans. Garments to be kept (in Rs.): IInd Quarter: 9081.63; IIIrd Quarter: 8469.39; IV Quarter: 13265.30] 4. Calculate seasonal index number from the following data of sales of goods X: | Year | I | п | Ш | TV | |------|-----|-----|-----|------| | 2001 | 108 | 130 | 107 | 93 | | 2002 | 86 | 120 | 110 | 91 | | 2003 | 92 | 118 | 104 | 88 | | 2004 | 78 | 100 | 94 | 78 | | 2005 | 82 | 110 | 98 | 86 | | 2006 | 106 | 118 | 105 | - 98 | If sales of goods X in the first quarter of 2007 are worth Rs. 20,000, determine how much worth of goods should be kept in stock by the firm to meet the demand in each of the remaining three quarters of 2007 by using the seasonal index numbers calculated above. [Ans. 25217.39, 22391.30, 19347.82] On the basis of quarterly sales (in Rs. lakh) of a certain commodity for the year 1994-95, the following following calculations were made: | 0 | Se | easonal Variation | 15 | 4 | |-----------------|----|-------------------|-----|-----| | Quarter: | I | II | Ш | IV | | Seasonal Index: | 80 | 90 | 120 | 110 | $\frac{20 + 0.5X}{100}$ with origin: Ist quarter of 1994 X = 20 + 0.5X with origin: Ist quarter of 1994 X = 20 unit = one quarter; Y = 20 Quarterly sales (Rs. lakhs) A unit = one quarter; Y = Quarterly sales (Rs. lakhs) Estimate quarterly sales for each of the four quarters of 1995, using the multiplicative model. [Ans. Estimated quarterly sales for the four quarters of 1995 (in Rs. lakh) are 17.60, 20.25, 27.60, 25.85 respectively] | index: | Quarter II | Quarter III | Ones | |----------------|------------|-------------|-----------| | Vear Quarter I | 100 | 90 | Quarter I | | 1987 105 | 105 | 95 | 115 | | 1988 110 | 95 | 95 | 115 | | 1989 115 | 110 | 100 | 105 | 1990 125 If the annual sales for 1991 are expected to be Rs. 20,000 lakh, what are the likely sales for the individe quarters? [Ans. 102.38, 97.62, 90.48, 109.52, 511.9, 488.1, 452.4, 547.6] ## IMPORTANT POINTS Methods of Measuring Seasonal Variations/Seasonal Indices: - (1) Simple Averages Method - (2) Moving Averages Method - (3) Ratio to Moving Average Method - (4) Ratio to Trend Method - (5) Link Relatives Method ## QUESTIONS - 1. What is a seasonal index? Explain the different methods of estimating it. - Discuss the ratio-to moving average and the ratio-to trend method of measuring seasonal providers. - 3. Explain any method of estimating the seasonal index for a time series based on quarterly data. - 4. Describe, step by step, the moving average method of determining seasonal index. - 5. Explain briefly the various methods of isolating seasonal fluctuations in time series. - What are seasonal variations? How would you construct a seasonal index using ratio to trend method? What are the uses and it. method? What are the uses and limitations of seasonal indices. # Probability INTRODUCTION ININO In day-to-day life, we all make use of the word 'probability'. But generally people have no definite idea about the meaning of probability. For example, we often hear or talk phrases like, "Probability it may rain today", "it is likely that the particular teacher may not come for taking his "Probability" impere is a chance that the particular student may stand 'go. probability it may tain there is a chance that the particular student may stand-first-in-the university and stade that the particular student may stand-first-in-the university as the contract which it bid is the contract which it bid as the contract which is week"; most probably, likely, chance, etc., convey he same meaning, i.e., the events are not certain to take place. In other words, there is involved an element of uncertainty or chance in all these cases. A numerical measure of uncertainty is provided element of uncertainty of change in a first of the probability theory is to provide a measure of uncertainty. The theory of probability owes its origin to the study of games of chance like games of cards, tossing coins, dice, etc. But in modern times, it has great importance is decision making problems. ## I SOME BASIC CONCEPTS Before we give definition of the word probability, it is necessary to define the following basic oncepts and terms widely used in its study: When we conduct a trial to obtain some statistical information, it is called an experiment. - (i) Tossing of a fair coin is an experiment and it has two possible outcomes: Head - (ii) Rolling a fair die is an experiment and it has six possible outcomes: appearance of 1 or 2 or 3 or 4 or 5 or 6 on the upper most face of a die. - (iii) Drawing a card from a well shuffled pack of playing cards is an experiment and it has 52 possible outcomes. 52 0 (E) Events The possible outcomes of a trial/experiment are called events. Events are generally denoted by letters A D capital letters A, B, C, etc. (1) If a fair coin is tossed, the outcomes - head or tail are called events. (ii) If a fair die is rolled, the outcomes 1 or 2 or 3 or 4 or 5 or 6 appearing up are called ## • (3) Exhaustive Events (3) Exhaustive Events The total number of possible outcomes of a trial/experiment are called exhaustive events. In the total number of possible outcomes of an experiment are taken into consideration, then have the possible outcomes of an experiment are taken into consideration, then have the possible outcomes of an experiment are taken into consideration, then have the possible outcomes of a trial/experiment are called exhaustive events. The total number of possible outcomes of a experiment are taken into consideration, then such other words, if all the possible outcomes of an experiment are taken into consideration, then such other words, if all the possible outcomes of an experiment are taken into consideration, then such events are called exhaustive events. ed exhaustive evenus. (i) In case of fossing a die, the set of six possible outcomes, i.e., 1, 2, 3, 4, 5 and 6 are Examples: exhaustive events. - exhaustive events. (ii) In case of tossing a coin, the set of two outcomes, i.e., H and T are exhaustive - evenus. (iii) In case of tossing of two dice, the set of possible outcomes are $6 \times 6 = 36$ which | re given belov | (1,1) (1,2) | (1,3) | (1,4) | (1,5) | (1,6) | |----------------|--------------------------|------------|-------|-------|-------| | , | (2,1) $(2,2)$ | | (2,4) | (2,5) | (2,6) | | | | | (3,4) | (3,5) | (3,6) | | (- | 3,1) (3,2)
4,1) (4,2) | | (4,4) | (4,5) | (4.6) | | | 5,1)
(5,2) | 0000000000 | (5,4) | (5,5) | (5,6) | | | 5,1) (6,2) | | (6,4) | (6,5) | (6,6) | | | , , | | | | | ## (4) Equally-Likely Events The events are said to be equally-likely if the chance of happening of each event is equal or same. In other words, events are said to be equally likely when one does not occur more often that the others. (i) If a fair coin is tossed, the events H and T are equally-likely events. Examples: (ii) If a die is rolled, any face is as likely to come up as any other face. Hence, the six outcomes - 1 or 2 or 3 or 4 or 5 or 6 appearing up are equally likely events. ## (5) Mutually Exclusive Events Two events are said to be mutually exclusive when they cannot happen simultaneously in a single trial. In other words, two events are said to be mutually exclusive when the happening of our excludes the happening of the other in a single trial. Example: - (i) In tossing a coin, the events Head and Tail are mutually exclusive because both cannot happen simultaneously in a single trial. Either head occurs or tail occurs of occurs occurs of tail occurs occu Both cannot occur simultaneously in a single trial. Either head occurs or tail occus between the control occur simultaneously. The happening of head excludes the possibility of happening of the control occurs of tail occurs. - (ii) In tossing a die, the events 1, 2, 3, 4, 5 and 6 are mutually exclusive because all the six events country. the six events cannot happen simultaneously in a single trial. If number 1 up, all the other five ties 2.2 and the six events cannot happen simultaneously in a single trial. up, all the other five (i.e., 2, 3, 4, 5, or 6) cannot turn up. ## • (6) Complementary Events Let there be two events A and B. A is called the complementary event of B and B is called the complementary event of A if A and B are mutually event. complementary event of A if A and B are mutually exclusive and exhaustive. (i) In tossing a coin, occurrence of head (H) and tail (T) are complementary events. (ii) In tossing a die, occurrence of an even number (2, 4, 6) and odd number (1, 3, 5) are complementary events. # o (7) Simple and Compound Events (7) Simple and I follows the probability of happening or not happening of single If a die is rolled once and A be the event that face number 5 is turned up, then A is events. Example: called a simple event. In case of compound events, we consider the joint occurrences of two or more events. If two coins are tossed simultaneously and we shall be finding the probability of getting two heads, then we are dealing with compound events. ## o (8) Independent Events Two events are said to be independent if the occurrence of one does not affect and is not affected by the occurence of the other. - Example: (i) In tossing a die twice, the event of getting 4 in the 2nd throw is independent of getting 5 in the first throw. - (ii) In tossing a coin twice, the event of getting a head in the 2nd throw is independent of getting head in the 1st throw. #### 0 (9) Dependent Events Two events are said to be dependent when the occurence of one does affect the probability of the ccurence of the other events. (i) If a card is drawn from a pack of 52 playing cards and is not replaced, this will affect the probability of the second card being drawn. (ii) The probability of drawing a king from a pack of 52 cards is $\frac{4}{52}$ or $\frac{1}{13}$. But if the card drawn (king) is not replaced in the pack, the probability of drawing again a king is $\frac{3}{51}$. DEFINITION OF PROBABILITY The probability is defined in the following three different ways: (l) Classical or Mathematical Definition (2) Empirical or Relative Frequency Definition (3) Subjective Approach. (1) Classical or Mathematical Definition This is the oldest and simplest definition of probability. This definition is based on the oldest and simplest definition of probability. This definition is based on the oldest and simplest definition of probability. the oldest and simplest definition of probability. This definition is building that the outcomes or results of an experiment are equally likely and mutually exclusive. According to Laplace, "Probability is the ratio of the favourable cases to the total number of According to Laplace, "Probability is the ratio of the train order to calculate the probability of an equally likely cases". From this definition, it is clear that in order to calculate the probability of an event, we have to find the number of favourable cases and it is to be divided by the divided by the contains of green and 4 red balls, then the probability of getting and getti equally likely cases when the number of favourable cases and it is to be divided by the total number of event, we have to find the number of green and 4 red balls, then the probability of getting a green seases. For example, if a bag contains 6 green and 4 red balls, then the probability of getting a green ball will be 6/4 + 6 = 6/10 because the total number of balls are 10 and the number of green balls it 6. Symbolically, Number of Favourable Cases $P(A) = p = \frac{1}{\text{Total Number of Equally Likely Cases}}$ Where, P(A) = Probability of occurrence of an event A = Number of favourable cases = Total number of equally likely cases Similarly, $$P(\overline{A}) = q = 1 - P(A) = 1 - \frac{m}{n}$$ Where, $P(\overline{A}) = q = \text{Probability of non-occurrence of an event A}$. From the above definition, it is clear that the sum of the probability of happening of an event From the above definition, it is seen that the probability of non-happening of an event called failure (q) is always one (1), i.e., p+q=1. If p is known, we can find q and if q is known, then we can find p. In practice, the value of p lies between 0 and 1, i.e., $0 \le p \le 1$. To quote **Prof. Morrison**, "**If an event can happenin** m ways and fail to happen in n ways, then probability of happening is $\frac{m}{m+n}$ failure to happen is $$\frac{n}{m+n}$$. #### ▶ Limitations of Classical Definition Following are the main limitations of classical definition of probability: - (1) If the various outcomes of the random experiment are not equally-likely, then we cannot find the probability of the event using classical definition. - (2) The classical definition also fails when the total number of cases are infinite - (3) If the actual value of N is not known, then the classical definition fails. ### • (2) Empirical or Relative Frequency Definition This definition of probability is not based on logic but past experience and experiments and experiments are conditions. If vital experiments are so of them or present conditions. If vital statistics gives the data that out of 100 newly born babies, 55 of them girls, then the probability of the girl birth will be 55/100 or 55%. According to Croxles and Cowden, "Probability is the limit of the girl birth will be 55/100 or 55%. According to Cowden, "Probability is the limit of the girl birth will be 55/100 or 55%. According to Cowden, "Probability is the limit of the girl birth will be 55/100 or 55%. According to Cowden, "Probability is the limit of the girl birth will be 55/100 or 55%. According to Cowden, "Probability is the limit of the girl birth will be 55/100 or 55%. According to Cowden, "Probability is the limit of the girl birth will be 55/100 or 55%. According to Cowden, "Probability is the limit of the girl birth will be 55/100 or 55%. According to Cowden, "Probability is the limit of the girl birth will be 55/100 or 55%. According to Cowden, "Probability is the limit of the girl birth will be 55/100 or 55%. According to Cowden, "Probability is the limit of the girl birth will be 55/100 or 55%. According to Cowden, "Probability is the limit of the girl birth will be 55/100 or 55%. According to Cowden, "Probability is the limit of the girl birth will be 55/100 or 55%. According to Cowden, "Probability is the limit of the girl birth will be 55/100 or 55%. According to Cowden, "Probability is the limit of the girl birth will be 55/100 or 55%. According to Cowden, "Probability is the limit of the girl birth will be 55/100 or 55%. According to Cowden, "Probability is the limit of the girl birth will be 55/100 or 55%. According to Cowden, "Probability is the limit of the girl birth will be 55/100 or 55%. According to Cowden, "Probability is the limit of the girl birth will be 55/100 or 55%. According to Cowden, "Probability is the limit of the girl birth will be 55/100 or 55%. According to Cowden, "Probability is the limit of the girl birth will be 55/100 or 55%. According to Cowden, "Probability is the limit of the girl birth will be 55/100 or 55%. According to Cow Cowden, "Probability is the limit of the relative frquency of success in infinite sequent trials". To quote Kenny and Versian West Sequences of n independent of the relative frquency of success in infinite sequences. trials". To quote Kenny and Keeping, "If event has occured r times in a series of n independent trials, all are made under the series of n independent trials, all are made under the series of n independent trials, all are made under the series of n independent trials, all are made under the series of n independent trials, all are made under the series of n independent trials, all are made under the series of n infinite sequences. trials, all are made under the same identical conditions, the ratio r/n is the relative freque of the event. The limit of r/n control of the event of the event. of the event. The limit of r/n as n tends to infinity is the probability of the occurence of the event". symbolically, $$P(A) = \underset{n \to \infty}{\operatorname{Limit}} \frac{r}{n}$$ For example, if a coin is tossed 100 times and the heads turn up 55 times, then the relative frequency of head will be $\frac{55}{100} = 0.55$. Similarly, if a coin is tossed 1000 times and if the head turns 495 frequency will be $\frac{495}{1000}$ = 0.495. In 10,000 tosses, the head turns up
$\frac{495}{1000}$ = 0.5085. The frequency will be 0.5085. The frequency will be 0.5085. pg 495 times the relative frequency will be 0.5085. Thus as we go on increasing the number of trials, then the relative inequency of head would approach to 0.50. The following figure is a tendency that the relative frequency of head would approach to 0.50. The following figure illustrate the idea: From the above figure, it is clear that as the number of trials increases, the probability of head leads to approach 0.5 and when the number of trials is infinite, i.e., $n \to \infty$, the probability of getting head is equal to 0.5. ## (3) Subjective Approach According to this approach, probability to an event is assigned by an individual on the basis of ridence available to him. Hence probability is interpreted as a measure of degree of belief or confidence that a particular individual reposes in the occurrence of an event. But the main problem here is that different the confidence that a particular individual reposes in the occurrence of an event. But the main problem lete is that different persons may differ in their degree of confidence even when same evidence is ## MPORTANCE OF PROBABILITY The theory of probability has its origin in the games of chance related to gambling such as besing a die, tossing a coin, drawing a card from a deck of 52 cards and drawing a ball of a particular from a bag. But in modern times, it is widely used in the field of statistics, economics, ummerce and social sciences that involve making predictions in the face of uncertainty. The and social sciences that involve making production of probability is clear from the following points: (I) Probability is clear from the following points: (I) Probability is used in making economic decision in situations of risk and uncertainty by strangagers s managers, production managers, etc. (2) Probability is used in theory of games which is further used in managerial decisions. (3) Various (3) Various sampling tests like Z-test, t-test and F-test are based on the theory of probability. (4) Probability is the backbone of insurance companies because life tables are based on the theory of probability. Thus, probability is of immense utility in various fields. ## ■ PROBABILITY SCALE PROBABILITY SCALE The probability of an event always lies between 0 and 1, i.e., $0 \le p \le 1$. If the event cannot take The probability of an event then its probability will be zero, i.e., P(E) = 0 and if the event is. The probability of an event anways in the probability will be zero, i.e., P(E) = 0 and if the event is place, i.e., impossible event, then its probability will be zero, i.e., P(E) = 0 and if the event is sure. occur, then its probability will be one, i.e., P(E) = 1. ## Calculation of Probability of an Event The following steps are to be followed while calculating the probability of an event: - (1) Find the total number of equally likely cases, i.e., n - (2) Obtain the number of favourable cases to the event, i.e., m - (3) Divide the number of favourable cases to the event (m) by the total number of equally likely cases (n). This will give the probability of an event. Symbolically, Probability of occurrence of an event E is: $$P(E) = \frac{\text{Number of favourable cases to E}}{\text{Total number of equally likely cases}} = \frac{R}{R}$$ Similarly, Probability of non-occurrence of event E is: $$P(\overline{E}) = 1 - P(E)$$ The following examples will illustrate the procedure: Example 1. Find the probability of getting a head in a tossing of a coin. When a coin is tossed, there are two possible outcomes - Head or Tail. Total number of equally likely cases = n = 2 Number of cases favourable to H = m = 1 $$\therefore \qquad P(H) = \frac{m}{n} = \frac{1}{2}$$ Example 2. What is the probability of getting an even number in a throw of an unbiased die? When a die is tossed, there are 6 equally likely cases, i.e., 1, 2, 3, 4, 5, 6. Total number of equally likely cases = n = 6 Number of cases favourable to even points (2, 4, 6) = m = 3 Probability of getting an even number $$=\frac{3}{6} = \frac{1}{2}$$ Example 3. What is the probability of getting a king in a draw from a pack of cards? Number of exhaustive cases = n = 52 There are 4 king cards in an ordinary pack. Number of favourable cases = m = 4 Probability of getting a king = $\frac{4}{52} = \frac{1}{13}$ From a bag containing 5 red and 4 black balls. A ball is drawn at random. What is the probability that it is a red ball? Total No. of balls in the bag = 5 + 4 = 9Solution: No. of red balls in the bag = 5 Probability of getting a red ball = $\frac{5}{9}$ A bag contains 5 black and 10 white balls. What is the probability of drawing (i) a black ball, (ii) a white ball? Example 5. Total number of balls = 5 + 10 = 15 Total number of balls = $$\frac{5}{10} + \frac{10}{10} = \frac{15}{10}$$ (i) P (black ball) = $\frac{10}{10} = \frac{15}{10} = \frac{1}{10} \frac{1$ (ii) P (white ball) = $$\frac{\text{No. of balls}}{\text{Total No. of balls}} = \frac{15}{15} = \frac{2}{3}$$ Example 6. In a lottery, there are 10 prizes and 90 blanks. If a person holds one ticket, what are the chances of - (i) getting a prize - (ii) not getting a prize Total No. of tickets = 10 + 90 = 100Solution: (i) Probability of getting a prize: No. of prizes = 10 No. of favourable cases = 10 Total No. of cases = 100 Required Probability = $$\frac{10}{100} = \frac{1}{10} = 0.1$$ ### (ii) The probability of not getting a prize: No. of Blanks = 90 :. Number of favourable cases = 90 Total Number of cases = 100 Required Probability = $$\frac{90}{100}$$ = 0.9 Lample 7. What is the probability of getting a number greater than 4 with an ordinary die? Solution: Number greater than 4 in a die are 5 and 6. · Number of favourable cases = 2 Total number of cases = 6