ulation of Mean and Standard Deviation | | Calculation | on of Mean | 4 | fď | fd ² | |--------------------|--------------------|---------------------|---------------------|---------------------|---------------------| | Amt. of | No. of
Children | A = 50 $d = X - 50$ | $d' = \frac{u}{10}$ | or and to self | | | Scholarship
(X) | (f) | - | -2 | -20 | 40 | | 30 | 10 | -20 | -1 | -8 | 8 | | 40 | 8 | -10 | 0 | 0 | 0 | | 50 | 7 | 0 | +1 | 3 | 3 | | 60 | 3 | +10 | +2 | 4-91 | 8 | | 70 | 2 | +20 | 172 | $\Sigma f d' = -21$ | $\Sigma f d^2 = 59$ | | | N = 30 | | | 2/4 - 2. | <i>Zja</i> = 59 | $$\frac{N-30}{X} = A + \frac{\sum fd'}{N} \times i$$ $$= 50 - \frac{21}{30} \times 10 = 50 - \frac{210}{30} = 50 - 7 = 43$$ $$\sigma = \sqrt{\frac{\sum fd'^2}{N} - \left(\frac{\sum fd'}{N}\right)^2} \times i$$ $$= \sqrt{\frac{59}{30} - \left(\frac{-21}{30}\right)^2} \times 10 = \sqrt{1.966 - 0.49} \times 10$$ $$= \sqrt{1.476} \times 10 = 1.214 \times 10 = 12.14$$ #### Variance Variance is another measure of dispersion. The term variance was first used by R.A. Fisher in 1918. Variance is the square of the standard deviation. Symbolically, #### Variance = $(S.D.)^2 = \sigma^2$ #### Calculation of Variance (i) Variance = $\frac{\Sigma f(X - \overline{X})^2}{}$ (Actual Mean Method) (Assumed Mean Method) #### Example 23. Calculate the mean and | Daily wages: | 0-10 | | given below | 1970 | | |-----------------|------|-------|-------------|-------|-------| | No. of workers: | 0-10 | 10-20 | 20-30 | 30_40 | 40-50 | | No. of workers: | 2 | 7 | - 10 | 30-40 | 40 | | | | | 10 | 5 | 3 | asures of Dispersion Calculation of Mo | Daily
wages | f | M.V.
(m) | of Mean and $A = 25$ $d = m - 25$ | $d = \frac{d}{d}$ | fď | fd ² | |----------------|--------|-------------|-----------------------------------|-------------------|-------------------|---------------------| | 0—10 | 2 | 5 | -20 | 10 | | ja- | | 10-20 | 7 | 15 | -10 | -2 | -4 | 8 | | 20-30 | 10 | 25 = A | -10 | -1 | -7 | 7 | | 30-40 | 5 | 35 | +10 | 0 | 0 | 0 | | 40—50 | 3 | 45 | +20 | +1 | +5 | - 5 | | | N = 27 | | +20 | +2 | +6 | 12 | | WA KUA | | | | | $\Sigma f d' = 0$ | $\Sigma f d'^2 = 3$ | $$\overline{X} = A + \frac{\Sigma f d'}{N} \times i = 25 + \frac{0}{7} \times 10 = 25$$ $$\text{Variance} = \left[\frac{\Sigma f d'^2}{N} - \left(\frac{\Sigma f d'}{N} \right)^2 \right] \times i^2 = \left[\frac{32}{27} - \left(\frac{0}{27} \right)^2 \right] \times 10^2$$ $$\sigma^2 = 1.185 \times 100 = 118.51$$ $$\overline{X} = 25, \ \sigma^2 = 118.51$$ #### **EXERCISE 6.4** 1. Calculate the standard deviation from the following data: | X: | 63 | 67 | 64 | 59. | 61 | 67 | 68 | 66 | 63 | 61 | 68 | | |----|----|----|----|-----|----|----|----|----|----|----|----|--| |----|----|----|----|-----|----|----|----|----|----|----|----|--| [Ans. $\sigma = 3$] | X: | 48 | 75 | 54 | 60 | 63 | 69 | 72 | 51 | 57- | 56 | |----|----|----|----|----|----|----|----|----|-----|----| |----|----|----|----|----|----|----|----|----|-----|----| | Size; | 10 | 20 | 30 | 40 | 50 | 60 | 70 | |------------|----|----|----|----|----|----|----| | Frequency: | 6 | 8 | 16 | 15 | 33 | 11 | 12 | | Daily wages: | 0—10 | 10-20 | 20-30 | 30-40 | 4050 | |-----------------|------|-------|-------|-------|------| | No. of workers: | | 7 | 10 | 5 | 3 | | Parate medi | an and S.D. | from the f | ollowing d | ata: | | | £1 £6 | |-------------|-------------|------------|------------|-------|-------|----------|------------------| | Propinsie: | 21—25 | 26—30 | 31—35 | 36—40 | 41-45 | 4650 | 31—33 | | uency: | 5 | 15 | 28 | 42 | 15 | 12 26 02 | $\alpha = 6.735$ | | Calculate the mea | n and the | standar | d deviati | oli oli ulo | 1 40 | 50 | 60 | 70 | |-------------------|-----------|---------|-----------|-------------|------|-----|------------------------|-----------------| | | | 10 | 20 | - | 25 | 15 | 5 | 0 | | Marks (Above): | | 90 | 75 | 50 | 23 | [Ar | is. $\overline{X} = 3$ | $\sigma = 15.9$ | 7. Calculate the mean and standard deviation from the following data: Class Interval: 40 to -30 | -30 to -20 | -20 to -10 | -10 to 0 | 0 to 10 | 10 to 20 | 20 to 30 | 10 [Ans. $\overline{X} = 4.29$, $\sigma = 14.75$] 8. The following table gives the marks obtained by a group of 80 students in an examination. | alculate the mean and | variance. | Marks obtained | No. of students | |-----------------------|-----------------|----------------|-----------------| | Marks obtained | No. of students | 34-38 | 10 | | 10—14 | 2 | 38-42 | 8 | | 14—18 | 14 (1) (20) | 42-46 | = 4 | | 22-26 | 8 | 46—50 | 6 | | 26-30 | 12 | 50—54 | 2 | | 30-34 | 16 | 54—58 | AND BANGE | [Ans. $$\overline{X} = 33.5$$, $\sigma^2 = 110.144$] 9. A charitable organisation decided to give old age pensions to people over 60 years of age. | The scale of pension wer | e lixed as ic | nows: | | | | |--------------------------|---------------|-------|-------|-------|-------| | Age group: | 6065 | 65—70 | 70—75 | 75—80 | 80—85 | | Pension per month (Rs.): | 20 | 25 | 30 | 35 | 40 | The ages of 25 persons who secured the pensions' rights are as given below: 74, 62, 84, 72, 61, 83, 72, 81, 64, 71, 63, 61, 60, 67, 74, 64, 79, 73, 75, 76, 69, 68, 78, 66, 67. Calculate mean and S.D. of monthly pension. [Ans. $\overline{X} = 28.20$, $\sigma = 6.765$] • Combined Standard Deviation Just as it is possible to calculate combined mean of two or more groups, similarly the combined standard deviation of two or more groups can be calculated. The combined standard deviation of two groups is denoted by σ_{12} and is computed as follows: $$\sigma_{12} = \sqrt{\frac{N_1 \sigma_1^2 + N_2 \sigma_2^2 + N_1 d_1^2 + N_2 d_2^2}{N_1 + N_2}}$$ Where, σ_{12} = combined standard deviation; σ_1 = standard deviation of the first gro σ_2 = standard deviation of the second group; $$d_1 = \overline{X}_1 - \overline{X}_{12}$$, $d_2 = \overline{X}_2 - \overline{X}_{12}$ asures of Dispersion The above formula can be extended to calculate the standard deviation of three or more groups. For example, combined S.D. of three groups is given by: $$\sigma_{123} = \sqrt{\frac{N_1 \sigma_1^2 + N_2 \sigma_2^2 + N_2 \sigma_3^2 + N_1 d_1^2 + N_2 d_2^2 + N_3 d_3^2}{N_1 + N_2 + N_3}}$$ Where, $$d_1 = \overline{X}_1 - \overline{X}_{123}$$; $d_2 = \overline{X}_2 - \overline{X}_{123}$; $d_3 = \overline{X}_3 - \overline{X}_{123}$ Example 24. Two samples of size 100 and 150 respectively have means 50 and 60 and standard deviations 5 and 6. Find the mean and standard of the combined sample of size 250. Given, $N_1 = 100$ $\overline{X}_1 = 50$, $\sigma_1 = 5$ Now, $$\overline{X}_{12} = \frac{N_1 - 30}{N_1 + N_2} \cdot \frac{S_1}{N_2} = \frac{100 \times 50 + 150 \times 60}{100 + 150}$$ $$= \frac{100 \times 50 + 150 \times 60}{100 + 150}$$ $$= \frac{5000 + 9000}{250} = \frac{14000}{250} = 56$$ $$d_1 = \overline{X}_1 - \overline{X}_{12} = 50 - 56 = -6$$ $$d_2 = \overline{X}_2 - \overline{X}_{12} = 60 - 56 = +4$$ $$\sigma_{12} = \sqrt{\frac{N_1 \sigma_1^2 + N_2 \sigma_2^2 + N_1 d_1^2 + N_2 d_2^2}{N_1 + N_2}}$$ $$= \sqrt{\frac{100 \times 25 + 150 \times 36 + 100(-6)^2 + 150(4)^2}{100 + 150}}$$ $$= \sqrt{\frac{2500 + 5400 + 3600 + 2400}{250}}$$ $$= \sqrt{\frac{13900}{250}} = 7.46$$ Hence, the combined mean is 56 and standard deviation is 7.46. Example 25. For a group containing 100 observations, the arithmetic mean and standard deviation are 8 and $\sqrt{10.5}$. For 50 observations selected from the 100 observations, the mean and standard deviations are 10 and 2 respectively. Find the arithmetic mean and the standard deviations of the other half. Given: $$N = 100$$, $\overline{X}_{12} = 8$ $\sigma_{12} = \sqrt{10.5}$ $N_1 = 50$, $\overline{X}_1 = 10$ $\sigma_1 = 2$ $N_2 = 100 - N_1 = 100 - 50 = 50$ We know that: $$\overline{X}_{12} = \frac{N_1 \overline{X}_1 + N_2 \overline{X}_2}{N_1 + N_2}$$ $$8 = \frac{50(10) + 50(\overline{X}_2)}{100}$$ $$800 = 500 + 50 \overline{X}_2$$ $$300 = 50 \overline{X}_2$$ $$\overline{X}_2 = \frac{300}{50} = 6$$ $$d_1 = \overline{X}_1 - \overline{X}_{12} = 10 - 8 = 2 \implies d_1^2 = 4$$ $$d_2 = \overline{X}_2 - \overline{X}_{12} = 6 - 8 = -2 \implies d_2^2 = 4$$ $$G_2 = N_1 G_1^2 + N_2 G_2^2 + N_1 d_1^2 + N_2 d_2^2$$ $$\sqrt{10.5} = \sqrt{\frac{50 \times 4 + 50 \sigma_2^2 + 50 \times 4 + 50 \times 4}{100}}$$ $N_1 + N_2$ th sides, $$10.5 = \frac{200 + 50 \,\sigma_2^2 + 200 + 200}{100}$$ $$10.5 \times 100 = 600 + 50\sigma_2^2$$ $$1050 = 600 + 50\sigma_2^2$$ $$50\sigma_2^2 = 450$$ $$\sigma^2 = \frac{450}{100} = 0$$ $$\sigma_2^2 = \frac{450}{50} = 9$$ $\sigma_2 = 3$ Thus, $\overline{X}_2 = 6$, $\sigma_2 = 3$ Example 26. Find the missing info | | Group I | Group II | Group III | Combine | |--------------------|---------|--------------|--------------------------|---------| | Number | 50 | 00 | 90 | 200 | | Standard Deviation | 6 | 79.606 | rost Shane | 7.746 | | Mean | 113 | 1 Long 10 40 | COLUMN VIOLE DESCRIPTION | 116 | $$N = N_1 + N_2 + N_3 = 200$$ $N_1 = 50$, $N_3 = 90$ $N_2 = N - (N_1 + N_3) = 200 - 140 = 60$ sasures of Dispersion $$\overline{X}_{123} = \frac{N_1 \ \overline{X}_1 + N_2 \ \overline{X}_2 + N_3 \ \overline{X}_3}{N_1 + N_2 + N_3}$$ We are given: $\overline{X}_1 = 113$, $\overline{X}_3 = 115$, $\overline{X}_{123} = 116$ Substituting the values, we get $$116 = \frac{(50)(113) + (60)(\overline{X}_2) + (90)(115)}{(60)(\overline{X}_2) + (90)(115)}$$ $$\frac{200}{116 \times 200 = 50 \times 113 + 60\overline{X}_2 + 90 \times 115}$$ $$23200 = 5650 + 60\overline{X}_2 + 10350$$ $$60\overline{X}_2 = 23200 - 5650 - 10350 = 7200$$ $$\overline{X}_2 = \frac{7200}{60} = 120$$ $$d_1 = \overline{X}_1 - \overline{X}_{123} = 113 - 116 = -3 \implies d_1^2 = 9$$ $$d_2 = \overline{X}_2 - \overline{X}_{123} = 120 - 116 = 4 \implies d_2^2 = 16$$ $$d_3 = \overline{X}_3 - \overline{X}_{123} = 115 - 116 = -1 \implies d_3^2 = 1$$ $$\sigma_{123} = \sqrt{\frac{N_1 \sigma_1^2 + N_2 \sigma_2^2 + N_2 \sigma_3^2 + N_1 d_1^2 + N_2 d_2^2 + N_3 d_3^2}{N_1 + N_2 + N_3}}$$ We are given:
$\sigma_{123} = 7.745$, $\sigma_1 = 6$, $\sigma_2 = 7$ Substituting the values, we get $$7.746 = \sqrt{\frac{50(36) + 60(49) + 90\sigma_3^2 + 50(9) + 60(16) + 90(1)}{50 + 60 + 90}}$$ $$7.746 = \sqrt{\frac{1800 + 2940 + 90\sigma_3^2 + 450 + 960 + 90}{200}}$$ $$7.746 = \sqrt{\frac{6,240 + 90\,\sigma_3^2}{200}}$$ $$(7.746)^2 = \frac{6,240 + 90\sigma_3^2}{200}$$ $$12000 = 6240 + 90\sigma_3^2$$ $$90\sigma_3^2 = 12000 - 6240 = 5760$$ $$\sigma_3^2 = \frac{5760}{90} = 64$$ $$\sigma_3 = \sqrt{64} = 8$$ Thus, $$N_2 = 60$$, $\overline{X}_2 = 120$, $\sigma_3 = 8$ Example 27. The mean weight of 150 students is 60 kg. The mean weight is 55 kg and the standard standard deviation of 10 kg. For the girls, the mean weight is 55 kg and the standard deviation is 15 kg. Find the number of boys and girls and the combined standard deviation is 15 kg. Find the number of boys and girls and the combined standard deviation is 15 kg. Find the number of boys and girls and the combined standard deviation is 15 kg. deviation. Given: $$N = N_1 + N_2 = 150$$, $\bar{x}_{12} = 60$ ven: $$N = N_1 + N_2 = 150$$, $x_{12} = 00$ $\overline{X}_1 = 70$, $\sigma_1 = 10$, $\overline{X}_2 = 55$, $\sigma_2 = 15$ $$\overline{\chi}_1 = 70$$, $\sigma_1 = 10$, $\chi_2 = 55$, $\sigma_2 = 10$ We have to determine the number of boys $$N_2 = 150 - N_1$$ Here, N_2 will be the number of girls and N_1 will be the number of boys. Here, $$N_2$$ will be the humber of S We know, $\overline{X}_{12} = \frac{N_1 \overline{X}_1 + N_2 \overline{X}_2}{N_1 + N_2}$ Substituting the values, we get the values, we get $$60 = \frac{N_1(70) + (150 - N_1)(55)}{150}$$ $$60 \times 150 = 70 N_1 + 8250 - 55 N_1$$ $$-9000 = 70 N_1 + 8250 - 55 N_1$$ $$\Rightarrow 15N_1 = 9000 - 8250 = 750$$ $$N_1 = \frac{750}{15} = 50$$ Hence. $$N_2 = 150 - 50 = 100$$ Thus, the number of boys and girls are 50 and 100 respectively. $$\sigma_{12} = \sqrt{\frac{N_1 \sigma_1^2 + N_2 \sigma_2^2 + N_1 d_1^2 + N_2 d_2^2}{N_1 + N_2}}$$ Here, $N_1 = 50$, $\sigma_1 = 10$, $N_2 = 100$, $\sigma_2 = 15$ $$d_1 = \overline{X}_1 - \overline{X}_{12} = 70 - 60 = 10 \implies d_1^2 = 100$$ $$d_2 = \overline{X}_2 - \overline{X}_{12} = 55 - 60 = -5 \implies d_2^2 = 25$$ Substituting the values, we get $$\sigma_{12} = \sqrt{\frac{50(100) + 100(225) + 50(100) + 100(25)}{50 + 100}}$$ $$\sigma_{12} = \sqrt{\frac{5000 + 22500 + 5000 + 2500}{150}} = \sqrt{\frac{35000}{150}} = \sqrt{233.33} = 15.28$$ Thus, combined S.D. is 15.28. EXERCISE 6.5 asures of Dispersion two samples of size 40 and 60 respectively have means 20 and 25 and standard deviations wo samples of one of the combined mean and standard deviation of size 100. [Ans. $\overline{X}_{12} = 23$, $\sigma_{12} = 6.13$] For two groups of observations the following results were available: | Group I | Group II | |-----------------------|---------------------| | $\Sigma(X-5)=8$ | $\Sigma(X-8) = -10$ | | $\Sigma (X-5)^2 = 40$ | $\Sigma(X-8)^2=70$ | | $N_1 = 20$ | N ₂ = 25 | Find mean and standard deviation of both the groups taken together. Hint: See Example 45] [Ans. $\overline{X}_{12} = 6.62$, $\sigma_{12} = 1.864$] The mean height of the students in a class is 152 cm. The mean height of boys is 158 cm The mean neight of the state and olds it is 132 cm. The mean neight of poys is 138 cm with a standard deviation of 5 cm. And the mean height of girls is 148 cm with a standard deviation of 4 cm. Find the percentage of boys in the class and also the S.D of heights of all [Ans. Percentage of boys = 40%, $\sigma_{12} = 6.603$] the students in the class. The first of two subgroups has 100 items with mean 15 and standard deviation 3. If the whole group has 250 items with mean 15.6 and standard deviation $\sqrt{13.44}$, find the mean and standard deviation of the second such group. [Ans. $\overline{X}_2 = 16$, $\sigma_2 = 4$] #### O Correcting Incorrect Values of Mean and Standard Deviation In certain cases, mean and standard deviation are calculated by using one or two incorrect values of the variable. Just as we can correct an incorrect mean, similarly, there is a procedure of correcting an incorrect standard deviation. Steps: The various steps in the calculation of correct S.D. are as follows: (f) Find out incorrected sum of the squared values of the variable, i.e., $\frac{1}{2}$ ind ΣX^2 . This is to be found by using the following formula which involves incorrected \overline{X} and σ . $$\sigma = \sqrt{\frac{\Sigma X^2}{N} - (\overline{X})^2}$$ $$\sigma^2 = \frac{\Sigma X^2}{N} - (\overline{X})^2$$ $$\sigma^2 = \frac{\Sigma X^2}{N} - (\overline{X})^2$$ Incorrected $\Sigma X^2 = N \left[\sigma^2 + (\overline{X})^2 \right]$ (ii) Find corrected ΣX^2 . To do so, we subtract the square of the incorrect item from incorrected ΣX^2 and add the square of correct item to incorrected ΣX^2 . Thus, Corrected ΣX^2 = Incorrected ΣX^2 – (Incorrect value)² + (Correct value)² (iii) Apply the following formula: Corrected $$\sigma = \sqrt{\frac{\text{Corrected }\Sigma X^2}{N} - (\text{Corrected }\overline{X})^2}$$ Example 28. For a group of 100 observations, the mean and standard deviation were found to be 60 and 5 respectively. Later on it was discovered that a correct item 50 was wrongly copied as 30. Find the correct mean and standard deviation. Given: N = 100, $\bar{X} = 60$, $\sigma = 5$ Solution: Calculation of Correct Mean $$\overline{X} = \frac{\Sigma X}{N}$$ $$60 = \frac{\Sigma X}{100}$$ $\Sigma X = 6000$ Corrected $\Sigma X = 6000 + \text{Correct item} - \text{Incorrect item}$ = 6000 + 50 - 30 = 6020Hence, Corrected $\overline{X} = \frac{6020}{100} = 60.20$ Calculation of Correct S.D. $$\sigma = \sqrt{\frac{\Sigma X^2}{N} - (\bar{X})^2}$$ $$5 = \sqrt{\frac{\Sigma X^2}{100} - (60)^2}$$ Squaring both sides, we get $25 = \frac{\sum X^2}{\sum X^2}$ $$25 = \frac{\Sigma X^2}{100} - 3600$$ $$25 + 3600 = \frac{\Sigma X^2}{100}$$ \therefore Corrected $\Sigma X^2 = 100[25 + 3600] = 362500$ Corrected $\Sigma X^2 = 362500 + (Correct item)^2 - (Incorrect item)^2$ = $362500 + (50)^2 - (30)^2$ = 362500 + 2500 - 900 $\therefore \text{ Corrected } \Sigma X^2 = 364100$ Corrected $$\sigma = \sqrt{\frac{364100}{100} - (60.20)^2}$$ = $\sqrt{3641.00 - 3624.04}$ $$=\sqrt{3641.00-3624.04}$$ $$=\sqrt{16.96} = 4.12$$ \therefore Corrected $\overline{X} = 60.20$, Corrected $\sigma = 4.12$ # IMPORTANT TYPICAL EXAMPLE easures of Dispersion Example 29. The mean, standard deviation and range of a symmetrical distribution of weights of a The mean, standard deviation and range of a symmetrical distribution of weights of a group of 20 boys are 40 kgs, 5 kgs, and 6 kgs respectively. Find the mean and standard deviation of the group if the lightest and heaviest boys are excluded. Since, the distribution is given to be symmetrical, the mean will lie at the middle of Therefore, the weight of the heaviest boy = 40 + 3 = 43 kgs and the weight of the lightest boy = 40 - 3 = 37 kgs. Ve are given that $$\overline{X} = 40, \sigma = 5$$ and $N = 20$ the weight of the lightest boy = $$40 - 3 = 37$$ kgs. We are given that $\overline{X} = 40, \sigma = 5$ and $N = 20$ $$\overline{X} = \frac{\Sigma X}{N} \text{ or } 40 = \frac{\Sigma X}{20} \Rightarrow \Sigma X = 800$$ Corrected $\Sigma X = 800 - 43 - 37 = 720$. $$\therefore \quad \text{Corrected } \overline{X} = \frac{720}{18} = 40.$$ Corrected $$\overline{X} = \frac{720}{18} = 40$$. $$\sigma = \sqrt{\frac{\Sigma X^2}{N} - (\overline{X})^2}$$ $$5 = \sqrt{\frac{\Sigma X^2}{20} - (40)^2}$$ Squaring both sides, $$(5)^2 = \frac{\Sigma X^2}{20} - (40)^2$$ $\Sigma X^2 = 20[25 + 1,600] = 20 \times 1625 = 32,500$ Corrected $$\Sigma X^2 = 32,500 - 43^2 - 37^2 = 29,282$$ Corrected $$\sigma = \sqrt{\frac{29,282}{18} - (40)^2} = \sqrt{26.777} = 5.17$$ Corrected $\sigma = 5.17$ # **EXERCISE 6.6** A student obtained the mean and standard deviation of 100 observations as 40 and 5 actively. It was later found that one observation was wrongly copied as 50, the correct re being 40. Find the correct mean and standard deviation. [Ans. $\bar{X} = 39.3$, $\sigma = 4.9$] ng nine days in a festival the highest sale of a shop was on Sunday and Rs 90 more than average sale for other days. If the standard deviation of the sale during the festival is 13.33, find the standard deviation leaving that the highest sale. [Ans. $\sigma = 15.4$] nt: See Example 49] ...(ii) 3. The mean age and standard deviation of a group of 200 persons (grouped in intervals 0 5 5 10, ... etc.) were found to be 40 and 15. Later on it was discovered that the age 43 was 5 10, ... etc.) were found to be 40 and 15. Later on it was discovered that the age 43 was simple content mean and standard deviation. [Ans. X = 39.95, \sigma = 14.97] [Hint: See Example 53] misread as 33. Find the Hint: See Example 53] [Hint: See Example 53] 4. The mean and standard deviation of 20 items is found to be 10 and 2 respectively. At the time of checking, it was found that one item 8 was incorrect. Calculate mean and standard of checking, it was found that one item 8 was incorrect. Calculate mean and standard of checking, it was found that one item 8 was incorrect. Calculate mean and standard of checking, it was found that one item 8 was incorrect. Calculate mean and standard of checking, it was found it is expected by 12. [Ans. (i) $\overline{X} = 10.11$, $\sigma = 1.997$, (ii) $\overline{X} = 10.2$, $\sigma = 1.99$] Determination of Missing Values In certain situations, the values of one or more items may be missing from the given In certain situations, the values of one or more items may be missing from the given information. The method of computing missing values is explained with the help of the following Example 30. The mean of 5 observations is 4.4 and the variance is 8.24. If three of the observations are 4, 6 and 9, find the other two. Solution: Let the mi | X | X ² | |-----------------------------|------------------------------------| | 4 | 16 | | 6 | 36 |
 9 | 81 | | x _l | x ₁ ² | | x ₂ | x22 | | $\Sigma X = x_1 + x_2 + 19$ | $\Sigma X^2 = 133 + x_1^2 + x_2^2$ | Here we are given N = 5, $\overline{X} = 4.4$, $\sigma^2 = 8.24$ $\therefore 133 + x_1^2 + x_2^2 = 5[8.24 + 19.36]$ As $$\overline{X} = \frac{\sum X}{N}$$ $\therefore 4.4 = \frac{x_1 + x_2 + 19}{5}$ or $x_1 + x_2 + 19 = 22$ $\therefore x_1 + x_2 = 3 \Rightarrow x_2 = 3 - x_1$ Now, $(S.D.)^2 = Variance = \frac{\sum X^2}{N} - (\overline{X})^2$ $8.24 = \frac{133 + x_1^2 + x_2^2}{N} + (\frac{x_1}{N})^2$ ⇒ $$133 + x_1^2 + x_2^2 = 138$$ ⇒ $x_1^2 + x_2^2 = 5$ es of Dispersion From (i) and (ii), $$x_1^2 + (3 - x_1)^2 = 5$$ $$\Rightarrow x_1^2 + 9 + x_1^2 - 6x_1 = 5 \Rightarrow 2x_1^2 - 6x_1 + 4 = 0$$ $$\Rightarrow x_1^2 - 3x_1 + 2 = 0 \Rightarrow (x_1 - 1)(x_1 - 2) = 0$$ $$\therefore x_1 = 1, 2$$:. $$x_1 - 1, 2$$ If $x_1 = 1$, $x_2 = 2$ and if $x_1 = 2, x_2 = 1$. Mean and standard deviation of the following continuous series are 135.3 and 9.6 respectively. The distribution after taking step deviations is as follows: | | | | | g step deviations is as follows: | | | | | | | | |------------------|----|----|----|----------------------------------|----|----|---|---|--|--|--| | d: | -4 | -3 | -2 | -1 | 0 | 1 | 2 | , | | | | | f: | 2 | 5 | 8 | 18 | 22 | 13 | 0 | 3 | | | | | many of the last | | | | | | 13 | ٥ | 4 | | | | Determine the actual class intervals. Here, d is identical to d' which is referred as $d' = \frac{X - A}{A}$. In order to ascertain the class intervals, we need two values—size of the class interval (i) and assumed mean (A). From the formula of S.D., we can determine the size of class interval (i) and from the formula of mean, we can determine the assumed mean (A). Calculations for Determining i and A | Calculations for Determining rand A | | | | | | | | | | | |-------------------------------------|--------|-------------------|---------------------|--|--|--|--|--|--|--| | - d | ſ | fd | fd ² | | | | | | | | | -4 | 2 | -8 | 32 | | | | | | | | | -3 | 5 | -15 | 45 | | | | | | | | | -2 | 8 | -16 | 32 | | | | | | | | | 1-1 | 18 | -18 | 18 | | | | | | | | | 0 | 22 | 0 | 0 | | | | | | | | | 1 | 13 | 13 | 13 | | | | | | | | | 2 | 8 | 16 | 32 | | | | | | | | | 3 | 4 | 12 | 36 | | | | | | | | | | N = 80 | $\Sigma fd = -16$ | $\Sigma fd^2 = 208$ | | | | | | | | $$\sigma = \sqrt{\frac{\sum jd^2}{N}} - \left(\frac{\sum jd}{N}\right)^2 \times i$$ $$9.6 = \sqrt{\frac{208}{80} - \left(\frac{-16}{80}\right)^2} \times i$$ $$9.6 = \sqrt{2.6 - 0.04} \times i$$ $$9.6 = \sqrt{2.56} \times i$$ $$9.6 = 1.6 \times i$$ $$i = \frac{9.6}{1.6} = 6$$ $$\overline{X} = A + \frac{\sum fd}{N} \times \overline{t}$$ $$135.3 = A + \frac{(-16)}{80} \times 6 = A - 1.2$$ $$d = \frac{X - A}{A} \Rightarrow di = X - A$$ | 100 | X = A + id | | | | Here, $A = 136.5$, $i = 6$. | | | | | | |-----|------------------|-----------------------------|-------|-------|-------------------------------|-------|-------|-------|-------|--| | Ē | d: | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | | | F | M.V.(X) = A + id | 136.5 + (6) (-4)
= 112.5 | 118.5 | 124.5 | 130.3 | 136.5 | 142.5 | 148.5 | 154.5 | | 112.5 $$\pm \frac{6}{2}$$, 118.5 $\pm \frac{6}{2}$, 124.5 $\pm \frac{6}{2}$, 130.5 $\pm \frac{6}{2}$, 136.5 $\pm \frac{6}{3}$, 142.5 $\pm \frac{6}{3}$, 148.5 $\pm \frac{6}{3}$, 154.5 $\pm \frac{6}{2}$ ie., 109.5-115.5, 115.5-121.5, 121.5-127.5, 127.5-133.5, 133.5-139.5, 139.5-145.5, 145.5-151.5, 151.5-157.5 | Class Intervals | f | Class Intervals | f | |-----------------|----|-----------------|----| | 109.5—115.5 | 2 | 133.5—139.5 | 22 | | 115.5—121.5 | 5 | 139.5—145.5 | 13 | | 121.5—127.5 | 8 | 145.5—151.5 | 13 | | 127.5—133.5 | 10 | | 8 | | | 18 | 151.5—157.5 | 4 | #### **EXERCISE 6.7** - 1. The mean of 5 observations is 4.4 and variance is 8.24. If three of five observations are 1, 2, 6, find the other two. - Mean and S.D. of the following contin [Ans. If $x_1 = 9$, $x_2 = 4$ and if $x_1 = 4$, $x_2 = 9$] series are 31 and 15.9. The distribution after | d: | -3 | -2 | | | La | | |-----------|--------------|---------------|----|-------|---|---| | f: | 10 | 15 | 25 | 0 1 | 2 | 3 | | Determine | the actual c | lass interval | S. | 25 10 | 10 | 5 | [Ans. 0—10, 10—20, 20—30, 30—40, 40—50, 50—60, 60—70] #### wathematical Properties of Standard Deviation The important mathematical properties of standard deviation are as follows: (1) The standard deviation of first *n* natural numbers can be found from the following formula: $$\sigma = \sqrt{\frac{1}{12} \cdot (n^2 - 1)}$$ For example, the standard deviation of the first 5 natural numbers is given as: $\sigma = \sqrt{\frac{1}{12} \cdot (5^2 - 1)} = \sqrt{\frac{24}{12}} = \sqrt{2} = 1.414$ $$\sigma = \sqrt{\frac{1}{12} \cdot (5^2 - 1)} = \sqrt{\frac{24}{12}} = \sqrt{2} = 1.414$$ (2) The combined S.D. of two or more groups can be found by using the following formula: $$\sigma_{12} = \sqrt{\frac{N_1\sigma_1^2 + N_2\sigma_2^2 + N_1d_1^2 + N_2d_2^2}{N_1 + N_2}} \quad \text{where, } d_1 = \overline{X}_1 - \overline{X}_{12}, d_2 = \overline{X}_2 - \overline{X}_{12}$$ - (3) The sum of the squares of the deviations of the items taken from arithmetic mean is least. That is why standard deviation is computed from the A.M. - (4) If a constant amount 'a' is added or subtracted from each item of a series, then S.D. remains unaffected, i.e., S.D. is independent of the change of origin. - (5) If each item of a series is multiplied or divided by a constant 'a', then S.D. is affected by the same amount, i.e., S.D. is not independent of the change of scale. - (6) The standard deviation has the following relation to the arithmetic mean in a symmetrical distribution: $\overline{X} \pm 1\sigma$ includes 68.27% of the items. $\bar{X} \pm 2\sigma$ includes 95.45% of the items. $\overline{X} \pm 3\sigma$ includes 99.73% of the items. The following figure illustrate the relationship: The standard deviation has the following relation to quartile deviation (Q.D.) and mean deviation (M.D.) in a symmetrical (or normal) distribution: $$Q.D. = \frac{2}{3}\sigma$$, $M.D. = \frac{4}{5}\sigma$, $Q.D: M.D: S.D:: 10: 12: 15$ IMPORTANT TYPICAL EXAMPLES Example 32. The following table gives the distribution of marks obtained by 90 students in an 0-10 10-20 20-30 30-40 40-50 examination: 20 1 35 Marks: No. of Students: 4 10 Calculate (i) Mean, (ii) Standard deviation and (iii) Percentage of students lying within the range (a) $\bar{X} \pm 1\sigma$ and (b) $\bar{X} \pm 2\sigma$. #### Solution: | Classes | . f | M.V.
(m) | d=m-A | $d' = \frac{d}{i}$ | ban fd | fd'2 | |---------|------|-------------|-------|--------------------|---------------------|---------------------| | 0—10 | 4 | 5 | -30 | -3 | -12) | 36 | | 10-20 | 10 | 15 | -20 | -2 | -20 | 40 | | 20-30 | 20 | 25 | -10 | To the loups | od 1000 a 2010 € | 20 | | 30—40 | - 35 | 35 = A | 0 | onstano devi | it is Appl at | 0 | | 40—50 | 15 | 45 | +10 | = +Inow | 1 has 15100 1 | 15 | | 50-60 | - 6 | 55 | +20 | +2 5010 | 12 | 24 | | No. | N=90 | | 1000 | a sense | $\Sigma f d' = -25$ | $\Sigma f d'^2 = 1$ | (i) $$\overline{X} = A + \frac{\sum f d'}{N} \times i = 35 + \frac{(-25)}{90} \times 10 = 32.22$$ (ii) $\sigma = \sqrt{\frac{\sum f d'^2}{N} - \left(\frac{\sum f d'}{N}\right)^2} \times i = \sqrt{\frac{135}{90} - \left(\frac{-25}{90}\right)^2} \times 10 = 11.92$ (iii) $\overline{X} \pm 1\sigma = 32.22 \pm 11.92$ The limit of the range $\overline{X}\pm\sigma$ are 20.3 and 44.14. Under the assumption that observations in a class are uniformly distributed, the number of students lying within $$\frac{20}{10} \times (30 - 20.3) + 35 + \frac{15}{10} (44.14 - 40) = 60.61$$ $$\therefore \text{ Percentage of students} = \frac{60.61}{90} \times 100 = 67.34\%$$ $\overline{X} \pm 2\sigma = 32.22 \pm 2 \times 11.92$ Similarly, limits of the range $\overline{X}\pm 2\sigma$ are 8.38 and 56.06 and the number of students lying within these limits are: ying within these limits are: $$\frac{4}{10} \times (10 - 8.38) + 10 + 20 + 35 + 15 + \frac{6}{10} \times (56.06 - 50) = 84.29$$ \therefore Percentage of students = $\frac{84.29}{90} \times 100 = 93.66\%$ Measures of Dispersion 253 You are the incharge of the rationing department of a state affected by food shortage. The following information is received from your local in the following information is received from the following information in the following information is received from the following information in follow | Area | Mean Calor | ies Standard Deviation of Calories | |------|------------|------------------------------------| | X | 2,500 | 500 | | Y | 2,200 | 300 | The estimated requirement of an adult is taken at 3,000 calories daily and absolute minimum at 1,250. Comment
on the reported figures and determine which area needs more urgent action. We shall compute the 3-sigma limits $\overline{X}\pm3\sigma$ for each area, which will include approximately 99.73% of the population observation [assuming that the distribution is approximately normal]. | The state of s | 3 - σ Limits = $\overline{X} \pm 3\sigma$ | |--|--| | Area X | $2500 \pm 3 \times 500 = 2500 \pm 1500 = (1000, 4000)$ | | Area Y | $2200 \pm 3 \times 300 = 2200 \pm 900 = (1300, 3100)$ | The absolute daily minimum calories requirement for a person is 1250. From the above figures we observe that almost all the persons in the area Y are getting more than the minimum calories requirement as the lower limit in this area is 1300. However, since in the area X, the lower 3-\sigma limit is 1000 which is less than 1250, quite a number of people in area X are not getting the minimum requirement of 1250 calories. Hence, as the incharge of the rationing department, it becomes my duty to take urgent action for the people of area X. #### Merits and Demerits of Standard Deviation Merits - (i) It is a rigidly defined. - (ii) It is based on all the observations. - (iii) It is capable of being treated mathematically. For example, if standard deviations of a number of groups are known, their combined standard deviation can be computed. - (iv) It is not very much affected by the fluctuations of sampling and, therefore, is widely used in sampling theory and test of significance. - (1) As compared to the quartile deviation and range, etc., it is difficult to understand and difficult to calculate. - (ii) It gives more importance to extreme observations. Since, it depends upon the units of measurement of the observations, it cannot be used to compare the dispersions of the distributions expressed in different units. #### **EXERCISE 6.8** 1. Calculate the S.D. of the first 7 natural numbers. [Ans. $\sigma = 2$] 1. Calculate the S.D. of the first 7 natural numeros. 2. If mean and standard deviation of 75 observations is 40 and 8 respectively, find the new 15 mean and standard deviation of 75 observations. - mean and standard deviation if: (i) Each observation is multiplied by 5. - (ii) 7 is added to each observation. - [Hint: See Example 50] [Ans. (i) New mean = 200, New S.D. = 40 (ii) New mean = 47, New S.D. = 8] (ii) New incair = 71, New S.D. = 8] 3. 5 observations of a series are 4, 6, 8, 12 and 15. Their mean and standard deviation are 9 and 4 respectively. Make such alternations in the terms of the series that new standard deviation is 20 and mean is 50. [Hint: See Example 51] oth of life of 300 persons: | The following | | diam'r. | | | | | | | | |-----------------|-----|---------|-------|-------|-------|-------|-------------|-------|-------| | Age (X): | 0_9 | 10-19 | 20-29 | 30-39 | 40-49 | 50—59 | 60—69 | 70—79 | 80—89 | | | - | 15 | - 33 | 39 | 45 | 27 | 18 | 10 | 7 | | No. of persons: | 0 | 15 | 33 | | | - 13 | 1-140-1-120 | 100 | | Calculate (i) Mean (ii) Standard deviation (iii) The percentage of persons whose length of [Ans. $\overline{X} = 41.85, \sigma = 18.5, 95\%$] life falls within $\overline{X} \pm 2\sigma$. 5. From the following figures determine the percentage of cases which lie outside the range: $\overline{X}\pm\sigma$, $\overline{X}\pm\sigma$, $\overline{X}\pm\sigma$, $\overline{X}\pm\sigma$. 115, 117, 121, 125, 116, 120, 118, 117, 119, 116, 122, 124, 123, 118, 120, 118, 126, 127, 122, 123. [Ans. $\overline{X} = 120.35$, $\sigma = 3.45$, 3.5%, 0%, 0%] A collar manufacturer is considering the production of a new style of collar to attract young men. The following statistics of neck circumference are available based on measurements of a typical group of college students. Compute the SD and use the criterion $(\overline{X}\pm3\sigma)$, to determine the largest and smallest sizes of collars, he should make in order to meet the needs of practically all his customers, bearing in mind, that collars are worn, on average $\frac{3}{4}$ inch larger than neck size. | Mid-points: | 12.5 | 13.0 | 13.5 | 14.0 | 14.5 | 15.0 | 10.000 | 1.0 | 16.5 | |----------------|---------|------|-------|-----------------------|---------|---------|--------|----------|-----------| | f: | 4 | 19 | 30 | 63 | | 15.0 | 13.3 | 16.0 | 10.5 | | | | | 30 | 30 63 | 66 | 29 | 18 | 1 | 1 | | [Hints: See Ex | ample 5 | 2] | [Ans. | $\overline{X} = 14.2$ | 32, σ=0 | .719, X | 30+3= | 12 825to | 0 17.139] | ## (5) COEFFICIENT OF VARIATION Coefficient of variation is an important relative measure of dispersion. It was developed by Karl Pearson and is widely used in comparing the variability of two or more series. Coefficient of variation is denoted by C.V. and is given by: Coefficient of Variation (C.V.) = $$\frac{\sigma}{\overline{X}} \times 100$$ easures of Dispersion Steps for Calculation (i) First of all calculate \overline{X} . (ii) Put the value of \overline{X} and σ in the above formula. # Uses of Coefficient of Variation Coefficient of variation is used to compare the variability, homogenity, stability, consistency and uniformity of two or more series. The series having less value of the coefficient of variation is considered more consistent in comparison to a series having a higher value of the coefficient of variation. Frample 34. From the prices of shares of X and Y given below, state which share is more stable in | V. | 41 | 111 | 43 | 10 | m who | | | | | | |------|----|-----|------|----|-------|----|----|------|----|----| | X: | 41 | 44 | 43 | 48 | 45 | 46 | 49 | 50 | 42 | 40 | | V. | 91 | 93 | 96 | 92 | 00 | 07 | - | - 50 | 42 | 40 | | 1,64 | 7. | ,,, | , ,0 | 92 | 90 | 97 | 99 | 94 | 98 | 95 | For finding out which share is more stable in value, we have to compare the coefficient of variation. 255 Calculation of C V | A Charles | | Calculatio | on of C.V. | | | |---------------------------|--------------------|---------------------|------------------|------------------|--------------------| | X | A = 45 dx | dx² | Y | A = 95 dy | dy^2 | | 41 | -4 | 16 | 91 | -4 | 16 | | 44 | -1 | 1 | 93 | -2 | 4 | | 43 | -2 | 4 | 96 | 1 | 1 | | 48 | 3 | 9 | 92 | -3 | 9 | | 45 = A | 0 | - 0 | 90 | -5 | 25 | | 46 | . 1 | 1 | 97 | 2 | 4 | | 49 | 4 | 16 | 99 | 4 | 16 | | 50 | 5 | 25 | 94 | -1 | 1 | | 42 | -3 | 9 | 98 | 3 | 9 | | 40 | -5 | 25 | 95 = A | 0 | 0 | | $N = 10$ $\Sigma X = 448$ | $\Sigma dx^2 = -2$ | $\Sigma dx^2 = 106$ | $\Sigma Y = 945$ | $\Sigma dy = -5$ | $\Sigma dy^2 = 85$ | Share X: $$\overline{X} = \frac{\Sigma X}{N} = \frac{448}{10} = 44.8$$ Share Y: $Y = \frac{\Sigma Y}{N} = \frac{945}{10} = 94.5$ $$\sigma_x = \sqrt{\frac{\Sigma dx^2}{N} - \left(\frac{\Sigma dx}{N}\right)^2}$$ $$= \sqrt{\frac{106}{10} - \left(\frac{-2}{10}\right)^2} = 3.25$$ $$\therefore C.V_{\cdot X} = \frac{3.25}{44.8} \times 100 = 7.25\%$$ Share Y: $Y = \frac{\Sigma Y}{N} = \frac{945}{10} = 94.5$ $$\sigma_y = \sqrt{\frac{\Sigma dy^2}{N} - \left(\frac{\Sigma dy}{N}\right)^2}$$ $$= \sqrt{\frac{85}{10} - \left(\frac{-5}{10}\right)^2} = 2.87$$ $$\therefore C.V_{\cdot X} = \frac{3.25}{44.8} \times 100 = 7.25\%$$ $$\therefore C.V_{\cdot Y} = \frac{2.87}{94.5} \times 100 = 3.03\%$$ Since, the coefficient of variation is less for share Y, hence share Y is more stable in Price. of two batsmen A and B in ten innings during a certain match are; Example | 35. | The sco | res of t | wo bats | menA | T (2 | 71 | 39 | 10 | 60 | 96 | 14 | |-----|---------|----------|---------|------|------|-----|-----|------|-------|----|------| | | A: | 32 | 28 | 47 | 53 | 67 | 90 | 10 | 62 | 40 | 80 | | | B: | 19 | 31 | 48 | 33 | J., | . 2 | · h. | toman | | W4/3 | Find out who is a better scorer and who is more consistent batsman. Find out who is a detail sold a state of the two batsman is a better scorer, we have to compare the For finding out which of the two datastian is a detect sector, we have to arithmetic
means and for finding out which batsman is more consistent, we have to Solution: compare the coefficient of variation. Calculation of \overline{X} and C.V. | X | $\overline{X} = 46$ | Calculation of | Y IN | $ \overline{Y} = 50 y = Y - \overline{Y} $ | y ² | |---------------------------|------------------------|---------------------|--|---|---------------------| | | $x = X - \overline{X}$ | a care profe | 19 | -31 | 961 | | 32 | -14 | 196 | 145 | -19 | 361 | | 28 | - 18 | 324 | 31 | -13 | 4 | | 47 | +1 | 1 | 48 | | | | 63 | + 17 | 289 | 53 | +3 | 9 | | | + 25 | 625 | 67 | +17 | 289 | | - 71 | -7 | 49 | 90 | + 40 | 1600 | | 39 | | 1296 | 10 | -40 | 1600 | | 10 | -36 | 101 - 101 | 62 | + 12 | 144 | | 60 | + 14 | 196 | the state of s | -10 | 100 | | 96 | + 50 | 2500 | 40 | and the second second | 900 | | 14 | -32 | 1024 | 80 | +30 | | | $N = 10$ $\Sigma X = 460$ | $\Sigma x = 0$ | $\Sigma x^2 = 6500$ | $\Sigma Y = 500$ | $\Sigma y = 0$ | $\Sigma y^2 = 5968$ | Batsman A: $$\overline{X} = \frac{\Sigma X}{N} = \frac{460}{10} = 46$$, Batsman B: $\overline{Y} = \frac{\Sigma Y}{N} = \frac{500}{10} = 50$ Since the arithmetic mean is higher for batsman B, hence batsman B is a better scorer. $$\sigma = \sqrt{\frac{\Sigma x^2}{N}} = \sqrt{\frac{5500}{10}} = 25.495 \qquad \sigma = \sqrt{\frac{\Sigma y^2}{N}} = \sqrt{\frac{5968}{10}} = 24.43$$ $$\therefore C.V. = \frac{\sigma}{X} = \frac{25.49}{46} \times 100 = 55.4\% \qquad \therefore C.V. = \frac{\sigma}{X} = \frac{24.43}{50} \times 100 = 48.86\%$$ Since the coefficient varietion is less for batsman B, hence betsman B is more Since, the coefficient variation is less for batsman B, hence batsman B is more Example 36. Goals scored by two teams A and B in a football session were | No. of goals scored: | 0 | 100 | 2 | 3 | |----------------------|----|-----|------|------| | No. of matches by A: | 27 | 9 | 8 | 5 | | No. of matches by B: | 17 | 9 | 1116 | 1157 | By calculating the coefficient of variation in each case, find which team may be considered more consistent considered more consistent. For team A: f (No. of matches) fd fd^2 108 2 = A 0 5 16 $\Sigma fd = -50$ $\Sigma fd^2=138$ 257 $$\overline{X} = A + \frac{\Sigma f d}{N} = 2 - \frac{50}{53} = 2 - 0.94 = 1.06$$ $$\sigma = \sqrt{\frac{\Sigma f d^2}{N} - \left(\frac{\Sigma f d}{N}\right)^2} = \sqrt{\frac{138}{53} - \left(\frac{-50}{53}\right)^2}$$ $$= \sqrt{2.603 - 0.889} = \sqrt{1.74} = 1.309$$ C.V. for Team A = $$\frac{\sigma}{\overline{X}} \times 100 = \frac{1.309}{1.06} \times 100 = 123.49\%$$ | (goals) | f
(No. of matches) | A=2 $d=X-A$ | fd | $ fd^2$ | |------------------|-----------------------|-------------|-------------------|---------------------| | 0. | 17 | -2 | -34 | 68 | | North Per al con | 9 | -1 | -9 | 9 | | 2 | 6 | . 0 | 0 | 0 | | 3 | 5 | +1 | 5 | 5 | | N - 4 01 | 021 3 | +2 | 6 | 12 | | 1 00. | N=40 | | $\Sigma fd = -32$ | $\Sigma f d^2 = 94$ | $$\overline{X} = A + \frac{\Sigma f dx}{N} = 2 - \frac{32}{40} = 2 - 0.8 = 1.2$$ $$\sigma = \sqrt{\frac{\Sigma f d^2}{N} - \left(\frac{\Sigma f d}{N}\right)^2} = \sqrt{\frac{94}{40} - \left(\frac{-32}{40}\right)^2}$$ $$= \sqrt{2.35 - 0.64} = \sqrt{1.14} = 1.307$$ C.V. for Team B = $$\frac{\sigma}{\overline{X}} \times 100 = \frac{1.307}{1.2} \times 100 = 108.9\%$$ Since, the coefficient of variation of Team B is less than team A, so team B is more consistent. ally, the value of C.V. does not exceed 100% but in Z-shaped distribution, the value exceeds 100% | u are given below the da | No. of | workers | |--------------------------|-----------|-----------| | Daily wages | Factory X | Factory Y | | | 15 | 25 | | 12—13 | 30 | 40 000 | | 13—14 | 44 | 60 | | 14—15 | 60 | 35 | | 15—16 | 30 | 12 | | 16—17 | 14 | 15 | | 17—18 | 7 | | | 18—19 | 163 | 1. | Using appropriate measures, answer the following: (i) Which factory pays higher average wages? (ii) Which factory has a more consistent wage structure? Solution: For finding out which factory pays higher wages, we have to compute the arithmetic means and for finding out which factory has a more consistent wage structure, we have to compare the coefficient of variation: #### Calculation of \overline{X} and C.V. | Wages | M.V. | d=m-A | | Factory | x | -6 | Factory Y | <i>t</i> : | |-------|------|-------|---------|-------------------|----------------------|---------|--------------------|----------------------| | | (m) | | f | fd | fd ² | f | fd | fd^2 | | 12—13 | 12.5 | -3 | 15 | -45 | 135 | 25 | - 75 | 225 | | 13—14 | 13.5 | -2 | 30 | -60 | 120 | 40 | -80 | 160 | | 14—15 | 14.5 | -1 | 44 | -44 | 44 | 60 | -60 | 60 | | 15—16 | 15.5 | 0 | 60 | 0 | 0 | 35 | 0 | 0 | | 16—17 | 16.5 | +1 | 30 | +30 | 30 | 12 | + 12 | 12 | | 17—18 | 17.5 | +2 | 14 | +28 | 56 | 15 | + 30 | 60 | | 18—19 | 18.5 | + 3 | 7 | +21 | 61 | 5 | + 15 | 45 | | | | * | N = 200 | $\Sigma fd = -70$ | $\Sigma f d^2 = 448$ | N = 192 | $\Sigma fd = -158$ | $\Sigma f d^2 = 562$ | $$\overline{X} = A + \frac{\Sigma f d}{15.5} = 15.5 - \frac{70}{15.15} = 15.15$$ $$\overline{Y} = A + \frac{\Sigma fd}{N} = 15.5 - \frac{158}{192} = 14.67$$ (i) Factory X Factory Y $\overline{X} = A + \frac{\Sigma fd}{N} = 15.5 - \frac{70}{200} = 15.15$ $\overline{Y} = A + \frac{\Sigma fd}{N} = 15.5 - \frac{158}{192} = 14.67$ Since, the arithmetic mean is higher for factory X, hence factory X pays higher average wage. Measures of Dispersion (ii) Factory X $$\sigma = \sqrt{\frac{\Sigma f d^2}{N} - \left(\frac{\Sigma f d}{N}\right)^2}$$ $$= \sqrt{\frac{448}{200} - \left(\frac{-70}{200}\right)^2}$$ $$= \sqrt{2.24 - 0.1225} = 1.445$$ $$C.V._{X} = \frac{\sigma}{X} \times 100$$ $$= \frac{1.455}{15.15} \times 100 = 9.60\%$$ $$\sigma = \frac{\sum f d^2}{\sum f d^2} \left(\sum f d^2\right)$$ $$=\sqrt{\frac{562}{192} - \left(\frac{-158}{192}\right)^2}$$ $$\sigma = \sqrt{2.93 - 0.677} = 1.50$$ $$C.V._{\gamma} = \frac{\sigma}{\overline{Y}} \times$$ Since, the coefficient of variation is less for factory X, hence factory X has more consistent wage structure. Example 38. An analysis of the monthly wages paid to workers in firm A and B belonging to the same industry gives the following results: | any 21. | Firm A | Firm B | |---|--------|--------| | No. of workers: | 500 | 600 | | Average monthly wage (Rs.): | 186 | 175 | | Variance of distribution of wages (Rs.) | 81 | 100 | - (i) Which firm pays a larger wage bill? - (ii) In which firm is there greater variability in individual wages? - (iii) Find the combined mean and standard deviation of wages of the two firms taken together. - (i) Total wage bill of firm A $$\overline{X} = \frac{\Sigma X}{N}$$ $\overline{X} = \frac{\Sigma X}{N}$ $\overrightarrow{X} = \frac{186 \times 500}{N} = 186 \times 500 = Rs. 93,000.$ Total wage bill of firm B $$\overline{Y} = \frac{\Sigma Y}{N}$$ $\overline{Y} = \frac{\Sigma Y}{N}$ Total wage (ΣY) bill of firm B = $\overline{Y} \times N = 175 \times 600 = \text{Rs. } 1,05,000.$ Hence, firm B pays larger wage bill. 259 (ii) To determine the firm in which there is greater variability in individual wages, we shall compare the coefficient of variation. Firm B $$C.V = \frac{\sigma}{X} \times 100$$ $C.V = \frac{\sigma}{X} \times 100$ Given: $\sigma^2 = 81 \Rightarrow \sigma = \sqrt{81} = 9$, $\overline{X} = 186$ Given: $\sigma^2 = 100 \Rightarrow \sigma = 10$, $\overline{Y} = 175$ $\therefore C.V._A = \frac{9}{186} \times 100 = 4.84\%$ $\therefore C.V._B = \frac{10}{175} \times 100 = 5.71\%$ Since, the coefficient of variation is greater in case of firm $B,\,$ there is greater variability in individual wages of firm B. (iii) Combined Mean and Standard Deviation. ed Mean and Standard Deviation. $$\overline{X}_{12} = \frac{N_1 \ \overline{X}_1 + N_2 \ \overline{X}_2}{N_1 + N_2} = \frac{500 \times 186 + 600 \times 175}{500 + 600}$$ $$\overline{X}_{12} = \frac{93,000 + 1,05,000}{1,100} = \frac{1,98,000}{1,100} = \text{Rs. }
180$$ $$d_1 = \overline{X}_1 - \overline{X}_{12} = 186 - 180 = 6 \implies d_1^2 = 36$$ $$d_2 = \overline{X}_2 - \overline{X}_{12} = 175 - 180 = -5 \implies d_2^2 = 25$$ $$\sigma_{12} = \sqrt{\frac{N_1 \ \sigma_1^2 + N_2 \ \sigma_2^2 + N_1 \ d_1^2 + N_2 \ d_2^2}{N_1 + N_2}}$$ $$= \sqrt{\frac{500 \times 81 + 600 \times 100 + 500 \times 36 + 600 \times 25}{500 + 600}}$$ $$= \sqrt{\frac{40500 + 600000 + 18000 + 15000}{1100}}$$ $$= \sqrt{\frac{133500}{1100}} = \sqrt{121.36} = 11.01$$ Example 39. Given: sum of squares of items = 2430, \overline{X} = 7, N = 12, find the coefficient of variation. Solution: Given: $\Sigma X^2 = 2430$, $\overline{X} = 7$, N = 12 $$\sigma = \sqrt{\frac{\Sigma X^2}{N} - (\overline{X})^2}$$ $$\sigma = \sqrt{\frac{2430}{12} - (7)^2} = \sqrt{153.5} = 12.38$$ $$C.V. = \frac{\sigma}{\overline{X}} \times 100$$ $$= \frac{12.38}{7} \times 100 = 176.85\%$$ X and Y scored following runs in different innings they played in a test series. of the two is a better scorer? Who is more consistent | V. II | 12 | 115 | - 6 | 73 | 7 | 19 | 119 | | | | |-------|----|-----|-----|----|---|----|-----|----|----|----| | A. | 47 | 12 | 76 | 42 | 4 | 51 | 119 | 36 | 84 | 29 | | Y: | 41 | | | | - | 31 | 37 | 48 | 13 | 0 | [Ans. $\overline{X} = 50$, $\sigma_X = 41.83$, $C.V._X = 83.66$; $\overline{Y} = 33$, $\sigma_Y = 23.37$, $C.V_Y = 70.81$ Batsman X is a better scorer; Batsman Y is a consistent batsman] the following is the record number of bricks laid each day for 10 days by two layers A and The following is the coefficient in each case and discuss the relative consistency of the two | A: | 700 | 675 | 725 | 625 | 650 | 700 | 650 | 700 | 600 | 650 | |------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | B: " | 550 | 600 | 575 | 550 | 650 | 600 | 550 | 525 | 625 | _ | ch of the values in respect of worker A is decreased by 10 and each of the values for worker B is increased by 50, how will it affect the results obtained earlier? [Hint: See Example 43] [Ans. $\overline{X}_A = 667.5, \sigma_A = 37.15, \text{C.V.}_A = 5.56\%$ $\overline{X}_B = 582.5, \sigma_B = 37.15, \text{C.V.}_B = 6.38\%$] 261 ored by two teams A and B in a footfall session were as follows: | And the second s | | | | | | | | | |--|----|----|---|---|---|----|--|--| | No. of goals scored: | 0 | 1 | 2 | 3 | 4 | 5 | | | | No. of matches by A: | 15 | 10 | 7 | 5 | 3 | .2 | | | | No. of matches by B: | 20 | 10 | 5 | 4 | 2 | 1 | | | d out which team is more consistent. [Ans. C.V. for A = 102.06%, C.V. for B = 124.6%, Team A is more consistent] A factory produces two types of electric bulbs A and B. In an experiment relating to their he following results were obtained: | Length of life
(in hrs.) | No. of lamps (A) | No. of lamps
(B) | |-----------------------------|------------------|---------------------| | 500—700 | 5 | 4 | | 700—900 | 11 | 30 | | 900—1100 | 26 | 12 | | 1100—1300 | 10 | 8 | | 1300—1500 | 8 | 6 | pe of electric lamp do you prefer? Give reasons. [Ans. C.V.(A) = 21.6, C.V.(B) = 23.4 As C.V. of A is less, so lamp A is preferred] and B belonging to the same industry, the following data is given: 5. | two firms A and B belonging to a | Firm A . | Firm B | |--|----------|--------| | The state of s | 586 | 648 | | o. of wage earners: | 52.5 | 47.5 | | verage monthly wage (Rs.): | 10 | 11 | | tandard deviation: | | | - (i) Which firm A or B pays larger amount as weekly wages? - (ii) Which firm shows greater variability in the wage rate? - (iii) Find the mean and S.D. of all workers in the two factories taken together. orkers in the two factories taken together. [Ans. (i) Firm B, (ii) In firm B, there is greater variability, (iii) $\overline{X}_{12} = 49.87$, $\sigma_{12} = 10.83$] - 6. From the following data, find out Range, Quartile Deviation, Mean Deviation and Coefficient of Varieties when mean of the distribution in 27 4 | | | on when me | | | | 1 | 1070 | | |---|----|------------|-------|-------|-------|------------|-------|-------| | 1 | r. | 0—10 | 10-20 | 20-30 | 30—40 | 40—50 | 50—60 | 60—70 | | 7 | Α. | 0 10 | 10 11 | | | | | | | | f. | 2 | 7 | 9 | 11 | La milanda | 8 | - 6 | [Ans. Missing Frequency = 7, R = 70, $Q_1 = 23.809$, $Q_3 = 59.88$, Q.D. = 13.995, S.D. = 17.04, C.V. = 45.56%] 7. If 20 is substracted from every observation in a data set, then the coefficient of variation of If 20 is substantial under every observation of the same data, then the resulting set is 20%. If 40 is added to every observation of the same data, then the coefficient of variation of the resulting set of data is 10%. Find the \bar{X} and σ of the original set of data. [Hint: See Similar Example 57, $$20 = \frac{\sigma \times 100}{\overline{X} - 20}$$, $10 = \frac{\sigma \times 100}{\overline{X} + 40}$] [Ans. $\overline{X} = 80$, $\sigma = 12$] 8. A fund manager is considering investment in the equity shares of one of two companies. The criterion for selecting the company for investment is consistency of return on net worth. The following data have been collected: | Financial
Year | Return on Net worth (%) | | | | | | | |-------------------|------------------------------|-------------------------------|--|--|--|--|--| | | Modern Industries Ltd. (MIL) | Pioneer Industries Ltd. (PIL) | | | | | | | 2001—2002 | 19 | 20 Level net | | | | | | | 2000—2001 | 20 | 24007-002 | | | | | | | 1999—2000 | 16 | 1600e por | | | | | | | 1998—1999 | 13 | 15 mil and | | | | | | | 1997—1998 | 12 | 10/2017 | | | | | | You are required to identify the company in which the fund manager should invest. [Hint: See Example 58] [Ans. For MIL : $\overline{X} = 16\%$, $\sigma = 3.16\%$, C.V. = 19.76%For PIL: $\overline{X} = 17\%$, $\sigma = 4.73\%$, C.V. = 27.83% MIL is more consistent and investment be made in MIL The coefficient of variation of wages of male workers and female workers are 55 per cent The coefficient
of values of the standard deviations are 22.0 and 15.4 respectively. 70 per cent respectively. 10 per cent respectively, and 15.4 respectively. 11 late the overall average wages of all workers given that 80 per cent of the workers are male. [Ans. $\overline{X}_{12} = 36.4$] The number of employees, wages per employee and variance of the wage per employee for [Ans. $\overline{X}_{12} = 36.4$] | | Factory A | Fact | |---|-----------|------------| | Number of employees | 50 | - metory B | | Average wage per employee per week (Rs.) | 120 | 100 | | Variance of the wages per employee per week (Rs.) | 120 | 85 | | e i proper meck (RS.) | 9 | 16 | - (j) In which factory is there greater variation in the distribution of wages per employee? - (ii) Suppose in factory B, the wages of an employee were wrongly noted as Rs. 120 instead of Rs. 100. What would be the correct variance for factory B? [Ans. (i) C.V._A = 2.5; C.V._B = 4.71 B is more variable (ii) $\sigma^2 = 5.96$] #### (6) LORENZ CURVE es of Dispersion f is a graphical method of studying dispersion. Lorenz curve was given by famous statistician Max O Lorenz. Lorenz curve has great utility in the study of degree of inequality in the distribution me and wealth between the countries. It is also useful for comparing the distribution of wages, profits, etc., over different business groups. Lorenz curve is a cumulative percentage curve ch the percentage of frequency (persons or workers) is combined with the percentage of other items such as income, profits, wages, etc. ## O Construction of a Lorenz Curve Rollowing steps are used while drawing a Lorenz Curve: - (1) The size of items (variable values) and frequencies are both cumulated. Taking grand total for each as 100, percentages are obtained for these various cumulative values - (f) Cumulative frequencies are plotted on X-axis while cumulative items are plotted on the - (ii) On both the axis, we start from 0 to 100 and both X and Y axis take the values from 0 to 100. - (b) Draw a diagonal line Y = X joining the origin 0 (0.0) with the point P(100, 100). The line OP is called the line of equal distribution. Any point on this diagonal line shows the same cent of X and Y. - the percentages of the cumulated values on the graph and a curve is obtained by an different points. It is called Lorenz curve. - less of the Lorenz curve to the line of equal distribution shows lesser variation in the bution. Larger the gap between the line of equal distribution and the Lorenz curve, ter is the variation. - following examples illustrate the procedure of drawing a Lorenz curve: CHENZ CURVI of the data given below: Example 40. | Draw a Lorenz cu | rve of the th | um B. | | *** | *** | |------------------|---------------|-------|-----|-----|-----| | Diawa Del | 100 | 200 | 400 | 500 | 800 | | Income: | | 70 | 50 | 30 | 20 | | NCmarrans. | 80 | 70 | 20 | | | #### Solution: | Income | Cumulative | Cumulative | No. of
persons | Cumulative
total | percentage | |--------|------------|--------------------------------------|-------------------|---------------------|-----------------------------------| | 100 | 100 | 100 ×100 = 5 | 80 | 80 | $\frac{80}{250} \times 100 = 3$ | | 200 | 300 | 2000
300 × 100 = 15 | 70 | 150 | $\frac{150}{250} \times 100 = 6$ | | 400 | 700 | 2000
 | 50 | 200 | $\frac{200}{250} \times 100 = 8$ | | 500 | 1,200 | $\frac{1200}{2000} \times 100 = 60$ | 30 | 230 | $\frac{230}{250} \times 100 = 9$ | | 800 | 2,000 | $\frac{2000}{2000} \times 100 = 100$ | 20 | 250 | $\frac{250}{250} \times 100 = 10$ | Example 41. Show inequality in wages in two different firms using Lorenz curve from following data: | Wages (Rs.): | 50-70 | 70-90 | 90-110 | 110-130 | 130-150 | |---------------------------|-------|-------|--------|---------|---------| | No. of workers in firm A: | 20 | 15 | 20 | 25 | 20 | | No. of workers in firm B: | 150 | 100 | 90 | 110 | 50 | #### Solution: | Wages
(Rs.) | | values lative
(Rs.) Wages | | Cumu- | | Firm A | | Firm B | | |----------------|---------|------------------------------|-----------------------------|-------|-------------------|--------------------------|-----------------|-------------------|-----------------| | | (Rs.) W | | (Rs.) Wages % No. of worker | | No. of
workers | Cumu-
lative
total | Cumu-
lative | No. of
workers | Cumu-
lative | | 50-70 | 00 | 60 | 12 | 20 | | Transmission of the last | 100 | total | - | | 70-90 | 80 | 140 | 28 | | 20 | 20 | 150 | 150 | 3 | | 90-110 | | | - | - 15 | 35 | 35 | 100 | 250 | 5 | | | 100 | 240 | 48 | 20 | 55 | The second | - | | 6 | | 110-130 | 120 | 360 | 72 | | 55 | 55 | 90 | 340 | 6 | | 130-150 | 140 | - | - | 25 | 80 | - 80 | 110 | 450 | 9 | | 130-130 | 140 | 500 | 100 | 20 | 100 | 100 | 50 | 600 | 10 | Note: The percentages are approximated to the nearest whole m es of Dispersion It is obvious from the above figure that inequalities in the distribution of wages are more in Firm B than in Firm A. #### EXERCISE 6.10 The following table shows number of firms in two different areas according to their annual profits. Present the data by way of Lorenz Curve. | Profit ('000 rupees): | 6 | 25 | 60 | 84 | 105 | 150 | 170 | 400 | |-----------------------|---|----|----|----|-----|-----|-----|-----| | Firms in Area A: | 6 | 11 | 13 | 14 | 15 | 17 | 10 | 14 | | Firms in Area B: | 2 | 38 | 52 | 28 | 38 | 26 | 12 | 4 | 2 The distribution of 9,400 Indian families according to income size is given below. Show inequality in the distribution of income by using Lorenz Curve. | Income: | 0—1000 | 1000—5000 | 5000—10000 | 10000—20000 | 20000-40000 | |-----------|--------|-----------|------------|-------------|-------------| | Vamilies: | 1,348 | 4,210 | 1,892 | 1,460 | 490 | | Hint: Find out mid-v | alue of class | s intervals] | qualities in | income distr | | wo groups: | |----------------------|---------------|--------------|--------------|--------------|-----------|------------| | Income (Rs.): | 1200-1400 | 1400—1600 | 1600—1800 | 1800—2000 | 2000—2200 | 2200—2400 | | of Persons in Gr.A: | 800 | 960 | 1040 | 600 | 480 | 120 | | of Persons in Gr.B: | 4800 | 6400 | 9600 | 3600 | 8000 | 4000 | [Ans. Inequalities are more in Gr.A than Gr.B] 265 # MISCELLANEOUS SOLVED EXAMPLES re of dispersion for the following data: Example 42. Calculat | Wages per weak (in Rs.) | No. of wage earners | |-------------------------|---------------------| | less than 35 | 14 | | 35—37 | 62 | | 38-40 | 99 | | 41-43 | 18 | | over 43 | 7 | Solution: The given distribution consists of open ended classes. One is less than 35 and the other is 'over 43'. The mid-values of these classes cannot be determined. Therefore, the appropriate measure of dispersion is Q.D. and coefficient of Q.D. #### Calculation of Quartile Deviation | Wages (Rs.) | ſ | c.f. | |-------------|-------|--------| | Less 35 | 14 | 14 (%) | | 35-37 | 62 | 76 | | 38-40 | 99 | 175 | | 41-43 | 18 | 193 | | Over 43 | 7 | 200 | | 1 1 | N=200 | 7 . 3 | Size of Q_1 item = $\frac{N}{4} = \frac{200}{4}$, i.e., 50th item which lies in 35—37 group which after ecomes 34.5 or 37.5. adjustments becomes 34.5 or 37.5. Now $$Q_1 = I_1 + \frac{N}{f} - c.f.$$ $= 34.5 + \frac{50 - 14}{62} \times 2$ $= 34.5 + \frac{36}{62} \times 2 = 34.5 + \frac{72}{62} = 35.66$ $\therefore Q_1 = 35.66$ Size of Q_3 item = $\frac{3N}{4} = \frac{3 \times 200}{4} = 150$ th item which lies in 38—40 group which after adjustment becomes 37.5 – 40.5. s of Dispersion $$Q_3 = I_1 + \frac{\frac{3N}{4} - c.f.}{f} \times i$$ $$= 37.5 + \frac{150 - 76}{99} \times 3 = 37.5 + \frac{74}{33} = 37.5 + 2.24 = 39.7.$$ Calculation of Q.D. and its coefficient Calculation of Q.D. and its coefficient $$Q.D. = \frac{Q_3 - Q_1}{2} = \frac{39.74 - 35.66}{2} = \frac{4.08}{2} = 2.04$$ Coefficient of Q.D. $$= \frac{Q_3 - Q_1}{Q_3 + Q_1} = \frac{39.74 - 35.66}{39.74 - 35.66} = \frac{4.08}{75.4} = 0.54 \text{ approx.}$$ The following is the record number of 3.66 43. The following is the record number of bricks laid each day for 10 days by two the relative consistency of the two brick layers. | | HVC COI | | | | | | | | ase uniu | uiscuss |
--|---------|-----|-----|-----|-----|-----|-----|-----|----------|---------| | A: | 700 | 675 | 725 | 625 | 650 | 700 | 650 | 700 | | | | R: | 550 | 600 | 575 | 220 | | 700 | 030 | 700 | 600 | 650 | | STATE OF THE PARTY | 330 | 000 | 3/3 | 230 | 650 | 600 | 550 | 525 | 625 | 600 | If the figures for A were in every case 10 more and those of B in every case 20 more than figure given above, how would the answer be affected? #### Calculation for Mean and Standard Deviation | | Brick-layer A | | | Brick-layer B | _ | |------------|----------------------------|-----------------|---------|---------------------------|-----------------| | to Mile be | $dx' = \frac{X - 700}{25}$ | dx ² | Y | $dy = \frac{Y - 625}{25}$ | dy ² | | 700 | 0 | 0 | 550 | -3 | 9 | | 675 | -1 | 1 | 600 | -1 | 1 | | 725 | 1 | 1 | 575 | -2 | 4 | | 625 | -3 | 9 | 550 | -3 | 9 | | 650 | -2 | 4 | 650 | 1 | 1 | | 700 = A | 0 | 0 | 600 | -1 | 1 | | 650 | -2 | 4 | 550 | -3 | . 9 | | 700 | 0 | 0 | 525 | -4 | 16 | | 600 | -4 | 16 | 625 = A | 0 | 0 | | 650 | -2 | 4 | 600 | -1 | 1 | | Total | -13 | 30 | | -17 | 51 | Brick-layer A: $$\overline{X} = A + \frac{\sum dx'}{N} \times i$$ = 700 - \frac{13}{10} \times 25 = 700 - 32.5 = 667.5 bricks per day $\text{C.V. (A)} = \frac{\sigma_X}{\overline{X}} \times 100 = \frac{37.15}{667.5} \times 100 = 5.56\%$ $\overline{Y} = 625 - \frac{17}{10} \times 25 = 582.5$ bricks per day C.V. (B) = $\frac{37.15}{582.5} \times 100 = 6.38\%$ As the coefficient of variation for brick-layer A is less than that of brick-layer B, brick-layer A is more consistent. (ii) If the figures for A in every case were 10 more and that of B were 20 more, the arithmetic mean of A will increase by 10 and that of B by 20 but the standard deviations of both of them will remain unchanged. [: S.D. is independent of the change of origin] - .. A.M. of A will be 667.5 + 10 = 677.5 bricks per day and A.M. of B will be 582.5 + 20 = 602.5 bricks per day - Coefficient of variation of A will be = $\frac{37.15}{677.5} \times 100 = 5.48\%$ and coefficient of variation of B will be = $\frac{37.15}{602.5} \times 100 = 6.16\%$ After the change also brick-layer A remains more consistent than brick-layer B. Example 44. Calculate arithmetic mean, median, mode and standard deviation for the following | Daily wages (Rs): | 0-34.5 | 0-44.5 | 0-54.5 | 0-64.5 | 0-74.5 | 0- | |-------------------|--------|--------|--------|--------|--------|----| | No. of workers: | 4 | 24 | 62 | 86 | 96 | ÷ | es of Dispersion The given data is in cumulative frequency form. It should first be converted into Calculation of \overline{X} , M, Z and σ | Daily wages | f | M.V. | | , , 2 an | u 0 | | | |-------------|-------|----------|-----|---------------------|--------------------|----------------------|------| | Daily Hages | | (m) | d | $d' = \frac{d}{10}$ | fď | fď ² | c.f. | | 24.5—34.5 | 4 | 29.5 | -20 | -2 | | ,,, | c.j. | | 34.5-44.5 | 20 | 39.5 | -10 | -I | -8 | 16 | 4 | | 44.5—54.5 | 38 | 49.5 = A | 0 | 0 | -20 | 20 | 24 | | 54.5—64.5 | 24 | 59.5 | +10 | +1 | 0 | 0 | 62 | | 64.5—74.5 | 10 | 69.5 | +20 | +2 | +24 | 24 | 86 | | 74.5—84.5 | 4 | 79.5 | +30 | +3 | +20 | 40 | 96 | | | N=100 | | | ∓3 | +12 | 36 | 100 | | | | | | | $\Sigma f d' = 28$ | $\Sigma f d^2 = 136$ | | Arithmetic Mean $$\overline{X} = A + \frac{\sum fd'}{N} \times i = 49.5 + \frac{28}{100} \times 10 = 52.3$$ Median: Size of median item $=\frac{N}{2} = \frac{100}{2} = 50$ th item which lies in the class 44.5—54.5. Now, $$M = l_1 + \frac{\frac{N}{2} - c.f.}{f} \times i$$ $M = 44.5 + \frac{50 - 24}{38} \times 10 = 44.5 + \frac{26}{38} \times 10 = 44.5 + 6.84 = 51.34$ Mode: By inspection, mode lies in the class 44.5 – 54.5 $$Z = I_1 + \frac{\Delta_1}{\Delta_1 + \Delta_2} \times i$$ $$I_1 = 44.5, \ \Delta_1 = 38 - 20 = 18, \ \Delta_2 = 38 - 24 = 14, \ i = 10$$ $$Z = 44.5 + \frac{18}{18 + 14} \times 10 = 44.5 + \frac{18}{32} \times 10$$ $$= 44.5 + \frac{180}{32} = 44.5 + 5.625 = 50.125$$ 8.D.: $$\sigma = \sqrt{\frac{\Sigma f d'^2}{N} - \left(\frac{\Sigma f d'}{N}\right)^2} \times i$$ $$= \sqrt{\frac{136}{100} - \left(\frac{28}{100}\right)^2} \times 10$$ $$= \sqrt{1.36 - 0.0784} \times 10 = \sqrt{1.2816} \times 10 = 11.32$$ | example 45. Torthe | Group 1 | Group II | |--------------------|---------------------|---------------------| | | $\sum (X-5)=8$ | $\sum (X-8) = -10$ | | | $\sum (X-5)^2 = 40$ | $\sum (X-8)^2 = 70$ | | | 2 | N 25 | Find the mean and standard deviation of both the groups taken together. Group I: Let $$\sum d_1 = \sum (X - 5) = 8$$ $\sum d_1^2 = \sum (X - 5)^2 = 40$ $\overline{X}_1 = A + \frac{\sum d_1}{N} = 5 + \frac{8}{20} = 5.40$ $\sigma_1 = \sqrt{\frac{\sum d_1^2}{N} - \left(\frac{\sum d_1}{N}\right)^2} = \sqrt{\frac{40}{20} - \left(\frac{8}{20}\right)^2} = 1.36$ Group II: Let $$\Sigma d_2 = \sum (X - 8) = -10$$ $\Sigma d_2^2 = \sum (X - 8)^2 = 70$ $\overline{X}_2 = A + \frac{\Sigma d_2}{N} = 8 + \frac{(-10)}{25} = 7.6$ $$\sigma_2 = \sqrt{\frac{\Sigma d_2^2}{N} - \left(\frac{\Sigma d_2}{N}\right)^2} = \sqrt{\frac{70}{25} - \left(\frac{-10}{25}\right)^2} = 1.62$$ Combined Mean $(\overline{X}_{12}) = \frac{N_1 \overline{X}_1 + N_2 \overline{X}_2}{N_1 + N_2} = \frac{20 \times 5.40 + 25 \times 7.6}{20 + 25} = 6.62$ Combined S.D. $(\sigma_{12}) = \sqrt{\frac{N_1 \sigma_1^2 + N_2 \sigma_2^2 + N_1 d_1^2 + N_2 d_2^2}{N_1 + N_2}}$ $$d_1 = \overline{X}_1 - \overline{X}_{12} = 5.40 - 6.62 = -1.22$$ $$d_2 = \overline{X}_2 - \overline{X}_{12} = 7.6 - 6.62 = +0.98$$ $$\sigma_{12} = \sqrt{\frac{20(1.36)^2 + 25(1.62)^2 + 20(-1.22)^2 + 25(0.98)^2}{20 + 25}}$$ Example 46. "After settlement the average weekly wage in a factory had increased from Rs. 8.000 to Rs. 12,000 and the standard deviation had increased from Rs. 100 to Rs. 150. After settlement the wage has become higher and more uniform." Do you agree? C.V. before settlement $\frac{100}{8000} \times 100 = 1.25\%$ 150 of Dispersion C.V. after settlement $=\frac{130}{12000}\times100=1.25\%$ Since, there is no change in C.V., there is no improvement in uniformity. 77. Construct a continuous frequency distribution with class interval of 20 for the following table showing weight (in grams) of 50 applies: | 110 | 103 | 89 | 75 | 98 | | bhuez: | | | | |----------|-----|-----|-----|-----|-----|--------|-----|-----|-----| | 185 | 123 | 113 | 92 | 86 | 121 | 110 | 108 | 93 | 128 | | 129 | 119 | 105 | 120 | 100 | 70 | 126 | 78 | 139 | 120 | | 205 | 111 | 141 | 136 | 123 | 90 | 35 | 99 | 114 | 185 | | 90 | 107 | 81 | 137 | 125 | | 115 | 128 | 160 | 78 | | STATE OF | 0 | | | 123 | 184 | 104 | 100 | 87 | 110 | Also calculate the coefficient of variation of this distribution. The lowest value is 70 and highest is 205. We have to take a class interval of 20. The various classes will be 70—90, 90—110, and so on up to 1 | Weight (in grams) | Tally Bars | Frequency |
--|------------|-----------| | 70—90 | NNI | rrequency | | 90—110 | N N I | 11 | | 110—130 | N N N III | 19 | | 130—170 | III | 4 | | 150—170 | | 1 | | 170—190 | ll l | 3 | | 190—210 | | 1 | | A STATE OF THE STA | | N = 50 | #### Calculation of Coefficient of Variation | Weight | ſ | M.V. | d | ď | fď | fd'2 | |--|--------|---------|------|-----|---------------------|----------------------------| | 70-90 | 11 | 80 | - 60 | - 3 | - 33 | 99 | | 90-110 | 11 | 100 | - 40 | - 2 | - 22 | 44 | | 110—130 | 19 | 120 | - 20 | -1 | - 19 | 19 | | 130-170 | 4 | 140 = A | 0 | 0 | 0 | 0 | | 150-170 | - 1 | 160 | +20 | +1 | 1 | 1 | | 170—190 | 3 | 180 | +40 | +2 | 6 | 12 | | 190-210 | 1 | 200 | +60 | +3 | 3 | 9 | | No. of Contract | N = 50 | | | | $\Sigma f d' = -64$ | $\Sigma f a^{\nu 2} = 184$ | 273 272 $$\overline{X} = A + \frac{\sum f d'}{N} \times i = 140 - \frac{64}{50} \times 20 = 114.4$$ $$\sigma = \sqrt{\frac{\sum f d'^2}{N} - \left(\frac{\sum f d'}{N}\right)^2} \times i = \sqrt{\frac{184 - \left(-\frac{64}{50}\right)^2}{50}} \times 20$$ $$= \sqrt{368 - 1.6384 \times 20} = 28.5769$$ $$28.5769 \times 100$$ Coefficient of variation = $\frac{\sigma}{\bar{X}} \times 100 = \frac{28.5769 \times 100}{114^{-4}} = 24.97\%$ Example 48. The coefficient of variation of a series is 58%. The standard deviation is $21.2.\ W_{hat}$ is the arithmetic mean? Solution: $$C.V. = \frac{\sigma}{\overline{X}} \times 100$$ $$\Rightarrow \qquad \overline{X} = \frac{\sigma}{C.Y.} \times 100$$ $$Mean(\overline{X}) = \frac{21.2 \times 100}{58} = 36.6$$ Example 49. During nine days in a festival the highest sale of a shop was on Sunday and was Rs. 90 more than the average sale for other days. If the standard deviation of the sale during the festival is 33.33, find the standard deviation leaving that the highest sale. $$\sigma = \sqrt{\frac{\sum (X - \overline{X})^2}{N}}$$ (Formula of S.D.) $$33.33 = \sqrt{\frac{\sum (X - \overline{X})^2}{9}}$$ $$\sum x^2 = \frac{100}{3} \times \frac{100}{3} \times 9 = 10,000$$ [: $x = X - \overline{X}$] Sunday value = $\overline{X} + 90$ $x = X - \overline{X}$ $=(\overline{X}+90)-\overline{X}=90$ Sum of the square of deviations excluding Sunday. $=10000-(90)^2=1900$ $$\sigma \text{ for 8 days} = \sqrt{\frac{\sum (X - \overline{X})^2}{8}} = \sqrt{\frac{1900}{8}} = \sqrt{237.5} = 15.4$$ Example 50: If the mean and standard deviation of 75 observations is 40 and 8 respectively, find the new mean and standard deviation is the new mean and standard deviation if (i) Each observation is multiplied by 5. (ii) 7 is added to each observation. (1) New $\overline{X} = 200$, New $\sigma = 40$ New A = 200, the The reason is that the change of scale affects the value of both X and σ . (ii) New $\overline{X} = 47$, New $\sigma = 8$ New X = 41, 100.0 The reason is that the mean is affected by change of origin but S.D. is not affected by change of origin. 251. 5 observations of a series are 4, 6, 8, 12 and 15. Their mean and standard deviation are 9 and 4 respectively. Make such alternations in the terms of the series that new S.D. is Given $\overline{X} = 9$, $\sigma = 4$ of Dispersion The series with new S.D. is obtained when each observations is multiplied by 5. This The series with new S.D. is obtained when each observations is multiplied by 5. This operation will also increase the value of mean 5 times. In the given example, if each observation is multiplied by 5, the mean becomes 45 and S.D. becomes 20. The reason is that change of scale affects both mean and standard deviation. Now, if 5 is added to each observation the mean becomes 50 while S.D. remains 20. The reason is that the change of origin affects only \overline{X} and not σ . The transformation series corresponds to this can be written as U = 5X + 5. Thus, the changed observations will be: 25, 35, 45, 65 and 80. Frample 52. A collar manufacturer is considering the production of a new style of collar to attract A collar manufacturer is considering the production of a new style of collar to attract youngmen. The following statistics of neck circumference are available based on measurements of a typical group of college students. Compute the SD and use the criterion $(\vec{X} \pm 3\sigma)$, to determine the largest and smallest sizes of collars, he should make in order to meet the needs of practically all his customers, bearing in mind, that collars are worn, on average $\frac{3}{4}$ inch larger than neck size. | Mid-points: | 12.5 | 13.0 | 13.5 | 14.0 | 14.5 | 15.0 | 15.5 | 16.0 | 165 | |-------------|------|------|------|------|------|------|------|------|------| | f: | 4 | 19 | 30 | 63 | 66 | 29 | 13.3 | 10.0 | 10.3 | Here, i = 0.5 Let, $$A = 14.5$$: $d' = \left(\frac{X - A}{i}\right)$ | Mid-points (X) | on of | ď | ď2 | fď | fd ² | |----------------|---------|----|-----|----------------------|---------------------| | 12.5 | 2 F 4 | -4 | 16 | - 16 | 64 | | 13.0 | 19 | -3 | 9 | -57 | 171 | | 13.5 | 30 | -2 | 4 | -60 | 120 | | 14.0 | 63 | -1 | 1 | -63 | 63 | | 14.5 | 66 | 0 | 0 | 0 | 0 | | 15.0 | 29 | +1 | 1 | 29 | 29 | | 15.5 | 18 | +2 | 4 | . 36 | 72 | | 16.0 | 1 | +3 | - 9 | 3 | 9 | | 16.5 | Later 1 | +4 | 16 | 4 | 16 | | 158 | N = 231 | - | | $\Sigma f d' = -124$ | $\Sigma f d^2 = 54$ | Now, $$\overline{X} = A + \frac{\sum d'}{N} \times i$$ = 14.5 + $\frac{-124}{231} \times 0.5 = 14.5 - 0.268 = 14.232$ inches $$\sigma = \sqrt{\frac{\sum d'}{N}} - \left(\frac{\sum d'}{N}\right)^2 \times i = \sqrt{\frac{544}{231}} - \left(\frac{-124}{231}\right)^2 \times 0.5$$ = $\sqrt{2.355 - 0.288} \times 0.5 = \sqrt{2.067} \times 0.5$ = 1.437 \times 0.5 = 0.719 inches. Using the criterion $\overline{X}\pm3\sigma$ Largest and smallest neck size $= \overline{X} \pm 3\sigma = 14.232 \pm 3(0.719)$ = 14.232 ± 2.157 = 12.075 and 16.389 Since, the collars are worn on an average $\frac{3}{4}$ inch longer than the neck size, we should add 0.75 to these
limits. Thus, the smallest and largest sizes of the collar should be: (12.075 + 0.75) and (16.389 + 0.75) = 12.825 and 17.139 Thus, the smallest size of the collar should be 12.825 inches long and largest 17.139 Example 53. The mean age and standard deviation of a group of 200 persons (grouped in intervals 0—5, 5—10, ..., etc.) were found to be 40 and 15. Later on it was discovered that the age 43 was misread as 53. Find the correct mean and standard deviation. Solution: N = 200, $\overline{X} = 40$ and $\sigma = 15$ As $$\overline{X} = \frac{\Sigma fm}{N} \implies \Sigma fm = N\overline{X}$$ Incorrected $\Sigma fm = N\overline{X} = 200 \times 40 = 8000$ Corrected age is 43 which falls in the group 40—45, the mid-value of which is 42.5. ures of Dispersion Example 54. The monthly wages (in Rs.) of 100 workers are district | Wages (Rs.): | 0—100 | 100-200 | 200 and | ributed as | follows: | | |-----------------|-------------|---------|---------|------------|----------|---------| | No. of workers: | 0—100
12 | x | 200-300 | 300-400 | 400-500 | 500-600 | | 1-1 wage is De | | | 21 | у | 17 | 6 | e is Rs. 256.25, find the missing frequencies and hence find % variation in the distribution. Let the missing frequencies be x and y | Wages (Rs.) | f | | |-------------|------------------|------------------| | 0—100 | 12 | c.f. | | 100—200 | x f ₀ | 12 | | 200—300 | 27 fi | 12 + x
39 + x | | 300—400 | y f ₂ | 39+x+y | | 400—500 | 17 | 56+x+y | | 500—600 | 6 | 62 + x + y | | 0011-101 | N = 100 | 22.7.7.9 | $$62+x+y=100x+y=100-62=38$$ As Z = 256.25, Mode lies in 200–300 Applying the formula, $$Z = I_1 + \frac{\Delta_1}{\Delta_1 + \Delta_2} \times i \quad \text{where, } \Delta_1 = |f_1 - f_0|; \ \Delta_2 = |f_2 - f_2|$$ $$256.25 = 200 + \frac{27 - x}{(27 - x) + (27 - y)} \times 100$$ $$-256.25 - 200 = \frac{2700 - 100x}{27 - x + 27 - (38 - x)}$$ $$56.25 = \frac{2700 - 100x}{27 - x + 27 - 38 + x}$$ $$56.25 = \frac{2700 - 100x}{16}$$ $$56.25 \times 16 = 2700 - 100x$$ $$900 - 2700 = -100x$$ $$-1800 = -100x$$ $$x = \frac{1800}{100} = 18$$ $$x + y = 38 \Rightarrow y = 38 - x = 38 - 18 = 20$$ $x = 18$ and $y = 20$ | o-efficient o | efficient of variation. | | | per to the state of o | | | | | |---------------|-------------------------|----------|------|--|--------------------|---------------------|--|--| | Wages | f | M.V. (m) | d | . d. | fď | fd' ² | | | | (Rs.) | 100 | 50 | -200 | -2 3 | enc-24 | 48 | | | | 0—100 | 12 | - | -100 | Loi Your | 10 0018 | 18 | | | | 100-200 | 18 | 150 | 0 | 0 20 | Lother. | 14(m) 0 | | | | 200-300 | 27 | 250 = A | 100 | -13 | 20 | 20 | | | | 300-400 | 20 | 350 | 200 | 2 | 34 | 68 | | | | 400—500 | 17 | 450 | | 3 3 | 18 | 54 | | | | 500600 | 6 | 550 | 300 | . J | $\Sigma f d' = 30$ | | | | | | N = 100 | | | 0.10 - 200 | 2ju - 30 | $\Sigma f d^2 = 20$ | | | $$\overline{X} = A + \frac{\Sigma f d'}{N} \times i = 250 + \frac{30}{100} \times 100 = 280$$ $$\sigma = \sqrt{\frac{\Sigma f d'^2}{N} - \left(\frac{\Sigma f d'}{N}\right)^2} \times i = \sqrt{\frac{208}{100} - \left(\frac{30}{100}\right)^2} \times 100$$ $$= \sqrt{2.08 - 0.09} \times 100 = \sqrt{1.99} \times 100$$ $$= 1.4107 \times 100 = 141.07$$ $$C.V. = \frac{\sigma}{X} \times 100 = \frac{141.07}{280} \times 100 = 50.38\%. \text{ and } 142.4\%$$ Example 55. The following table shows the marks obtained by three students A, B and C in an | | | Maximum marks in each subject | | | | | | | |------------------------|-------------------------|-------------------------------|-----------------------|-----------------------|------------------------|--|--|--| | Student
↓ Subject – | → 800
S ₁ | 700
S ₂ | 900
S ₃ | 600
S ₄ | 1000
S ₅ | | | | | A | 560 | - 553 | 549 | 540 | 500 | | | | | В | 480 | 420 | 540 | 360 | 600 | | | | | С | 424 | 427 | 423 | 426 | 420 | | | | Determine which student has shown (i) most consistent performance and (ii) most inconsistent performance. Solution: The given data has been shown below | Student | Percentage marks | | | | 2000 | 10 | | |-------------|------------------|----|----|----|----------------|--------------------|--------------------| | ↓ Subject → | S_1 | S2 | S | S4 | S ₅ | Average
% marks | Standard deviation | | A | 70 | 79 | 61 | 90 | 50 | 70 | 13.87 | | В | 60 | 60 | 60 | 60 | 60 | 60 | 0 | | C | 53 | 61 | 47 | 71 | 42 | 54.8 | 10.32 | ures of Dispersion A's average marks = $\frac{70+79+61+90+50}{5} = \frac{350}{5}$ B's average marks = $\frac{60+60+60+60}{5} = \frac{5}{300}$ C's average marks = $\frac{53+61+47+71+42}{5} = \frac{5}{274}$ A's standard deviation (σ_A) $= \sqrt{\frac{0 + (9)^2 + (-9)^2 + (20)^2 + (-20)^2}{5}} = \sqrt{\frac{962}{5}} = \sqrt{192.4} = 13.87$ B's standard deviation $(\sigma_B) = \sqrt{\frac{0}{5}} = 0$ C's standard deviation $(\sigma_C) = \sqrt{\frac{(1.8)^2 + (6.2)^2 + (-7.8)^2 + (16.3)^2 + (-12.8)^2}{5}}$ $=\sqrt{\frac{530.05}{5}} = \sqrt{106.41} = 10.32$ A's coefficient of variation (C.V.) = $\frac{\sigma}{\overline{X}} \times 100 = \frac{13.87}{70} \times 100 = 19.81\%$ B's coefficient of variation (C.V.) = $\frac{0}{60} \times 100 = 0\%$ C's coefficient of variation (C.V.) = $\frac{10.32}{54.8} \times 100 = 18.83\%$ Hence, it is clear from the above data that (i) B is most consistent as in his case, the coefficient of variation is the least. (ii) A is most inconsistent as in his case, the coefficient of variation is the greatest. Example 56. The salaries paid to the managers of a company had a mean of Rs. 20,000 with a standard deviation of Rs. 3,000. What will be the mean and standard deviation if all the salaries are increased by (i) 10%, (ii) 10% of the existing mean? Which policy would you recommend if the management does not want to have increased disparities in wages? Increasing all the salaries by 10% \Rightarrow multiplying each salary each by 1.1. Hence, the mean is also multiplied by 1.1. Since, S.D. defends on change of scale, S.D. is also multiplied by 1.1. When all salaries are increased by 10%, the S.D. also increases by 10%. If each salary is increased by 10%, the mean is also increased by 10%. Increasing all the salaries by 10% of the existing mean \Rightarrow Adding a constant amount to each salary. Since S.D. is independent of the change of origin, it will remain unchanged if each salary is increased by 10% of the mean. But mean will increase by 10% of the original mean. If the management do not want to have increased disparities, it showed increase in the salary of the workers by 10% of the existing mean. Measures of Dispersion ample 57. If 10 is subtracted from every item in a data set then the coefficient of variation of the If 10 is subtracted from every nem in a uata set then the observed that a set then the resulting set of data is 20%. If 20 is added to every item of the same data set then the coefficient of variation of the resulting set of data is 10%. You are required to find out the coefficient of variation of the original set of data. Let the average and standard deviation of the original data set be \overline{X} and s. lution: Let the average and standard deviation of the original data services. Average of all items $$(X-10) = \frac{\sum(X-10)}{N} = \frac{\sum X}{N} = \frac{N \cdot 10}{N} = \overline{X} - 10$$ Standard deviation of all items 'N-10' = s' (This is because the value of standard deviation remains the same if each observation in a series is increased or decreased by the same quantity) Given: $$\frac{s}{\overline{X}-10} \times 100 = 20$$ $\Rightarrow 100s = 20\overline{X} - 200$ $\Rightarrow 20\overline{X} - 100s = 200$ Average of all items 'X + 20' = $\frac{\Sigma(X+20)}{N} = \frac{\Sigma X}{N} = \frac{N20}{N} = \overline{X} + 20$ Standard deviation of all items 'X + 20' = s (This is because the value of standard deviation remains the same if each observation in a series is increased or decreased by the same quantity) Given: $$\frac{s}{\overline{X}+20} \times 100 = 10$$ $$\Rightarrow 100s =
10\overline{X} + 200$$ $$\Rightarrow 10\overline{X} - 100s = 200$$ $$\Rightarrow 10\overline{X} - 100s = 200$$ $$\Rightarrow 10\overline{X} - 100s = 200$$ $$\Rightarrow 100s = 200$$ Subtracting equation (ii) from equation (i), we get non serious as 11 .02 of one a $$(20\overline{X} - 100s) - (10\overline{X} - 100s) = 200 - (-200)$$ $$\Rightarrow 10\overline{X} = 400$$ $$\Rightarrow \overline{X} = \frac{400}{10} = 40$$ Putting the value of \overline{X} in equation (ii), we get $$10(40) - 100 s = -200$$ $$\Rightarrow 400 - 100 s = -200$$ $$\Rightarrow 100s = 600$$ $$\Rightarrow \qquad s = \frac{600}{100} = 6$$ Coefficient of variation of the original data set: $= \frac{s}{X} \times 100 = \frac{6}{40} \times 100 = 15\%$ $$=\frac{s}{\overline{X}} \times 100 = \frac{6}{40} \times 100 = 15\%$$ A fund manager is considering investment in the equity shares of one of two A find manager to the criterion for selecting the companies. The criterion for selecting the company for investment is consistency of one of two companies. The criterion for selecting the company for investment is consistency of two companies. return on net worth. The following data have been collected | Financial | Return on Net worth (%) | | | | | |-----------|------------------------------|-------------------------------|--|--|--| | Year | Modern Industries Ltd. (MIL) | Pioneer Industries Ltd. (PIL) | | | | | 2001—2002 | 19 | 20 | | | | | 2000-2001 | 20 | 24 | | | | | 1999—2000 | 16 | 16 | | | | | 1998—1999 | 13 | 15 | | | | | 1997—1998 | 12 | 10 | | | | You are required to identify the company in which the fund manager should invest. Modern Industries Ltd. (MIL): Mean return on equity $$(\overline{X}) = \frac{\Sigma X}{N} = \frac{19+20+16+13+12}{5} = \frac{80}{5} = 16\%$$ Standard deviation (S.D.) = $\left[\frac{\Sigma (X - \overline{X})^2}{N}\right]^{\frac{1}{2}}$ $$= \left[\frac{(19-16)^2 + (20-16)^2 + (16-16)^2 + (13-16)^2 + (12-16)^2}{5} \right]^{\frac{1}{2}}$$ = 3.16% (approx.) Coefficient of variation = $$\frac{\text{S.D.}}{\overline{X}} \times 100 = \frac{3.16}{16} \times 100 = 19.76\%$$ (approx.) Pioneer Industries Ltd. (PIL): Mean return on equity $$(\overline{X}) = \frac{\Sigma X}{N} = \frac{20 + 24 + 16 + 15 + 10}{5} = \frac{85}{5} = 17\%$$ Standard deviation (S.D.) = $$\left[\frac{\Sigma(X - \overline{X})^2}{N}\right]^{\frac{1}{2}}$$ $$= \left[\frac{(20-17)^2 + (24-17)^2 + (16-17)^2 + (15-17)^2 + (10-17)^2}{5} \right]^{\frac{1}{2}}$$ = 4.73% (approx.) Coefficient of variation = $$\frac{\text{S.D.}}{\overline{X}} \times 100 = \frac{4.73}{17} \times 100 = 27.83\% \text{ (approx.)}$$ Representation to the coefficient of variation in coeffici Since, the coefficient of variation for MIL is less than coefficient of variation for PIL, it can be inferred that profitability of MIL is more consistent than PIL. Hence, investment behalf it. investment should be made in MIL. ### IMPORTANT FORMULAE 1. Range Range = $$L - S$$ Coeff. of Range = $\frac{L - S}{L + S}$ 2. Quartile Deviation Q.D. = $$\frac{Q_3 - Q_1}{2}$$ Coeff. of Q.D. = $\frac{Q_3 - Q_1}{Q_2 + Q_2}$ 3. Mean Deviation For Individual Series: $$M.D. = \frac{\sum |D|}{N}$$ For Discrete and Continuous Series: $$M.D. = \frac{\sum f|D|}{N}$$ Coeff. of M.D. = $$\frac{\text{M.D.}}{\text{Average}}$$ 4. Standard Deviation For Individual Series: (i) $$\sigma = \sqrt{\frac{\sum (X - \overline{X})^2}{N}}$$: Actual Mean Method (ii) $$\sigma = \sqrt{\frac{\sum d^2}{N} - \left(\frac{\sum d}{N}\right)^2}$$: Assumed Mean Method (iii) $$\sigma = \sqrt{\frac{\sum d'^2}{N} - \left(\frac{\sum d'}{N}\right)^2} \times$$: Step Deviation Method (i) $$\sigma = \sqrt{\frac{\sum f(X - \overline{X})^2}{N}}$$: Actual Mean Method (ii) $$\sigma = \sqrt{\frac{\sum fd^2}{N} - \left(\frac{\sum fd}{N}\right)^2}$$: Assumed Mean Method (iii) $$\sigma = \sqrt{\frac{\sum f d'^2}{N} - \left(\frac{\sum f d'}{N}\right)^2} \times i$$: Step Deviation Method ## Combined Standard Deviation $$\sigma_{12} = \sqrt{\frac{N_1 \sigma_1^2 + N_2 \sigma_2^2 + N_1 d_1^2 + N_2 d_2^2}{N_1 + N_2}}$$ Where, $d_1 = \overline{X}_1 - \overline{X}_{12}$ and $d_2 = \overline{X}_2 - \overline{X}_{12}$ 6. Coefficient of Variation s of Dispersion $$C.V. = \frac{\sigma}{\overline{Y}} \times 100$$ Variance = $$(S.D.)^2$$ $\sigma = \sqrt{\text{variance}}$ or ## QUESTIONS - 1. What is meant by dispersion? What purpose does a measure of dispersion serve? . - 2. What are the various measures of dispersion. Explain the relative merits and demerits of - (i) What are the properties of a good measure of variation? - (ii) Why is standard deviation considered a better measure of dispersion. - 4. What is coefficient of variation? What purpose does it serve? Also distinguish between variance and coefficient of variation. - 5. Define range, interquartile range, quartile deviation, mean deviation and standard deviation. Describe their merits and demerits. - 6. Define dispersion. Discuss the merits and demerits of different measures of dispersion. - 7. What do you understand by standard deviation? Explain its important properties. - 8. Explain the method of measuring inequalities of income by using Lorenz curve. - 9. What do you understand by Lornez curve? Discuss the usefulness of Lornez curve. - 10. Why is S.D. (σ) the most widely used measure of dispersion? Explain. - II. If a constant is subtracted from each score in a series, what will be its effect on \overline{X} and σ ? # Measures of Skewness ■ INTRODUCTION In the preceding two chapters, we have discussed the measures of central tendency and dispersion of frequency distributions for their summarisation and comparison, with each other, dispersion of frequency distribution in the sense that there These measures, however, do not adequately describe a frequency distribution but still discussion measures. These measures, however, do not adequately describe a frequency distribution in the sense that there could be two or more distributions with the same mean and standard deviation but still different from each other with regard to shape or pattern of distribution. This implies that there is need to develop some measures to further describe the distribution. These measures are known as measures of skewness. #### ■ MEANING OF SKEWNESS The term skewness means lack of symmetry in a frequency distribution. Skewness denotes the The term skewness means lack of symmetry in a frequency distribution. Skewness denotes the degree of departure of a distribution from symmetry and reveals the direction of scatterness of the items. It gives us an idea about the shape of the frequency curve. When a distribution is not symmetrical, it is called a skewed distribution. Skewness tells us about the asymmetry of the frequency distribution. #### ■ DEFINITION OF SKEWNESS Some important definitions of skewness are given below: - 1. Skewness is the degree of asymmetry or departure from symmetry of a distribution. - 2. When a series is not symmetrical, it is said to be asymmetrical or skewed. - -Croxten and Cowden - 3. By skewness of a frequency distribution, we mean degree of its departure from symmetry. -Simpson and Kafka #### **■ SKEWNESS AND FREQUENCY DISTRIBUTION** The concept of skewness will be made more clear from the following diagrams showing a symmetrical distribution, a positively skewed distribution and a negatively skewed distribution. (1) Symmetrical Distribution: In a symmetrical distribution or symmetrical curve, skewness is not present. The values of mean, median and mode coincide, i.e., $\overline{X} = M = Z$. The spread of the frequencies is the same on both sides of the central point of the curve. Measures of Skewness 2) Skewed Distribution: A distribution which is not skewed Distribution or asymmetrical is called skewed distribution or asymmetrical netrical is skewed distribution may be either positively skewed. d or negatively skewed. (a) Postively Skewed Distribution: If the longer tail of the curve of distribution lies to the right of the central equency curve or distribution lies to the right of in the positively skewed distribution, the value of the mean ater than median and median be greater than mode, (b) Negatively Skewed Distribution: If the longer tail of (b) Negatively observed abstraction. If the longer tail of the frequency curve of the distribution lies to the left of the central point, it is called a negatively skewed distribution. In the negatively skewed distribution, the value of the mean will be less then median and median be less than mode, i.e., Negatively Skewed Distribution #### DIFFERENCE BETWEEN DISPERSION AND SKEWNESS The main points of difference between dispersion and skewness are given as under: (1) Dispersion is concerned with measuring the amount of variation in a series rather than with don. Skewness is concerned with direction of variation or the departure from symmetry. (2) Dispersion tells us about the composition of the series whereas skewness tells us about the (3) Measures of dispersion are based on averages of the first order such as \overline{X} , M, Z, etc., whereas asures of skewness are based on averages of first and second order such as \overline{X} , M, Z, σ , etc. #### TESTS OF SKEWNESS In order to find out whether a distribution is skewed or not, the following tests may be applied: (1) Relationship between Averages: If in a distribution, the values of mean, median and mode are equal, i.e., $\overline{X} = M = Z$, then skewness is absent in it. On the other hand, if the values of mean, and mode are not identical, i.e., $\overline{X} \neq M \neq Z$, then skewness is found present in the (2) Distance of Quartiles from the Median: If in a distribution, the quartiles $(Q_1 \text{ and } Q_3)$ are distant from the median, i.e., $Q_3 - M = M - Q_1$, then skewness is absent and if $Q_1 - M \neq M - Q_1$, then skewness is present in the distribution. (3) Graph of the Data: When the data plotted on the graph paper gives us a bell shaped curve, is absent.
On the other hand, when the data plotted on the graph paper gives us a consultant absent. On the other hand, when the data plotted on the graph do not give the normal bell than the other hand, when the data plotted on the graph do not give the normal bell than the other hand, when the data plotted on the graph paper gives us a consultant below. absent. On the other hand, when the data plotted on the graph do not give up in the other hand, when the data plotted on the graph do not give up in the other hand, when the data plotted on the graph do not give up in the other hand, when the data plotted on the graph do not give up in the other hand, when the data plotted on the graph do not give up in the other hand, when the data plotted on the graph do not give up in the other hand, when the data plotted on the graph do not give up in the other hand, when the data plotted on the graph do not give up in the other hand, when the data plotted on the graph do not give up in the other hand, when the data plotted on the graph do not give up in the other hand, when the data plotted on the graph do not give up in the other hand, when the data plotted on the graph do not give up in the other hand, when the data plotted on the graph do not give up in the other hand, when the data plotted on the graph do not give up in the other hand, when the data plotted on the graph do not give up in the other hand, when the data plotted on the graph do not give up in the other hand, when the data plotted on the graph do not give up in the other hand, when the data plotted on the graph do not give up in the other hand, when the data plotted on the graph do not give up in the other hand, when the data plotted on the graph do not give up in the other hand, when the data plotted on the graph do not give up in the other hand, when the data plotted on the graph do not give up in the graph do not give up in the other hand, when the data plotted on the graph do not give up in git in the graph do not give up in the graph do not give up in the # ■ MEASURES OF SKEWNESS ■ MEASURES OF SKEWNESS Measures of skewness help us to find out the direction and extent of asymmetry in a series. They may either be absolute or relative. The measures which expresses skewness in the units in which the values of the series are expressed are called absolute measures of skewness. The measures which values of the series are expressed are called absolute measures of skewness, expresses skewness in the form of ratios or percentage are called relative measures of skewness, also called coefficient of skewness are useful to compare the skewness of two or more series. skewness of two or more series. - There are three important methods of measuring skewness, na - (1) Karl Pearson's Method - (2) Bowley's Method - (3) Kelly'r Method #### (1) Karl Pearson's Method Mari Pearson's method is based on arithmetic mean (\overline{X}) , mode (Z), median (M) and standard deviation (σ) . Karl Pearson has given the following formulae for measuring skewness: | Absolute Measure of Skewness | Coefficient of Skewness | |--|--| | $S_K = \bar{X} - Z$ | Coefficient of $S_K = \frac{\bar{X} - Z}{\sigma}$ | | When mode (Z) is all defined, then $S_K = 3(\overline{X} - M)$ | When mode (Z) is ill defined, there $\operatorname{Coefficient} \text{ of } S_K = \frac{3(X - M)}{\sigma}$ | The value of Karl Pearson's coefficient of skewness usually lies between ± 1. In case mode is ill defined, the value of coefficient of skewness lies between ± 3. #### O Steps for Calculation - (1) Calculate mean (\overline{X}) of the distribution. - (2) Calculate mode (Z) of the distribution. - (3) Calculate median (M) of the distribution. - (4) Calculate standard deviation (6). - (5) Put these values in the formulae. The following examples illustrate the procedure of calculating Pearson's coefficient of skewness: #### Calculation of Coefficient of Skewness—Discrete Series Example 1. From the following data, find out Karl Pearson's Coefficient of Skewness: | Height (in inches) | No. of persons | |--------------------|----------------| | 58 | 10 | | 59 | 18 | | 60 | 30 | | 61 | 42 | | 62 | 35 | | 63 | 28 | Calculation of Karl Pearson's Co | Height (X) | , | A = 60 $(X - 60)$ | flicient of Skew | | |------------|---------|-------------------|-------------------|--------| | 58 | 10 | -2 | | fd^2 | | 59 | 18 | -1 | -20 | | | 60 A | 30 | 0 | -18 | 40 | | 61 | 42 | +1 | 0 | 18 | | 62 | 35 | +2 | +42 | 42 | | 63 | 28 | +3 | +70 | 140 | | | N = 163 | ,,, | +84 | 252 | | | 7.1 | | $\Sigma fd = 158$ | 502 | $$\overline{X} = A + \frac{\Sigma fd}{N} = 60 + \frac{158}{163} = 60 + 0.969 = 60.969$$ $$\sigma = \sqrt{\frac{fd^2}{N} - \left(\frac{\Sigma fd}{N}\right)^2} = \sqrt{\frac{492}{163} - \left(\frac{158}{163}\right)^2}$$ $$= \sqrt{3.0184 - 0.9395} = \sqrt{2.0789} = 1.4418$$ By inspection, mode is 61 (as its frequency is maximum) Thus, $\overline{X} = 60969$, $\sigma = 1.4418$, Z = 61 Coefficient of Skewness = $$\frac{\overline{X} - Z}{\sigma} = \frac{60.969 - 61}{1.4418}$$ = $\frac{-0.031}{1.4418} = -0.0215$ ## dation of Pearson's Coefficient of Skewness—Continuous Series 2. Calculate Karl Pearson's Coefficient of Skewness from the following data: | Same Milk | | | | | | | - 60 | | |-----------|-------------|--------------------|-----------------------|-------------------------------|--|---|---|--| | le: | 0-5 | 5-10 | 10-15 | 15-20 | 20-25 | 25 - 30 | 30 - 35 | 35 - 40 | | acy: | 2 | 5 | 7 | 13 | 21 | 16 | 8 | 33 40 | | | le:
ncy: | ele: 0-5
ncy: 2 | le: 0-5 5-10 acy: 2 5 | le: 0-5 5-10 10-15 acy: 2 5 7 | le: 0-5 5-10 10-15 15-20 acy: 2 5 7 13 | le: 0-5 5-10 10-15 15-20 20-25 acy: 2 5 7 13 21 | le: 0-5 5-10 10-15 15-20 20-25 25-30
acy: 2 5 7 13 21 16 | le: 0-5 5-10 10-15 15-20 20-25 25-30 30-35 acy: 2 5 7 13 21 16 8 | | Control of the last las | | | | |--|---------------|-----------------|---------------| | Calculation | of Karl Pears | on's Coefficier | t of Skawnoss | | Variable | and a | M.V.
(m) | d , | $d' = \frac{d}{5}$ | fď | f d ² | |----------|--------|-------------|------|--------------------|--------------------|-----------------------| | 0-5 | 2 | 2.5 | -20 | -4 | -8 | 32 | | 5-10 | 5 | 7.5 | -15 | -3 | -15 | 45 | | 10-15 | 7 | 12.5 | -10 | -2 | -14 | 28 | | 15-20 | 13 | 17.5 | -5 | -1 | -13 | 13 | | 20-25 | 21 | 22.5 = A | 0 | 0 | 0 | 0 | | 25-30 | 16 | 27.5 | +5 | +1 | 16 | 16 | | 30-35 | 8 | 32.5 | +10 | +2 | 16 | 32 | | 35-40 | 3 | 37.5 | +15 | +3 | 9 | 27 | | 2 (b) | N = 75 | Carlo II. | 7.13 | | $\Sigma f d' = -9$ | $\Sigma f d'^2 = 193$ | $$\overline{X} = A + \frac{\Sigma f d'}{N} \times i = 22.5 + \frac{(-9)}{75} \times 5 = 22.5 - 0.6 = 21.9$$ $$\sigma = \sqrt{\frac{\Sigma f d'^2}{N} - \left(\frac{f d'}{N}\right)^2} \times i = \sqrt{\frac{193}{75} - \left(\frac{-9}{75}\right)^2} \times 5$$ $$= \sqrt{2.5733 - 0.0144} \times 5 = \sqrt{2.5589} \times 5 = 1.599 \times 5 = 7.995$$ $$= \sqrt{2.5733 - 0.0144 \times 5} = \sqrt{2.5737 \times 10^{-2}}$$ By inspection, modal class is $20-25$ $$\therefore Z = I_1 + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times i = 20 + \frac{21 - 13}{42 - 13 - 16} \times 5$$ $$= 20 + \frac{40}{13} = 20 + 3.08 = 23.08$$ $$= -\frac{1}{2} \times 21.9 \quad \text{of } = 7.995, Z = 23.08$$ Thus, $\overline{X} = 21.9$, $\sigma = 7.995$, Z = 23.08.. Coefficient of Skewness = $\frac{\overline{X} - Z}{\sigma} = \frac{21.9 - 23.08}{7.995} = -0.15$ ulate Karl Pearson's Coefficient of Skewness from the following data: Example 3. | 700-800 | 600—700 | 600 | | arson 5 ccc | Calculate Kari Fe | |---------
-------------------|-----------|---------|-------------|-------------------| | 2 | 3 | -600 | 400—500 | 300-400 | Wages: | | 1 1 1 | The second second | 10 | 10 | 5 . | | | r | or formula fo | C- Havrin | 10 | 3 . | No. of workers: | Solution: Since the given series is a bimodel series, the followkewness is used: The energy representation of $$S_K = \frac{3(\overline{X} - M)}{\sigma}$$ #### Calculation of Coefficient of Skewness | | | | | | | 2 | c.f. | |---------|--------|------|------|------|---------------------|---------------------|--------| | Wages | f | M.V. | d | d 90 | fd | q fd ² | , c.j. | | | | 350 | -200 | -2 | -10 | 20 | 5 | | 300-400 | 3 | | - | -1 | -10 | 10. | 15 | | 400-500 | 10 | 450 | -100 | -1 | -10 | 0 - | 25 | | 500-600 | 10 | 550 | 0 | 0 | 0 | U | _ | | 600-700 | 3 | 650 | +100 | +1 | 3 | 3 | 28 | | | 2 | 750 | +200 | +2 | 4 | 8 | 30 | | 700—800 | N = 30 | 730 | 1200 | 8.4 | $\Sigma f d' = -13$ | $\Sigma f d^2 = 41$ | | $$\overline{X} = A + \frac{\sum fd'}{N} \times i = 550 \frac{137}{30} \times 10$$ = 550 - 43.33 = 506.67 Median = $\frac{N}{2} = \frac{30}{2} = 15$ th item. Median lies in the class interval 400-500. e class interval 400—500. $$M = l_1 + \frac{\frac{N}{2} - c \cdot f}{f} \times i = 400 + \frac{15 - 5}{10} \times 100 = 400 + 100 = 500$$ $$\sigma = \sqrt{\frac{\sum fd'^2}{N} - \left(\frac{\sum fd'}{N}\right)^2} \times i = \sqrt{\frac{41}{30} - \left(\frac{-13}{30}\right)^2} \times 100$$ $$= \sqrt{1.367 - 0.188} \times 100 = \sqrt{1.179} \times 100 = 1.086 \times 100 = 108.6$$ Median = 500, σ = 108.6 $\bar{X} = 506.67$, Median = 500, $\sigma = 108.6$ $$\bar{x} = 506.67$$, Netural = 300, 0 = 108.6 Coefficient of $S_K = \frac{3(\bar{X} - M)}{\sigma} = \frac{3(506.67 - 500)}{108.6} = \frac{20.01}{108.6} = +0.184$ the coefficient of skewness from the following data | Mid-point: | 15 | 20 | 25 | 20 | | | |------------|-----|------|----|----|----|----| | Frequency: | 12 | 18 | 25 | 24 | 35 | 40 | | Fiteque | 0.1 | 1:00 | | 27 | 20 | 21 | As the mid-points of the different class intervals are given, we first find actual class intervals by using the formula $m \pm i/2$, where, m = mid-point and i = difference between two mid-points. #### Calculation of Coefficient of Skewness | Classes | 25 - 5 | Mid-point m | d
(m – 25) | $d' = \frac{d}{5}$ | fď | fď². | |-----------|---------|-------------|---------------|--------------------|--------------------|----------------------| | 12.5—17.5 | -12 | 15 | -10 | -10 | -24 | 48 | | 17.5—22.5 | 18 | 20 | -5 | -5 | -18 | 18 | | 22.5—27.5 | 25 | 25 = A | 0 | 0 | 0 | 0 | | 27.5—32.5 | 24 | 30 | 5 | 5 | +24 | 24 | | 32.5-37.5 | 20 | 35 | 10 | +10 | +40 | 80 | | 37.5 42.5 | 21 | 40 | 15 | +15 | +63 | 189 | | 8 | N = 120 | T * | | | $\Sigma f d' = 85$ | $\Sigma f d^2 = 359$ | $$\overline{X} = A + \frac{\Sigma f d'}{N} \times i = 25 + \frac{85}{120} \times 5 = 25 + 3.542 = 28.542$$ $$\sigma = \sqrt{\frac{\Sigma f d'^2}{N} - \left(\frac{\Sigma f d'}{N}\right)^2} \times i = \sqrt{\frac{359}{120} - \left(\frac{85}{120}\right)^2} \times 5$$ $$= \sqrt{2.992 - 0.502} \times 5 = \sqrt{2.4902} \times 5 = 1.578 \times 5 = 7.89$$ Mode: The highest frequency is 25, mode lies corresponding to mid-point 25, i.e., in the class 22.5—27.5. Here, $$I_1 = 22 \cdot 5$$, $\Delta_1 = 25 - 18 = 7$, $\Delta_2 = 25 - 24 = 1$, $i = 5$ $$Z = 22.5 + \frac{7}{7+1} \times 5 = 22.5 + 4.375 = 26.875$$ $$S_{Kp} = \frac{\overline{X} - Z}{\sigma} = \frac{28.542 - 26.875}{7.89} = \frac{1.667}{7.89} = 0.211$$ There is a low degree of a six of the si There is a low degree of positive skewness. | the following date | | | 20: | 40 | 50 | (0 | |--------------------|----|----|-----|--------------|-----------|------| | Tax maders | 10 | 20 | 30 | 70 | 07 | 60 | | Year under: | 15 | 32 | 51 | 78 | 91 | 109 | | No. of Persons: | 13 | | | ald firet he | converted | into | Since it is a cumulative frequency series, it sh | 110 | danna | | | | | 6.7 | | |----------|-------|---------|-------------|-----------------------------|---------|--|----------------------| | | Years | f | M.V. (m) | d | ď | fď | fd ² | | L | | | | -30 | -3 | -45 | 135 | | | 0—10 | 15 | 3 | -20 | -2 | -34 | 68 | | | 10-20 | 17 | 15 | | 1 1 | 1917 P | 19 | | | 20-30 | 19 | 25 | -10 | 1 | None Ody a A | 19 | | \vdash | 30-40 | 27 | 35A | 0,19 | 0 | THE PERSON NAMED IN PORT OF TH | 0 | | - | 40-50 | 19 | 45 | +10 | 1 +1 10 | red et19moi | 19 | | \vdash | | | 55 | +20 | +2 | +24 | 48 | | L | 50-60 | 12 | 35 | | 700 | $\Sigma f d' = -55$ | $\Sigma f d^2 = 289$ | | 1 | Total | N = 109 | NOTE OF THE | STATE OF THE REAL PROPERTY. | | William Co. | 2 Ju - 289 | $$\overline{X} = A + \frac{\sum f d'}{N} \times i = 35 + \frac{(-55)}{109} \times 10 = 35 - 5.045 = 29.95$$ $$\sigma = \sqrt{\frac{\sum f d'^2}{N} - \left(\frac{\sum f d'}{N}\right)^2} \times i = \sqrt{\frac{289}{109} - \left(\frac{-55}{109}\right)^2} \times 10$$ $$= \sqrt{2.6513 - 0.2546} \times 10 = \sqrt{2.3967} \times 10$$ $$= 1.548 \times 10 = 15.48$$ $$= 1.548 \times 10 = 15.48$$ By inspection, modal class is $30-40$ $$\therefore Z = l_1 + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times i = 30 + \frac{27 - 19}{54 - 19 - 19} \times 10 = 30 + \frac{8}{16} \times 10 = 35$$ $$\therefore \text{ Coefficient of Skewness} = \frac{\overline{X} - Z}{\sigma} = \frac{2995 - 35}{15.48} = -0.32$$ Calculate Pearson's coefficient of skewness from the following data: $$\therefore \text{ Coefficient of Skewness} = \frac{\overline{X} - Z}{\sigma} = \frac{2995 - 35}{15.48} = -0.32$$ Example 6. Calculate Pearson's coefficient of skewness from the following data: | Marks above: | 10 | 20 | 30 | 40 | ø 50 | . 60 | 70 | 80 | 90 | |------------------|-----|----|----|----|------|------|----|----|----| | No. of students: | 100 | 97 | 90 | 70 | 40 | 25 | 15 | 8 | 3 | Solution: Since it is a cumulative frequency series, it should first be converted into simple | Marks | ſ | M.V.
(m) | d | d (b). | sd on | fi | |-------|----|-------------|-----|---------------|-------|----| | 10-20 | 3 | 15 | -40 | -4 | -12 | - | | 20-30 | 7 | 25 | -30 | -3 | -21 | (| | 30—40 | 20 | 35 | -20 | -2 | -40 | | | 40-50 | 30 | 45 . | -10 | -1 | -30 | | | 50-60 | 15 | 55 = A | 0 1 | _ | | | |--------|--------------|----------------------------|------|----|---------------------|---------------------| | 60-70 | 10 | 65 | +10 | 0 | 10 | | | 70-80 | 7 | 75 | +20 | +1 | 10 | 0 | | 80-90 | 5 | 85 | +30 | +2 | 14 | 10 | | 90—100 | 3 | 95 | +40 | +3 | 15 | 28 | | | N = 100 | | | +4 | 12 | 45 | | Mary! | <u>v</u> - 4 | $+\frac{\Sigma fd'}{\vee}$ | i 52 | | $\Sigma f d' = -52$ | $\Sigma f d^2 = 35$ | $$\overline{X} = A + \frac{54u}{N} \times i = 55 - \frac{52}{100} \times 10 = 55 - 5.2 = 49.8$$ $$\sigma = \sqrt{\frac{\Sigma f d'^2}{N} - \left(\frac{\Sigma f d'}{N}\right)^2} \times i = \sqrt{\frac{352}{100} - \left(\frac{-52}{100}\right)^2} \times 10$$ $$= \sqrt{3.52 - 0.2704} \times 10 = \sqrt{3.2496} \times 10$$ $$= 1.8026 \times 10 = 18.02$$ By inspection, modal class is 40-50 By inspection, modal class is $$40-50$$ $$Z = I_1 + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times i = 40 + \frac{30 - 20}{60 - 20 - 15} \times 10$$ $$= 40 + \frac{10 \times 10}{25} = 40 + 4 = 44$$ $$\therefore \text{ Coefficient of Skewness} = \frac{\overline{X} - Z}{\sigma} = \frac{49.8 - 44}{18.02} = \frac{5.8}{18.02} = 0.32$$ For a group of 20 items, $\Sigma X = 1452, \Sigma X^2 = 144280$ and mode = 6 rample 7. For a group of 20 items, $\Sigma X = 1452$, $\Sigma X^2 = 144280$ and mode = 63.7. Find Karl Pearson's co-efficient of Skewness. Coefficient of skewness = $\frac{\overline{X} - Z}{Z}$ express = $$\frac{X - Z}{\sigma}$$ $\overline{X} = \frac{\sum X}{N} = \frac{1452}{20} = 72.6$ $\sigma = \sqrt{\frac{\sum X^2}{N} - (\overline{X})^2} = \sqrt{\frac{144280}{20} - (72.6)^2}$ $= \sqrt{7214 - 5270.76} = 44.082$ Coefficient of Skewness = $\frac{\overline{X} - Z}{\sigma} = \frac{72.6 - 63.7}{44.082} = 0.202$ In a certain
distribution the following results were obtained: C.V. = 40%, \overline{X} = 25, Z = 20 Find out coefficient of skewness. C.V. = $$\frac{\sigma}{\overline{X}} \times 100 \Rightarrow 40 = \frac{\sigma}{25} \times 100 \Rightarrow \sigma = 10$$ Coefficient of Skewness = $$\frac{\overline{X} - Z}{\sigma} = \frac{25 - 20}{10} = \frac{5}{10} = \frac{1}{2} = +0.5$$ EXERCISE 7.1 data: (Use Pearson's Formula | . Calculate skewne | ss and its | COCILIE | 300 | | 14 | 15 | |--------------------|------------|---------|-----|-------------|------|----------| | Wages (Rs.): | 10 | 11 | 12 | 15 | . 8 | 5 | | No. of workers: | 4 | 7 | 9 | N. 1075 No. | 2 22 | anoff of | [Ans. $S_K = -2.22$, coeff. of $S_K = -1.457$] ess from the following data: | 2. | Calculate Pearson | s Coenic | icit of o | | | 100 40 | 20-30 | 10 20 | | |----|----------------------|----------|-----------|-------|-------|--------|-------|-------|------| | | Profits (Rs. lakhs): | 70-80 | 60-70 | 50-60 | 40—50 | 30-40 | 20-30 | 10-20 | 0-10 | | | | | 22 | -30 | 35 | 21 | 11 | 6 | 5 | | | No. of company: | - 11 | 22 | 30 | | | | | | [Ans. $$\overline{X}$$ = 46.84, Z = 47.86, σ = 17.08, Coeff. of $S_K = -0.0304$] 3. Calculate Pearson's Coefficient of Skewness from the following: | Calculate I cancer | | | | - | | 1 -0 | (0 | 70 | | |--------------------|-----|-----|-----|----|----|-------|---------|------|----| | Marks above: | 0 | 10 | 20 | 30 | 40 | 50 50 | 60 | 4H10 | 80 | | | - | | 100 | 80 | 80 | 70 | 30 | . 14 | 0 | | No. of students: | 150 | 140 | 100 | 80 | 00 | ,,, | THE ALL | 2.70 | 0 | [Hint: See Example 19] [Ans. $\overline{X} = 39.27, \sigma = 22.8, M = 45$; Coeff. of $S_K = -0.75$] Calculate Pearson coefficient of skewness based on mean, median and standard deviation from the following data: | from the following data. | | | | | | | | | |--------------------------|------|-------|-------|-------|-------|-------|-------|-----------------| | Age Groups: | 0—10 | 10—20 | 20—30 | 30—40 | 40—50 | 50—60 | 60—70 | 70 and
above | | No. of workers: | 18 | 16 | 15 | 12 | 10 | 6 P 5 | 102 . | ald to | [Ans. $$\overline{X}$$ = 26 app., M = 23.67, σ = 17.46, Coeff. of S_K = 0.4] 5. The daily expenditure of 100 families is given below: | Daily expenditure: | 0-20 | 20-40 | 40-60 | 60-80 | 80-100 | |--------------------|------|-------|-------|-------|--------| | No. of families: | 13 | ? | 27 | ? | 16 | If the mode of the distribution is 44, calculate Karl Pearson's coefficient of skewness. [Hint: See Example 18] [Ans. Coeff. of $S_K = 0.237$] 6. Find Pearson's Coefficient of skewness from the following data: | Height (inches): | 6062 | 6365 | 66-68 | 69—71 | 72-74 | | | | | |------------------|------|------|-------|---------------|-------|--|--|--|--| | Frequency: | 5 | 18 | 42 | 2 10 127 ST15 | 8 | | | | | [Ans. Coeff. of $S_K = 0.034$] From the marks secured by 120 students in Section A and 120 in Section B, the following measures are obtained: Section A: $\overline{\overline{X}} = 35.0,$ $\overline{\overline{X}} = 40.0,$ $\sigma = 7, Z = 32$ $\sigma = 10, Z = 30$ Section B: Determine which distribution of marks is more skewed. [Ans. B is more skewed] sures of Skewness g (2) Bowley's Method Bowley's Metricu (2) Bowley has given another method of measuring skewness. It is based upon median (M), prof. Bowley has divided quartile (M), and third quartile (M), and third quartile (M), and the following formulae for measuring skewness: wartile (1) and quartile more specific to the following formulae for measuring skewness: | Absolute Measure of Skewness | Bowley's Coass | |------------------------------|--| | $Sk = Q_3 + Q_1 - 2M$ | Bowley's Coefficient of Skewness Coeff. of $S_k = Q_3 + Q_1 - 2M$ | | | $Q_3 - Q_1$ | Steps for Calculation (1) Calculate Q_1 , i.e., first quartile 2) Calculate Q3, i.e., third quartile 3) Calculate M, i.e., median Substitute these values in the formulae. 4) Substitute the procedure of calculating Bowley's measure of skewness: Calculation of Bowley's Coefficient of Skewness in Discrete Series Example 9. Find Bowley's coefficient of skewness for the following frequency distribution | | | - | | 0 | -quency | distribu | tion: | |--|---|----|----|----|---------|----------|-------| | No. of children per family: | 0 | 1 | 2 | 3 | 4 | 5 | 6 | | No. of families: | 7 | 10 | 16 | 25 | 18 | 11 | 0 | | State of the later | | | | | | | | | Calculation of | of Bowley's Coefficient | of Skewness | |----------------------|-------------------------|-------------| | No. of children (X) | No. of families | c.f. | | 0 | - 7 | 7 | | | 10 | 17 | | 2 | 16 | 33 | | sasto ada 3 and very | 25 | 58 | | 4 | 18 | 76 | | 5 | 11 | 87 | | - new CE 6 - | 8 | 95 | Bowley's coefficient of skewness is given by Coefficient of $$S_K = \frac{Q_3 + Q_1 - 2M}{Q_3 - Q_1}$$ $$Q_1 = \text{Size of}\left(\frac{N+1}{4}\right)^{th} \text{ item} = \frac{95+1}{4} = 24^{th} \text{ item}$$ Size of 24^{th} item is 2. Hence, $Q_1 = 2$ $$Q_3 = \text{Size of } \frac{3(N+1)}{4} \text{th item} = \frac{3(95+1)}{4} = 72 \text{ th item}$$ Size of 72th item is 4. Hence, $Q_3 = 4$ M = Size of $$\frac{1}{2}(N+1)^{th}$$ item = $\frac{95+1}{2}$ = 48^{th} item. Size of 48th item is 3. Hence, Median = 3 Coeff. of skewness = $$\frac{Q_3 + Q_1 - 2M}{Q_3 - Q_1}$$ $$= \frac{4 + 2 - 2 \times 3}{4 - 2} = \frac{0}{2} = 0$$ # Calculation of Bowley's Coefficient of Skewness in Continuous Series Example 10. Calculate coefficient of skewness based on quartiles and median from the following | Marks: | 0_10 | 10-20 | 20-30 | 30-40 | 40-50 | 50—60 | 60—70 | 70-8 | |------------------|------|-------|-------|-------|-----------|--------|-------|------| | | | 20 | 20 | 15 | 10 | 35 | 25 | 10 | | No. of students: | 10 | 25 | 20 | 10. | N. Kanada | 25.570 | 0.11 | 10 | | Calculation of Bowley's | Coefficient of Skewness | |-------------------------|-------------------------| | | | | Marks | 1 | Med Byc.foll to no | |-------|--------|--------------------| | 0—10 | 10 | 10 | | 10-20 | 25 | 35 | | 20-30 | 20 | 14 of 155 and 187 | | 30-40 | 15 | 70 mil 10 .e/ | | 40-50 | 10 | No matricipal 80 | | 5060 | 35 | market 115 | | 60—70 | 25 | 140 | | 70—80 | 10 | . 150 | | | N= 150 | | $$Q_1 = \frac{N}{4} = \frac{150}{4} = 37.5$$ th item. Q_1 lies in the class interval 20—30 $$Q_1 = l_1 + \frac{\frac{N}{4} - c.f.}{f} \times i = 20 + \frac{375 - 35}{20} \times 10 = 20 + 1.25 = 21.25$$ $$Q_3 = \frac{3N}{4} = \frac{3}{4} \times 150 = 112.5 \text{th item.}$$ Q₃ lies in the class interval 50-60. $$Q_3 = I_1 + \frac{\frac{3}{4}N - c.f.}{f} \times i = 50 + \frac{112.5 - 80}{35} \times 10 = 50 + 9.29 = 59.29$$ Median item = $\frac{N}{2} = \frac{150}{2} = 75$ th item. Median lies in the class interval 40-50. $$M = I_1 + \frac{N}{f} \times i = 40 + \frac{75 - 70}{10} \times 10 = 45$$ $$Q_1 = 21.25, Q_3 = 59.29, M = 45$$ $$Coeff. of S_K = \frac{Q_3 + Q_1 - 2M}{Q_3 - Q_1}$$ $$= \frac{59.29 + 21.25 - 2 \times 45}{59.29 - 21.25}$$ $$= \frac{80.54 - 90}{38.04} = \frac{-9.46}{38.04} = -0.249$$ ale 11. Calculate Coefficient of Q.D. and Bowley's Coefficient of Skewness from the data given below: | Profits in lakhs (less than): | 10 | 20 | 30 | 40 | | | | |-------------------------------|----|----|----|----|----|----|----| | No. of Companies: | 8 | 20 | 40 | 50 | 30 | 60 | 70 | | at it is a summulation f | | | | 50 | 36 | 59 | 60 | ency series, first we convert it into simple frequency | Size | f | c.f. | |-----------|--------|------| | 0—10 | 8 | 8 | | 10—20 | 12 | 20 | | 20—30 | 20 | 40 | | 30—40 | 10 | 50 | | 40—50 | 6 | 56 | | 50—60 | 3 | 59 | | 60—70 | 1 | 60 | | N. Strain | N = 60 | | Coefficient of Q.D. = $$\frac{Q_3 - Q_1}{Q_3 + Q_1}$$ $$Q_1 = \text{Size of}\left(\frac{N}{4}\right)$$ th item = $\frac{60}{4}$ = 15th item. Q_1 lies in the class 10—20. $$Q_1 = I_1 + \frac{\frac{N}{4} - c.f.}{f} \times i = 10 + \frac{15 - 8}{12} \times 10
= 10 + 5.833 = 15.833$$ $$Q_3 = \text{Size of} \left(\frac{3}{4}N\right) \text{th item} = \frac{3}{4} \times 60 = 45 \text{th item. } Q_3 \text{ lies in the class } 30 - 40.$$ $$Q_3$$ = Size of $\left(\frac{3}{4}N\right)$ th item = $\frac{3}{4} \times 60 = 45$ th item. Q_3 lies in the class 30—40. $$Q_3 = I_1 + \frac{\frac{3}{4}N - c.f.}{f} \times i = 30 + \frac{45 - 40}{10} \times 10 = 35$$ $$\therefore \quad \text{Coeff. of Q.D.} = \frac{Q_3 - Q_1}{Q_3 + Q_1} = \frac{35 - 15.833}{35 + 15.833} = \frac{19.167}{50.833} = 0.377$$ $$\frac{N_3}{10.833} = \frac{90}{10.833} = \frac{19.167}{10.833} = 0.377$$ Median item = Size of $\frac{N}{2}$ th item = $\frac{60}{2}$ = 30th item. Median lies in the class 20—30. $$M = l_1 + \frac{\frac{N}{2} - c.f.}{f} \times i = 20 + \frac{30 - 20}{20} \times 10 = 20 + 5 = 25$$ $$Coeff. of S_K = \frac{Q_3 + Q_1 - 2M}{Q_3 - Q_1} = \frac{35 + 15.833 - 2(25)}{35 - 15.833} = \frac{0.833}{19.167} = 0.043$$ Example 12. Calculate Bowley's Coefficient of Skewness from the following data: | - | | _ | | | 1 4 | 6 | 7 | 8 | 9 | |-------------|--------------|---|----|----|-----|----|-------|----------|---------| | Mid-values: | 1 | 2 | 3 | 4 | - | - | 20 | 16 | | | E | 2 | 9 | 11 | 14 | 20 | 24 | 20 | 10 | 3 | | Frequency. | Frequency: 2 | _ | _ | | | | en we | first fi | nd actu | As the mid-values of the different class interv intervals by using the formula $m \pm \frac{i}{2}$ where m = mid-value, i = difference between two | Classes | Mid-values
(m) | ſ | c.f. | |----------|-------------------|---------|------| | 0.5—1.5 | 1 | 2 | 2 | | 1.5-2.5 | 2 | 9 | 11 | | 2.5-3.5 | 3 | 11 | 22 | | 3.5—4.5 | 4 | 14 | 36 | | 4.5-5.5 | 5 | 20 | 56 | | 5.5-6.5 | 6 | 24 | 80 | | 6.5-7.5 | 7 | 20 | 100 | | 7.5—8.5 | 8 | 16 | 116 | | 8.5-9.5 | 9 | 5 | 121 | | 9.5—10.5 | 10 | 2 | 123 | | | | N = 123 | 7 . | $$Q_1 = \text{size of } \frac{N}{4} \text{ th item} = \frac{123}{4} = 30.75$$ Q₁ lies in the class 3.5 - 4.5. $$Q_1 = I_1 + \frac{\frac{N}{4} - c.f.}{f} \times i = 3.5 + \frac{30.75 - 22}{14} \times 1$$ $$= 3.5 + 0.625 = 4.125$$ $$Q_3 = \text{size of } \frac{3N}{4} \text{ th item} = \frac{3 \times 123}{4} = 92.25 \text{th item}$$ Q_3 lies in the class 6.5 - 7.5 $$Q_3 = I_1 + \frac{\frac{3N}{4} - c.f.}{f} \times i = 6.5 + \frac{92.25 - 80.}{20} \times 6.5 + 0.6125 = 7.1125$$ Median item = Size of $\left(\frac{N}{2}\right)$ th item = $\frac{123}{2}$ = 61.5th item. Median lies in the class 5.5 - 6.5. lies in the class 5.5 - 6.5. $$M = I_1 + \frac{\frac{N}{2} - c.f.}{f} \times i = 5.5 + \frac{61.5 - 56}{24} \times 1$$ $$= 5.5 + 0.2292 = 5.7292$$ Coeff. of $S_K = \frac{Q_3 + Q_1 - 2M}{Q_3 - Q_1} = \frac{7.1125 + 4.125 - 2(5.7292)}{7.1125 - 4.125}$ Coeff. of $$S_K = \frac{2}{Q_3 - Q_1} = \frac{-11.25 + 4.125 - 2(5.72)}{7.1125 - 4.125}$$ = $\frac{11.2375 - 11.4582}{2.9875} = \frac{-0.2207}{2.9875} = -0.073$ ge 13. For a distribution, Bowley's coefficient of skewness is -0.56, $Q_1 = 16.4$ and Median = 24.2. Find Q_3 and coefficient of quartile deviation. Given: Coeff. of $$S_K = -0.56$$, $Q_1 = 16.4$, $M = 24.2$ Coeff. of $S_K = \frac{Q_3 + Q_1 - 2M}{Q_3 - Q_1}$ $$-0.56 = \frac{Q_3 + 16.4 - 2(24.2)}{Q_3 - 16.4}$$ $$\Rightarrow -0.56 (Q_3 - 16.4) = Q_3 + 16.4 - 48.4$$ $$-0.56 Q_3 + 9.184 = Q_3 + 16.4 - 48.4$$ $$-0.56 Q_3 - Q_3 = 16.4 - 48.4 - 9.184$$ $$-1.56 Q_3 - 41.184$$ $$Q_3 = 26.4$$ $$\therefore Q.D. = \frac{Q_3 - Q_1}{2} = \frac{26.4 - 16.4}{2} = 5.$$ 14. Find coefficient of skewness from the following information: Difference of two quartiles = 8 Mode = 11 2 Sum of two quartiles = 22 Mean = 8 $Z=3M-2\overline{X}$ $3M = Z + 2\overline{X} = 11 + 2 \times 8 = 27$ Bowley's Coeff. of Skewness = $\frac{Q_3 + Q_1 - 2M}{Q_3 - Q_1} = \frac{22 - 2 \times 9}{8} = \frac{22 - 18}{8} = \frac{4}{8} = \frac{1}{2} = 0.5$ Example 15. For a distribution the distance of the median from the first quartile is five times of the third quartile from the median. Calculate Bowley's Coefficient of Skewness for the third quartile from the median. distribution. Solution: We are given: $M - Q_1 = 5(Q_3 - M)$ $S_{K}(Bowley) = \frac{(Q_{3} - M) - (M - Q_{1})}{(Q_{3} - M) + (M - Q_{1})} = \frac{(Q_{3} - M) - 5(Q_{3} - M)}{(Q_{3} - M) + 5(Q_{3} - M)} = \frac{4(Q_{3} - M)}{6(Q_{3} - M)} = \frac{-2}{3} = -0.67$ Bowley's coefficient of skewness is given by: ## **EXERCISE 7.2** 1. Calculate coefficient of quartile deviation and Bowley's coefficient of skewness from the | lowing d | | 10-20 | 20-30 | 30-40 | 40—50 | Above 5 | |----------|----------|-------|-------|-------------|----------------|-------------| | Size: | Below 10 | | 20 | 16 | 5 | 2 | | 6. | 5 | . 12 | 20 | June 19 bra | D. = 0.313, Co | off of Sy = | | | | | - | - 6 | 7 | owing data | 9 | _ | |----|---|---|---|-----|------|-----------------|-----|---| | X: | 3 | 4 | 3 | - | - 10 | 0 | - 5 | | | | 2 | 5 | 7 | 11 | 10 | $7, Q_3 = 8, C$ | | _ | | Calculate Boy | wley's C | oefficient | of skewne | ess from th | e followi | ng data: | | |---------------------------|----------|------------|-----------|-------------|-----------|----------|-------------------| | | 75 | 100 | 125 | 150 | 175 | 200 | 225 | | Mid-values:
Frequency: | 35 | 40 | 48 | 100 | 125 | 80 | 50 | | Frequency. | | | 1-180 | 10-11 | | [Ans. C | Coeff. of $S_K =$ | 4. The mean, mode and Q.D. of a distribution are 42, 36 and 15 respectively. If its Bowley's coefficient of skewness is 1/3, find the values of two quartiles. [Ans. $Q_1 = 20, Q_3 = 50$] [Hint: Find $$M = \overline{X} - \frac{1}{3}Z$$] 5. Calculate the quartile co-efficient of skewness for the following distribution: | lass: | 15 | 6—10 | 11—15 | 16-20 | 21—25 | 26—30 | |-------|----|------|-------|-------|-------|------------| | f: | 3 | 4 | 68 | 30 | 10 | 6 | | f: | 3 | 4 | 68 | 30 | 10 | ns. Coeff. | g (3) Kelly's Method The third method of measuring skewness is given by Prof. Kelly. It is based on the third deciles. Kelly has given the following formulae for measuring skewness: | decircs | I measuring skew | |---------------------------------|---| | Absolute Measures of S_X | Coefficient of S _K | | 1. $S_K = P_{90} + P_{10} - 2M$ | 1. Coeff. of $S_K = \frac{P_{90} + P_{10} - 2M}{1}$ | | or | $P_{90} - P_{10}$ | | $2. S_K = D_9 + D_1 - 2M$ | 2. Coeff. of $S_K = \frac{D_9 + D_1 - 2M}{D_9 - D_1}$ | | | -y D | This method is not very popular in practice. It is suitable when the skewness is based on les or deciles. o Steps for Calculation - (1) Calculate P₉₀, i.e., Nineteenth Percentile - (2) Calculate P_{10} , i.e., Tenth Percentile - (3) Calculate M, i.e., Median. - (4) Substitute these in the formulae. Example 16. From the data given below, find out Kelly's Coefficient of Skewness based on percentiles: | Marks: | 0—10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | |------------------|------|-------|-------|-------|-------|-------| | No. of students: | 4 | 6 | 20 | 10 | 7 | 3 | | Marks | f | c.f. | |-------|--------|------| | 0—10 | 4 | 4 | | 10—20 | 6 | 10 | | 20—30 | 20 | 30 | | 30—40 | 10 | 40 | | 40—50 | 7 | 47 | | 50-60 | 3 | 50 | | 30-00 | N = 50 | | $$P_{90} = \text{Size of } \frac{90N}{100} \text{ th item} = \frac{90 \times 50}{100} = 45 \text{th item.}$$ P₉₀ lies in the class interval 40-50. $$P_{90} = l_1 + \frac{90N}{100} - c.f.$$ $$f \times i = 40 + \frac{45 - 40}{7} \times 10 = 47.14$$ $$P_{10} = \text{Size of } \frac{10N}{100} \text{ th item} = \frac{10 \times 50}{100} = 5 \text{th item}.$$ $$\begin{split} P_{10} & \text{ lies in the class interval } 10 - 20. \\ P_{10} & = I_1 + \frac{10N}{100} - c.f. \\ & = 10 + \frac{5 - 4}{6} \times 10 = 11.67 \\ & \text{Median item} = \text{Size of } \frac{N}{2} \text{th item} = \frac{50}{2} = 25 \text{th item.} \end{split}$$ Median item 2 2 M lies in the class interval 20–30. $$M = l_1 + \frac{\frac{N}{2} - c.f.}{f} \times i = 20 + \frac{25 - 10}{20} \times 10$$ $$= 20 + \frac{15 \times 10}{20} = 27.5$$ $$= 20 + \frac{27.5}{20} = 27.5$$ $$\therefore P_{90} = 47.17, P_{10} = 11.67, M = 27.5$$ $$\text{Kelly's Coeff. of Skew.} = \frac{P_{90} + P_{10} - 2M}{P_{90} - P_{10}} = \frac{47.14 + 11.67 - 2 \times 27.5}{47.14 - 11.67} = 0.11$$ ## **EXERCISE 7.3** Calculate Kelly's coefficient of skewness from the data given below: | aicuiuco . | | | 120—125 | 125—130 | 130—135 | |------------|---------|---------------|---------|----------|---------------------| | X: | 110—115 | 115—120
10 | 26 | 49 | 72 | | <i>f</i> : | 135—140 | 140—145 | 145—150 | 150—155 | 155—160 | | f: | 90 | 52 | -33 | [Ans Cor | eff. of $S_K = 0.0$ | 2. Compute Kelly's coefficient of skewness based on percentiles from the following: | Marks: | 15—20 | 20-25 | 25-30 | 30—35 | 35—40 | 40—4: | |------------------|-------|-------|-------|-------|-------------|--------------| | No. of students: | 1 | 2 | 15 | 22 | 7 | 3 | | No. or statemen | | - | | | Ans. Coeff. | of $S_K = 0$ | ## MISCELLANEOUS SOLVED EXAMPLES Example 17: Calculate arithmetic mean, mode, standard deviation and coefficient of skewness for | Marks (less than): | 10 | 20 | 30 | 40 | 50 | |--------------------|----|----|----|----|----| | No. of students: | 4 | 10 | 30 | 40 | 47 | The above data are in cumulative form. Firstly these data will be converted into | Marks
(X) | f | M.V.
(m) | d | ď | fď | au2 | |--------------|--------|-------------|-----|----|-----------------|---------------------| | 0-10 | 4 | 5 | 20 | - | , | fď ² | | 10-20 | 6 | 15 | -10 | -2 | -8 | 16 | | 20-30 | 20 | 25 = A | 0 | -1 | -6 | 6 | | 30-40 | 10 | 35 | +10 | +1 | 0 | 0 | | 40—50 | 7 | 45 | +20 | +2 | 10 | 10 | | 50-60 | 3 | 55 | +30 | | 14 | 28 | | 30-00 | N = 50 | | | +3 | 9 | 27 | | Principle. | 1 | 2611 | 10 | | $\Sigma fd'=19$ | $\Sigma f d^2 = 87$ | $$\overline{X} = A + \frac{\Sigma f d'}{N} \times i = 25 + \frac{19}{50} \times 10 = 28.8$$ By inspection, mode lies in the class $$20-30$$ $$Z = I_1 + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times i = 20 + \frac{20 - 6}{40 - 6 - 10} \times 10$$ $$= 20 + \frac{14}{24} \times 10 = 20
+ 5.83 = 25.83$$ $$\sigma = \sqrt{\frac{\Sigma f d'^2}{N} - \left(\frac{\Sigma f d'}{N}\right)^2} \times i = \sqrt{\frac{87}{50} - \left(\frac{19}{50}\right)^2} \times 10$$ $$= \sqrt{1.74 - 0.1444 \times 10} = 1.263 \times 10 = 12.63$$ Coefficient of skewness = $$\frac{\overline{X} - Z}{\sigma} = \frac{28.8 - 25.83}{12.63} = \frac{2.97}{12.63} = +0.235$$ le 18. The daily expenditure of 100 families is given below: | Daily expenditure: | 0—20 | 20—40 | 40—60 | 60-80 | 80—100 | |--------------------|------|-------|-------|-------|--------| | No. of families: | 13 | ? | 27 | ? | 16 | If the mode of the distribution is 44, calculate Karl Pearson Coefficient of skewness. Let the missing frequency for the class 20—40 be X. The frequency for the class 60—80 shall be 100 - (56 + x) = 44 - x | Expenditure | f | c.f. | |-------------|---------|------| | 0—20 | 13 | 13 | | 20-40 | x | 13+x | | 4060 | 27 | 40+x | | 60—80 | 44 – x | . 84 | | 80—100 | 16 | 100 | | | N = 100 | | The formula of mode is: node is: $$Z = l_1 + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times i$$ $$A \text{ it lies in the}$$ $$Z = I_1 + \frac{1}{2f_1 - f_0 - f_2}$$ Since the given modal value is 44, it lies in the class 40—60. $$44 = 40 + \frac{27 - x}{54 - x - (44 - x)} \times 20$$ $$44 = 40 + \frac{27 - x}{10} \times 20$$ or $$44-40 = 10$$ or $4 = \frac{27-x}{10} \times 20$ or $40 = (27-x)20$ or $$40 = (27 - x) 20$$ $27 - x = 2$ or $x = 25$ Thus, the frequency for the class 20—40 is 25 and the frequency of the class 60—80 is 44-25 = 19. Thus, the completed frequency distribution is: | 0—20 | 20-40 | 40—60 | 60—80 | 80—100 | |------|-------|-------|-------|--------| | 12 | 25 | 27 | 19 | 16 | | 13 | 23 | | | | #### Calculation of Coefficient of Skewness | Daily
Expenditure | f | M.V.
(m) | d | ď | fď | fď ² | |----------------------|---------|-------------|------|---------------|-------------------|------------------------| | 0-20 | 13 | 10 | - 40 | 2 | -26 | · 52 | | 20-40 | 25 | 30 | -20 | -1 | - 25 | 25 | | 4060 | 27 | 50 = A | 0 | 0 | 0 | 0_ | | 60—80 | 19 | 70 | + 20 | +111111111 | 19 | 19 | | 80—100 | 16 | 90 | + 40 | +2 | 32 | 64 | | | N = 100 | | - | and an intra- | $\Sigma f d' = 0$ | $\Sigma f a^{*2} = 16$ | Karl Pearson coefficient of skewness = $\frac{\overline{X} - Z}{\sigma}$ $$\overline{X} = A + \frac{\sum f d'}{N} \times i = 50 + \frac{0}{100} \times 10 = 50$$ $$\sigma = \sqrt{\frac{\sum f d'^2}{N} - \left(\frac{\sum f d'}{N}\right)^2} \times i = \sqrt{\frac{160}{100} - \left(\frac{0}{100}\right)^2} \times 20$$ $$= \sqrt{1.6 - 0} \times 20$$ $$= 1.265 \times 20 = 25.3$$ Coeff. of $$S_K = \frac{\overline{X} - Z}{\sigma} = \frac{50 - 44}{25.3} = \frac{6}{25.3} = 0.237$$ Calculate Karl Pearson's Coefficient of skewness from the following | Marks above: | 0 | 10 | 20 | 30 40 data: | |-------------------|----------|--------|---------|----------------| | No. of students: | 150 | 140 | 100 | 80 80 60 70 80 | | The above data at | e in cum | mulati | ve from | 30 70 20 | | Marks | f | M.V.
(m) | d | ď | f ď | fd ² | c.f. | |---------|----------|-------------|-----|----|-----------|------------------------|------| | 0-10 | 10 | 5 | -40 | -4 | 1 | , | c.j. | | 10-20 | 40 | 15 | -30 | -3 | -40 | 160 | 10 | | 20-30 | 20 | 25 | -20 | -2 | -120 | 360 | 50 | | 30-40 | 0 | 35 | -10 | -1 | -40 | 80 | 70 | | 40-50 | 10 | 45 = A | 0 | 0 | 0 | 0 | 70 | | 50-60. | 40 | 55 | +10 | +1 | 0 | 0 | 80 | | 60-70 | 16 | 65 | +20 | +2 | 40
32 | 40 | 120 | | 70-80 | 14 | 75 | +30 | +3 | 42 | 64 | 136 | | 80-90 | 0 | 85 | +40 | +4 | 0 | 126 | 150 | | andura) | N = 150 | FI THE | | | | 0 | 150 | | | 14 - 150 | | | | 2fd = -86 | $\Sigma f d^{2} = 830$ | | As this is a bimodal series (i.e., there are two maximum frequencies), we will find coefficient of skewness by using the formula icient of skewness by using the formula Coeffi. of $$S_K = \frac{3(\overline{X} - M)}{\sigma}$$ $\overline{X} = A + \frac{\Sigma f d'}{N} \times i = 45 + \frac{(-86)}{150} \times 10 = 45 - \frac{86}{15} = 39.27$ Median item = Size of $\frac{N}{2} = \frac{150}{2} = 75$ th item. Median lies in class 40—50. $$M = l_1 + \frac{\frac{N}{2} - c.f.}{f} \times i$$ $$= 40 + \frac{75 - 70}{10} \times 10 = 40 + \frac{5}{10} \times 10 = 40 + 5 = 45$$ $$\sigma = \sqrt{\frac{\Sigma f d'^2}{N} - \left(\frac{\Sigma f d'}{N}\right)^2} \times i = \sqrt{\frac{830}{150} - \left(\frac{-86}{150}\right)^2} \times 10$$ $$= \sqrt{5.53 - 0.33} \times 10 = \sqrt{5.20} \times 10 = 2.28 \times 10 = 22.8$$ $$3(\overline{X} - M) \quad 3(39.27 - 45) = \frac{3(-5.73)}{20} = \frac{-17.19}{20} = -0.7$$ $$= \sqrt{5.53 - 0.33 \times 10} = \sqrt{3.20 \times 10}$$ Coeff. of skewness = $\frac{3(\overline{X} - M)}{\sigma} = \frac{3(39.27 - 45)}{22.8} = \frac{3(-5.73)}{22.8} = \frac{-17.19}{22.8} = -0.75$ Example 20. You are given the position in a factory before and after the settlement of an industrial You are given the position in a factory before and after the southerness of an industrial dispute. Comment on the gains or losses from the point of view of workers and that of | anagement. | | After | |-----------------------|--------|-------| | | Before | 2,350 | | and the second second | 2,400 | | | No. of workers | 45.5 | 47.5 | | Mean wages (Rs.) | | 45.0 | | Median wages (Rs.) | 48.0 | 10.0 | | Median wages (Pc) | 12.0 | 10.0 | The following comments can be made on the basis of the information given: The following comments can be made on the following comments on the increase or decrease in the level of wages. Total wage bill before the settlement of dispute = $2,400 \times 45.5 = Rs. 1,09,200$ Total wage oill after the settlement of dispute = $2,350 \times 47.5 = \text{Rs. } 1,11,625$. Hence the total wage bill has gone up after the settlement of dispute even though the number of workers has decreased from 2,400 to 2,350. This means that the average wage is now higher. This is definitely a gain to the workers. Conversely, we cannot say that increased wage bill is necessarily a loss to management because if it results in greater efficiency of workers and, therefore, higher productivity, it would be a positive gain to management also. (ii) Median before settlement of the dispute was 48 and after settlement it is 45. This means that formerly 50% of workers used to get above Rs. 48 and now they get only above Rs. 45. (iii) By comparing the coefficient of variation before and after the settlement of dispute we can comment on the distribution of wages. Coefficient of variation before the settlement of dispute C.V. = $$\frac{\sigma}{\overline{X}} \times 100$$, where, $\sigma = 12$, $\overline{X} = 45.5$ C.V. = $\frac{12}{45.5} \times 100 = 26.37$ Coefficient of variation after the settlement of dispute $\sigma = 10, \overline{X} = 47.5$ $$\therefore C.V. = \frac{10}{47.5} \times 100 = 21.05$$ Since the value of the coefficient of variation has decreased from $26.4\ \text{to}\ 21.05$ there is sufficient evidence to conclude that wages are more uniformly distributed after the settlement of dispute or, in other words, there is lesser inequality in the distribution of wages after the dispute is settled. (iv) By comparing skewness, we can comment upon the nature of the distribution. Coefficient of skewness before the settlement of dispute Coefficient of skewness before the settlement of dispute $$S_{Kp} = \frac{3(\bar{X} - M)}{\sigma} = \frac{3(45.5 - 48)}{12} = \frac{-7.5}{12} = -0.625$$ Coefficient of skewness after the settlement of dispute $$S_{Kp} = \frac{3(47.5 - 45)}{10} = \frac{7.5}{10} = +0.75$$ Thus, the distribution is positively skewed after the settlement of settle $$S_{Kp} = \frac{3(47.5 - 45)}{10} = \frac{7.5}{10} = +0.75$$ Thus, the distribution is positively skewed after the settlement of dispute whereas number of workers getting low wages has increased considerably and that of workers getting high wages fallen, though the actual wage of workers has increased. Calculate Bowley's coefficient of skewness for the following dat | Size: | 5—7 | 8—10 | 11-13 | mg uata: | | |-------|----------------|------|-------|----------|-------| | f: | 14 | 24 | 20 | 14—16 | 17—19 | | | oro in inclusi | c - | 38 | 20 | 4 | ervals are in inclusive form. For finding median and quartiles, we convert the given distribution into exclusive form: | X | f | c.f. | |------------|---------|------| | 4.5—7.5 | 14 | 14 | | 7.5—10.5 | 24 | 38 | | 10.5—13.5 | 38 | 76 | | ·13.5—16.5 | 20 | 96 | | 16.5—19.5 | 4 | 100 | | | N = 100 | | $$Q_1 = \text{Size of } \frac{N}{4} = \frac{100}{4} = 25 \text{th item.}$$ Q_1 lies in the class interval 7.5—10.5. $$Q_1 = I_1 + \frac{\frac{N}{4} - c.f.}{f} \times i = 7.5 + \frac{25 - 14}{24} \times 3 = 8.87$$ $$Q_3 = \text{Size of } \frac{3N}{4} = \frac{3(100)}{4} = 75 \text{th item.}$$ $$Q_3 \text{ lies in class interval } 10.5 - 13.5.$$ $$Q_3 = I_1 + \frac{\frac{3}{4}N - c.f.}{f} \times i = 10.5 + \frac{75 - 38}{38} \times 3 = 13.42$$ $$Median = Size of \frac{N}{2} = \frac{100}{2} = 50 \text{th item.}$$ Median = Size of $$\frac{N}{2} = \frac{100}{2} = 50$$ th item M lies in the class interval 10.5—13.5. ...(i) ...(ii) (Given) $$M = I_1 + \frac{\frac{N}{2} - c.f.}{f} \times i = 10.5 + \frac{50 - 38}{38} \times 3 = 11.447$$ $$\therefore \text{ Bowley's Coefficient of Skewness} = \frac{Q_3 + Q_1 - 2M}{Q_3 - Q_1}$$ $$= \frac{13.42 + 8.87 - 2 \times 11.447}{13.42 - 8.87} = -0.13$$ Example 22. In a frequency distribution, the coefficient of skewness based on quartiles is 0.6. If the sum of upper and lower quartiles is 100 and Median is 38, find the value of lower and upper quartiles. Solution: and upper quartiles. Given: $$Q_1 + Q_3 = 100$$, $M = 38$ and $S_K = 0.6$ Bowley coeff. of skewness = $\frac{Q_3 + Q_1 - 2M}{Q_3 - Q_1}$ Substituting the values in Bowley's formula, we get $$0.6 = \frac{100 - 2(38)}{Q_3 - Q_1}$$ or $$0.6(Q_3 - Q_1) = 100 - 76 = 24$$ or $Q_3 - Q_1 = \frac{24}{0.6} = 40$ or $$Q_3 - Q_1 = 0.6$$ Now $Q_3 + Q_1 = 100$ $Q_3 - Q_1 = 40$ By adding (i) and (ii), we get By adding (i) and (ii),
we get $$2Q_3 = 140$$ $$Q_3 = 70$$ Also $$Q_1 = 100 - 70 = 30$$ Also $$Q_1 = 100 - 70$$ $\therefore Q_1 = 30, Q_3 = 70$ Pearson's coefficient of skewness for a distribution is 0.4 and coefficient of variance Example 23. is 30%. Its mode is 88. Find the mean and median. We are given $S_{Kp} = 0.4$, mode = 88 and coeff. of variance 30 %. We have to calculate Solution: mean and median. $$S_K = \frac{\text{Mean} - \text{Mode}}{\sigma}$$ Coeff. of variance is 30% or $$\frac{\sigma}{X} = 0.3$$ $$= \frac{1 - \frac{\text{Mode}}{\text{Mean}}}{\frac{\text{S.D.}}{\text{Mean}}} = \frac{1 - \frac{88}{\text{Mean}}}{0.3} = 0.4 = 1 - \frac{88}{\text{Mean}} = 0.12 = 1 - \frac{88}{\text{Mean}}$$ $$\frac{88}{\text{Mean}} = 1 - 0.12 = 0.88$$ 0.88 Mean = 88 or Mean = $\frac{88}{0.88}$ = 100 $$Mode = 3 Median - 2\overline{X}$$ $$88 = 3 \text{ Median} - 2(100)$$ 3 Median = 288 or Median = 96 Hence, mean and median are 100 and 96 respectively. nsider the following distributions: | Items | Distribution
A | Distribution | |------------------|-------------------|--------------| | ean | 100 | 90 | | lode | 90 | 80 | | andard Deviation | 10 | 10 | - (f) Distribution A has the same degree of the variation as distribution B. - (ii) Both distributions have the same degree of skewness. True/False? Comment, giving reasons. (i) C.V. for distribution A = $100 \times \frac{\sigma_A}{\overline{X}_A} = 100 \times \frac{10}{100} = 10$ C.V. for distribution A = $100 \times \frac{\sigma_B}{\overline{X}_B} = 100 \times \frac{10}{90} = 11.11$ Since C.V.(B) > C.V.(A), the distribution B is more variable than the distribution A. Hence, the given statement that the distribution A has the same degree of variation as distribution B is wrong. (ii) Karl Pearson's coefficient of skewness for the distributions A and B is given by: $$S_K(A) = \frac{3(\overline{X} - M)}{\sigma} = \frac{3(100 - 90)}{10} = 3$$ and $S_K(B) = \frac{3(90 - 80)}{10} = 3$ Since $S_K(A) = S_K(B) = 3$, the statement that both the distributions have the same degree of skewness is true. ## MEASURES OF SKEWNESS 1. Pearson's Measures Absolute skewness: Skewness = $\overline{X} - Z$ when mode (Z) is ill defined, then Skewness = $3(\overline{X} - M)$ Relative measure of skewness: (i) Coefficient of Skewness = $\frac{\overline{X} - Z}{Z}$ (ii) Coefficient of Skewness = $$\frac{3(\overline{X} - M)}{\sigma}$$ (when Z is ill defined) #### 2. Bowley's Measures Absolute skewness: Skewness = $Q_3 + Q_1 - 2M$ Relative measure of skewness: Coefficient of skewness = $\frac{Q_3 + Q_1 - 2M}{2}$ 3. Kelly's Measures Absolute skewness: Skewness = $P_{90} + P_{10} - 2M$ or $D_9 + D_1 - 2M$ Relative measure of skewness: Coefficient of skewness = $\frac{P_{90} + P_{10} - 2M}{P_{90} - P_{10}}$ or $\frac{D_9 + D_1 - 2M}{D_9 - D_1}$ #### QUESTIONS - 1. What is skewness? How does it differ from dispersion? Describe the various measures of skewness. - 2. Distinguish between dispersion and skewness and point out the various methods of measuring skewness. - What is skewness? What are tests of skewness? Draw rough sketches to indicate different types of skewness and locate rough the relative position of mean, median and mode in each case. - 4. (i) Define skewness. How does it differ from dispersion? - (ii) Explain different measures of skewness. # Moments and Measures of Kurtosis # NTRODUCTION average, dispersion and skewness, kurtosis is the fourth characteristic of a frequency on which gives us an idea about the shape of a frequency distribution. Kurtosis indicates, frequency distribution is more flat-topped or more peaked than the normal distribution. Kurtosis indicates, asking up a detailed study of Kurtosis, it is necessary to introduce the concept of moments executial for its study. metris are the general statistical measures used to describe and analyse the characteristics of televidistribution. There are three basis for defining moments: - (1) Moments about the Mean - (2) Moments about Assumed Mean - (3) Moments about zero. ## (1) Moments about the Mean The moment about the mean are called central moments. They are denoted by Greek symbol u The moment about the mean is defined and given by: $(X_1, X_2, X_3, ..., X_n)$ be the n values of a variable X and \overline{X} be its actual mean, then the mean is defined and given by: $$\mu_r = \frac{\Sigma (X - \overline{X})^r}{N}$$ where $\mu_r = r$ th moment about the mean, $r = 1, 2, 3, 4...$ requency distribution (or grouped data), the rth moment about mean is defined as: $$\mu_r = \frac{\sum f(X - \overline{X})^r}{N} \text{ where } N = \sum f, r = 1, 2, 3, 4...$$ $$r = 1, 2, 3 \text{ and 4, the various central moments are as formula of mo$$ | Individual Series | Discrete/Continuous Series | |--|--| | μ_1 = First Central Moment = $\frac{\Sigma (X - \overline{X})^1}{N} = 0$ | $\mu_1 = \frac{\sum f(X - \overline{X})^1}{N} = 0$ | | $\mu_2 = \text{Second Central Moment} = \frac{\Sigma (X - \overline{X})^2}{N}$ | $\mu_2 = \frac{\sum f(X - \overline{X})^2}{N}$ | | μ_3 = Third Central Moment = $\frac{\Sigma (X - \overline{X})^3}{N}$ | $\mu_3 = \frac{\sum f(X - \overline{X})^3}{N}$ | | μ_4 = Fourth Central Moment = $\frac{\Sigma (X - \overline{X})^4}{N}$ | $\mu_4 = \frac{\sum f(X - \overline{X})^4}{N} .$ | are extended to higher powers but in practice the first four moments are obtain difficulty of computation taken from the mean is zero (z): the square of the standard deviation, i.e., $\mu_2 = (S, D_1)^2$. Note 2: The second central moment μ_2 is the square of the standard deviation, i.e., $\mu_2 = (S, D_2)^2$. The second central moment μ_2 is a square of the samual deviation, i.e., $\mu_2 = \text{Variance} = \sigma^2$. Example 1. Find the first four central moments of the following numbers: 1, 3, 7, 9, 10 Calculation of Moments MOITO Solution: | | Car | Culation of The | 7.617 | | |-----------------|---|-------------------------------|-------------------------------------|--------------------------| | v | $\overline{X} = 6$ $(X - \overline{X})$ | $(X-\overline{X})^2$ | $(X-\overline{X})^3$ | (X - | | | 1-6=-5 | 25 | -125 | 62 | | <u>.</u> | 3-6=-3 | 9 | -27 | 8 | | 3 | 7-6=1 | 1 | 1 1 224 24 | 1 | | - 1 | 9-6=3 | 9 · | 27 | 8 | | 10 | 10 6-4 | 16 | 64 | 25 | | $\Sigma X = 30$ | $\Sigma(X-\overline{X})=0$ | $\Sigma(X-\overline{X})^2=60$ | $\Sigma (X - \overline{X})^3 = -60$ | $\Sigma(X-\overline{X})$ | $$\overline{X} = \frac{\sum X}{N} = \frac{30}{5} = 6$$ $$\mu_1 = \frac{\sum (X - \overline{X})}{N} = \frac{0}{5} = 0; \ \mu_2 = \frac{\sum (X - \overline{X})^2}{N} = \frac{60}{5} = 12$$ $$\mu_3 = \frac{\sum (X - \overline{X})^3}{N} = \frac{-60}{5} = -12; \ \mu_4 = \frac{\sum (X - \overline{X})^4}{N} = \frac{1044}{5} = 208.8.$$ **Example 2.** Calculate $\mu_1, \mu_2, \mu_3, \mu_4$ for the following frequency distribution: | Marks: | 5—15 | 15—25 | 25—35 | 35—45 | 45—55 | 55—65 | |------------------|------|-------|-------|-------|-------|-------| | No. of students: | 10 | 20 | 25 | 20 | 15 | 10 | #### Salution #### Calculation of Moments | Solutio | Solution: | | | Calculation of Montents | | | | | | |---------|-----------------|---------------------|---------------------|--|--------------------------------|-------------------------------------|-------------------------------------|---------------------------------|--| | Marks | No. of students | Mid-
values
X | ſΧ | $\overline{X} = 34$ $(X - \overline{X})$ | $f(X-\overline{X})$ | $f(X-\overline{X})^2$ | $f(X-\overline{X})^3$ | $f(X-\bar{X})$ | | | 5—15 | 10 | 10 | 100 | -24 | -240 | 5760 | -138240 | 3317760 | | | 15—25 | 20 | 20 | 400 | -14 | -280 | 3920 | -54880 | 768320 | | | 25—35 | 25 | 30 | 750 | 4 | -100 | 400 | -1600 | 6400 | | | 35—45 | 20 | 40 | 800 | 6 | 120 | 720 | 4320 | 25920 | | | 45—55 | 15 | 50 | 750 | 16 | 240 | 3840 | 61440 | 983040 | | | 55—65 | 10 | 60 | 600 | 26 | 260 | 6760 | 175760 | 4569760 | | | - | N = 100 | | $\Sigma f X = 3400$ | | $\sum f(X - \overline{X}) = 0$ | $\sum f(X - \overline{X})^2$ =21400 | $\sum f(X - \overline{X})^3$ =46800 | $\sum f(X - \bar{X}) = 2967120$ | | Now, $$\overline{X} = \frac{\sum fX}{N} = \frac{3400}{100} = 34;$$ $$\mu_1 = \frac{\sum f(X - \overline{X})}{N} = \frac{0}{100} = 0$$ $$\mu_2 = \frac{\sum f(X - \overline{X})^2}{N} = \frac{21400}{100} = 214;$$ $$\mu_3 = \frac{\sum f(X - \overline{X})^3}{N} = \frac{46800}{100} = 468;$$ $$\mu_4 = \frac{\sum f(X - \overline{X})^4}{N} = \frac{9671200}{100} = 96712.$$ # (2) Moments about Assumed Mean Then the arithmetic mean is not in whole numbers but in fractions, the calculation of deviations the mean would involve too many calculations and would take a lot of time. In such a case, the state of the assumed mean are first calculated and then converted into central moments. The state about assumed mean are called **non-central** moments. They are denoted by the Greek of propout (pronounced as mu dash). If $X_1, X_2, X_3, \dots, X_n$ be the n values of a variable X and A is its mean, then the rth moment about assumed mean is defined and given by: n, then the rth moment about assumed mean is defined and given by: $$\mu'_r = \frac{\Sigma (X - A)^r}{N}$$ Where $\mu'_r = r$ th moment about assumed mean A $$r = 1, 2, 3, 4.$$ For a frequency distribution, the rth moment about assumed mean (A) is defined as: $$\mu_r' = \frac{\sum f(X - A)^r}{N}$$ T = 1, 2, 3 and 4, the various non-central moments are as follows: | Individual Series | Discrete/Continuous Series | | | | |--|--|--|--|--| | μ_1' = First Moment about A = $\frac{\sum (X - A)^1}{N}$ | $\mu_4' = \frac{\sum f(X - A)^1}{N} = \frac{\sum fd^1}{N}$ | | | | | $\mu_2' = $ Second " " $= \frac{\sum (X - A)^2}{N}$ | $\mu_2' =
\frac{\sum f(X - A)^2}{N} = \frac{\sum fd^2}{N}$ | | | | | $\mu_3' = \text{Third} = \frac{\Sigma (X - A)^3}{N}$ | $\mu_3' = \frac{\sum f(X - A)^3}{N} = \frac{\sum fd^3}{N}$ | | | | | $\mu_4' = \text{Fourth} = = \frac{\sum (X - A)^4}{N}$ | $\mu_4' = \frac{\sum f(X - A)^4}{N} = \frac{\sum fa^4}{N}$ | | | | can be extended to higher powers in a similar fashion, but in practice, only the first nts are computed because of the difficulty of computation. there is some common factor in the X-column/Mid-value column (m) of a frequency stribution, the computation process of moments can further be simplified by dividing the eviations (d) taken from assumed mean by a common factor (i), and multiply the various by i,i^2 , i^3 and i^4 . Thus the four non-central moments μ'_1, μ'_2, μ'_2 and μ'_4 are lculated as follows: $$\begin{split} \mu_1' &= \frac{\sum f d'}{N} \times i; & \mu_2' &= \frac{\sum f d'^2}{N} \times i^2; \\ &\times \underbrace{\sum f d'^2}_{N} \times i^2; & \mu_4' &= \underbrace{\sum f d'^4}_{N} \times i^4. \end{split}$$ common factor, X = values or mid-values of the X-column ## (3) Moments about Zero or Origin O (3) Moments about Zero or origin The moments about zero or origin are denoted by Greek symbol v(read as nu). If X_1, X_2, \dots, X_k be the values of a variable X_k then the rth moment about zero is defined and given by values of a variable $$X$$, then $$v_r = \frac{\sum (X - 0)^r}{N} = \frac{\sum X^r}{N}$$ distribution, rth moment about zero is defined by v distribution, rth moment and $$v_r = \sum f(X - 0)^r = \frac{\sum jX^r}{N}$$ Putting r = 1, 2, 3 and 4, the various moment about zero are as follows: | Individual Series | Discrete/Continuous Series | |---|--| | Individual Series $\Sigma (X=0)^1 = \Sigma X^1 = \widetilde{X}$ | $v_1 = \frac{\sum fX}{N} = \overline{X}$ | | $v_1 = \frac{N}{N} = \frac{N}{N}$ $v_2 = \frac{\Sigma (X - 0)^2}{N} = \frac{\Sigma X^2}{N}$ | $v_2 = \frac{\sum f X^2}{N}$ | | $v_3 = \frac{\Sigma(X - 0)^3}{N} = \frac{\Sigma X^3}{N}$ | $v_3 = \frac{\sum jX^3}{N}$ | | $v_4 = \frac{\sum (X - 0)^4}{N} = \frac{\sum X^4}{N}$ | $v_4 = \frac{\sum f X^4}{N}$ | Moments about zero can be extended to higher powers but in practice the first four moments are computed because of the difficulty of computation. ### Conversion of Non-Central Moments including Zero into Central Moments The central moments can be easily computed from the moments about the assumed mean | Using Moments about Assumed Mean | Using Moments about Origin | |--|---| | $\mu_1 = \mu_1' - \mu_1' = 0$ (Always) | μ ₁ = 0 | | $\mu_2 = \mu_2' - (\mu_1')^2$ | $\mu_2 = \nu_2 - \nu_1^2$ | | $\mu_3 = \mu_3' - 3\mu_2' \cdot \mu_1' + 2(\mu_1')^3$ | $\mu_3 = \nu_3 - 3\nu_2\nu_1 + 2\nu_1^3$ | | $\mu_4 = \mu_4' - 4\mu_3' \cdot \mu_1' + 6\mu_2' (\mu_1')^2 - 3(\mu_1')^4$ | $\mu_4 = \nu_4 - 4\nu_3\nu_1 + 6\nu_2 \cdot \nu_1^2 - 3\nu_1^4$ | | $\overline{X} = A + \mu_1';$ | $\sigma^2 = \mu_2' - {\mu_1'}^2$ | end Measures of Kurtosis raion of Central Moments into Non-Central Moments including Zero ents about any value 'A' (including zero) can be easily computed from the following relations: | Moments about any Value 'A' from
Central Moments | Moments about Zero from | |--|---| | $\mu_1 = \overline{X} - A$ | Central Moments $\nu_1 = A + \mu'_1 \text{ or } \overline{X}$ | | $\mu_1' = \mu_2 + (\mu_1')^2$ | $v_2 = \mu_2 + v_1^2$ | | $\mu_1' = \mu_1 + 3\mu_2' \cdot \mu_1' - 2(\mu_1')^3$ | $v_3 = \mu_3 + 3v_2, v_1 - 2v_1^3$ | | $\mu_4' = \mu_4 + 4\mu_3' \cdot \mu_1' - 6\mu_2' (\mu_1')^2 + 3(\mu_1')^4$ | $v_4 = \mu_4 + 4v_3, v_1 - 6v_2, v_1^2 + 3v_1^4$ | The signs are reverse of what we had while converting moments about assumed mean into central moments. It is necessary to find X̄ for converting central moments into non-central moments. # S UTILITY OF MOMENTS ents are useful in analysing the different aspects of frequency distribution. With the help of we can measure the central tendency of a set of observations, their variability, their variability and the height of the peak their curves would make. The following is the summary of shelp in analysing a frequency distribution: | | Moments | What it measures | |----|--|------------------| | 1. | First moment about origin or zero (v ₁) | Mean | | 2 | Second moment about the mean (µ2) | Variance | | 3. | Second and third moments about the mean $(\mu_2$ and $\mu_3)$ | Skewness | | 4. | Second and fourth moments about the mean $(\mu_2$ and $\mu_4)$ | Kurtosis | 3. Calculate the first four moments about mean from the following distribution: | X: | - 1 | 2 | 3 | 4 | 5 | 6 | 7 | |----|-----|---|----|----|----|---|---| | f: | 2 | 9 | 25 | 35 | 20 | 8 | 1 | We shall first determine moments about assumed mean, then calculate the central ents using the appropriate formula. #### Calculations of Moments | X | f | d = X - A $A = 4$ | fd | fd ² | fd ³ | fd ⁴ | |--------|---------|-------------------|-------------------|----------------------|----------------------|----------------------| | 1 | 2 | -3 | -6 | 18 | -54 | 162 | | 2 | 9 | -2 | -18 | 36 | -72 | 144 | | 3 | 25 | -1 | -25 | 25 | -25 | . 25 | | 4A | 35 | 0 | 0 | 0 | 0 | 0 | | 5 | 20 | +1 | 20 | 20 | 20 | 20 | | 6 | 8 | +2 | 16 | 32 | 64 | 128 | | 7 | 1 | +3 | 3 | 9 | 27 | 81 | | BER ED | N = 100 | | $\Sigma fd = -10$ | $\Sigma f d^2 = 140$ | $\Sigma f d^3 = -40$ | $\Sigma f d^4 = 560$ | $$\mu_1' = \frac{\sum f d^1}{N} = \frac{-10}{320} = -0.1$$ $$\mu_2' = \frac{\sum f d^2}{N} = \frac{140}{100} = 1.4$$ $$\mu_3' = \frac{\sum f d^2}{N} = \frac{-40}{100} = 0.4$$ $$\mu_4' = \frac{\sum f d^4}{N} = \frac{560}{100} = 5.6$$ mean into central moments by using th mula $$\mu_1 = 0$$ $$\mu_2 = \mu_2' - {\mu_1'}^2 = 1.4 - (-0.1)^2 = 1.4 - 0.01 = 1.39$$ $$\mu_3 = {\mu_3'} - 3{\mu_2'} + {\mu_1'}^2 = 1.4 - (-0.1)^3 = (-0.4) - 3 \times 1.4 \times (-0.1) + 2(-0.1)^3$$ $$= -0.4 + 0.42 - 0.002 = 0.018$$ $$\mu_4 = {\mu_4'} - 4{\mu_3'} + {\mu_1'} + 6{\mu_2'} + {\mu_1'}^2 - 3{\mu_1'}^4$$ $$= 5.6 - 4 \times (-0.4) \times (-0.1) + 6 \times 1.4 \times (-0.1)^2 - 3(-0.1)^4$$ $$= 5.6 - 0.16 + 0.084 - 0.0003 = 5.5237$$ $$= 5.6 - 0.16 + 0.084 - 0.0003 = 0.000$$ nts about mean for the following distribution: Example 4. | culate the | e first four | moments | about men | | 4.0 | 4.5 | 5.0 | |------------|--------------|---------|-----------|----|-----|-----------|------| | X: | 2.0 | 2.5 | 3.0 | 92 | 70 | 40 | . 10 | | f: | 5 | 38 | 65 | 72 | | - leulete | | d mean and then calculate the central Solution: We shall first determine mo moments using the appropriate formula. # Calculation of Mo | X | 1 | d = X - A
A = 3.5 | d = d/5 | få | fd2 | fd ³ | fd ⁴ | |------|---------------|----------------------|---------|-------------------|-----|----------------------|---------------------| | | - | -1.5 | -3 | -15 | 45 | -135 | 405 | | 2.0 | 5 | - | | -76 | 152 | -304 | 608 | | 2.5 | 38 | -1.0 | -2 | | 65 | -65 | 65 | | 3.0 | 65 | -0.5 | -1 | -65 | | | 0 | | 3.5A | 92 | 0 | 0 | . 0 | 0 | 0 | 70 | | 4.0 | 70 | +0.5 | +1 | . 20 | 70 | 70 | _ | | | 40 | +1 | +2 | 80 | 160 | 320 | 640 | | 4.5 | - | | +3 | 30 | 90 | 270 | 810 | | 5.0 | 10
N = 320 | +1.5 | 73 | $\Sigma f d = 24$ | | $\Sigma f d^3 = 156$ | $\sum f d^{4} = 25$ | $$\mu_1' = \frac{\sum f d'}{N} \times i = \frac{24}{320} \times (0.5) = 0.0375$$ $$\mu_2' = \frac{\sum f d'^2}{N} \times i^2 = \frac{582}{320} \times (0.5)^2 = 0.4547$$ $$\mu_3' = \frac{\sum f d'^3}{N} \times i^3 = \frac{156}{320} \times (0.5)^3 = 0.0609$$ and Measures of Kurtosis $$\mu_4' = \frac{\sum fd'^4}{N} \times i^4 = \frac{2598}{320} \times (0.5)^4 = 0.5074$$ Now we convert moments about assumed mean into central moments by using the ula $$\mu_1 = 0$$ $\mu_2 = \mu_2' - \mu_1'^2 = 0.4547 - (0.0375)^2 = 0.4534$ $\mu_3 = \mu_1' - 3\mu_2' \cdot \mu_1' + 2\mu_1'^3 = 0.0609 - 3(0.4547)(0.0375) + 2(0.0375)^3 = 0.0099$ $\mu_4 = \mu_4' - 4\mu_3' \cdot \mu_1' + 6\mu_2' \cdot \mu_1'^2 - 3\mu_1'^4$ $\mu_4 =
0.5074 - 4(0.0609)(0.0375) + 6(0.454)(0.0375)^2 - 3(0.375)^4 = 0.5021$ Calculate first four central mements from the following distribution: Height (in inches): 60—62 Frequency: We shall first determine moments about assumed mean and then calculate the central moments using the appropriate formula. Calculation of Moments | Height (X) | 1 | M.V.
(m) | d | d' = d/3 | fď | fd ² | fd ³ | fd ⁴ | |------------|-------|-------------|----|----------|--------------------|---------------------|-----------------|-----------------| | 60-62 | 5 | 61 | -6 | -2 | -10 | 20 | -40 | - | | 63-65 | 18 | 64 | -3 | -1 | -18 | 18 | | 80 | | 66-68 | 42 | 67 = A | 0 | 0 | 0 | 0 | -18 | 18 | | 69-71 | 27 | 70 | +3 | +1 | +27 | 27 | 27 | 27 | | 72-74 | 8 | 73 | +6 | +2 | +16 | - 32 | 64 | 128 | | Mary Co | N=100 | * | | | $\Sigma f d' = 15$ | $\Sigma f d^2 = 97$ | _ | | $$\mu'_{1} = \frac{\sum f d'}{N} \times i = \frac{15}{100} \times 3 = 0.45$$ $$\mu'_{2} = \frac{\sum f d'^{2}}{N} \times i^{2} = \frac{97}{100} \times 9 = 8.73$$ $$\mu'_{3} = \frac{\sum f d'^{3}}{N} \times i^{3} = \frac{33}{100} \times 27 = 8.91$$ $$\mu'_{4} = \frac{\sum f d'^{4}}{N} \times i^{4} = \frac{253}{100} \times 81 = 204.93$$ Now, we convert moments about assumed mean into moments about mean by using the formula. $$\mu_1 = 0$$ $$\mu_2 = \mu'_2 - (\mu'_1)^2 = 8.73 - (0.45)^2 = 8.73 - 0.20 = 8.53$$ $$\mu_3 = \mu'_3 - 3\mu'_2 \cdot \mu'_1 + 2(\mu'_1)^3 = 8.91 - 3(8.73)(0.45) + 2(0.45)^3$$ $$= 8.91 - 11.79 + 0.18 = -2.70$$ 313 1 ``` \mu_4 = \mu_4' - 4\mu_3' \cdot \mu_1' + 6\mu_2' \cdot (\mu_1')^2 - 3(\mu_1')^4 = 204.93 - 4 (8.91) (0.45) + 6 (8.73) (0.45)^2 - 3 (0.45)^4 = 204.93 - 16.04 + 6 (8.73) (0.25) - 3 (0.04) = 204.93 - 16.04 + 10.61 - 0.12 = 199.38 = 204.93 – 10.04 \pm 10.07 – 3.12 The first four moments of a distribution about x = 2 are: 1, 2.5, 5.5 and 16. Calculate he four moments about \overline{X} and about zero. ``` the four moments about A and about 2200. We are given A=2, $\mu_1'=1$, $\mu_2'=2.5$, $\mu_3'=5.5$ and $\mu_4'=16$. From these moments about mean with the L. We are given A=Z, $\mu_1=1$, $\mu_2=2$, $\mu_3=3$ for about mean with the help of the about assumed mean (2), we can find out moments about mean with the following formulae: #### Moments about mean: $$\begin{split} &\mu_1 = 0 \\ &\mu_2 = \mu_2' - (\mu_1')^2 = 2.5 - (1)^2 = 1.5 \\ &\mu_3 = \mu_3' - 3\mu_2' \cdot \mu_1' + 2\mu_1'^3 = 5.5 - 3(2.5)(1) + 2(1)^3 = 5.5 - 7.5 + 2 = 0 \\ &\mu_4 = \mu_4' - 4\mu_3' \cdot \mu_1' + 6\mu_2' \cdot (\mu_1')^2 - 3(\mu_1')^4 \\ &= 16 - 4(5.5)(1) + 6(2.5)(1)^2 - 3(1)^4 = 16 - 22 + 15 - 3 = 6 \end{split}$$ Thus, moments about mean are $\mu_1=0, \mu_2=15, \mu_3=0, \mu_4=6$ Moments about zero: $$\overline{X} = A + \mu_1' = 2 + 1 = 3$$ $$v_1 = \overline{X} = 3$$ $$v_2 = \mu_2 + v_1^2 = 1.5 + (3)^2 = 10.5$$ $$v_3 = \mu_3 + 3v_2 \cdot v_1 - 2v_1^3 = 0 + 3(10.5)(3) - 2(3)^3 = 40.5$$ $$v_4 = \mu_4 + 4v_3 \cdot v_1 - 6v_2 \cdot v_1^2 + 3v_1^4$$ $$= 6 + 4(40.5)(3) - 6(10.5)(3)^2 + 3(3)^4 = 6 + 486 - 567 + 243 = 168$$ Thus, moments about zero are $v_1 = 3$, $v_2 = 10.5$, $v_3 = 40.5$; $v_4 = 168$ Example 7. The arithmetic mean of a series is 22 and first four central moments are 0, 81, -144, and 14817. Find the first four moments (i) about the assumed mean '25' and (ii) about origin or zero Given $\overline{X} = 22$, $\mu_1 = 0$, $\mu_2 = 81$, $\mu_3 = -144$ and $\mu_4 = 14817$ Solution: $$\mu'_1 = \overline{X} - A = 22 - 25 = -3$$ $$\mu'_2 = \mu_2 + (\mu'_1)^2 = 81 + (-3)^2 = 81 + 9 = 90$$ $$\mu'_3 = \mu_3 + 3\mu'_2 \cdot \mu'_1 - 2(\mu'_1)^3$$ $$= -144 + 3(90)(-3) - 2(-3)^3$$ $$= -144 - 810 + 54 = -900$$ a and Measures of Kurtosis $$\mu_{4}' = \mu_{4} + 4\mu_{3}' \cdot \mu_{1}' - 6\mu_{2}' \cdot \mu_{1}'^{2} + 3(\mu_{1}')^{4}$$ $$= 14817 + 4(-900)(-3) - 6(90)(-3)^{2} + 3(-3)^{4}$$ $$= 14817 + 10800 - 4860 + 243 = 21,000$$ $$v_{1} = \overline{X} = 22$$ $$v_{2} = \mu_{2} + v_{1}^{2} = 81 + (22)^{2} = 81 + 484 = 565$$ $$v_{3} = \mu_{3} + 3v_{2} \cdot v_{1} - 2v_{1}^{3} = -144 + 3(565)(22) - 2(22)^{3}$$ $$= -144 + 37290 - 21296 = 15850$$ $$v_{4} = \mu_{4} + 4v_{3} \cdot v_{1} - 6v_{2} \cdot v_{1}^{2} + 3v_{1}^{4}$$ $$= 14817 + 4(15850)(22) - 6(565)(22)^{2} + 3(22)^{4}$$ $$= 14817 + 1394800 - 1640760 + 702768 = 4,71,625$$ ## HEPPARD CORRECTIONS FOR GROUPING ERRORS IN MOMENTS Incomputing various moments in case of grouped data, it is assumed that the values of all items apputing various monitorian in success of groupes usua, it is assumed that the values of all items at east are concentrated at the mid-point of the class. This assumption leads to grouping finding the values of the moments. This error is corrected by famous mathematician finding the values of the monitories. This error is corrected by famous mathematician $\frac{1}{4}$, and therefore, called Sheppard's Corrections. According to Sheppard, first (μ_1) and third ments need no corrections. He has suggested the following formulae for correcting the μ_1 and the fourth (μ_4) moments which he regards as crude moments liable to be affected by g error of a continuous series. $$\mu_{2} \text{ (corrected)} = \mu_{2} \text{ (uncorrected)} - \frac{i^{2}}{12}$$ $$\mu_{4} \text{ (corrected)} = \mu_{4} \text{ (uncorrected)} - \frac{1}{2}i^{2} \quad \mu_{2} \text{ (uncorrected)} + \frac{7}{240}i^{4}$$ Where i = width of class interval. The first and third moments need no correction. The following conditions should be satisfied for the application of Sheppard's corrections: - (1) The correction should not be made unless the frequency is at least 1000 otherwise the nts will be more affected by sampling errors than by grouping errors. - (ii) The correction is not applicable to J-or U-shaped distributions or even to the skew form. - (iii) The observations should relate to a continuous variable. (b) The curve should approach the base line gradually and slowly at each end of the distribution. The first four central moments of a continuous series with class intervals of 3 are arrived at 0, 43.353, -9.774 and 5508.567. Find their corrected values using Sheppard's corrections. According to Sheppard, the first and third moments about mean need no correction. Hence, the 2nd and 4th moments only are corrected as follows: We are given, $\mu_2 = 43.353$ and $\mu_4 = 5508.567$ and i = 3 We have, $$\mu_2(\text{corrected}) = \mu_2 - \frac{i^2}{12} = 43.353 - \frac{(3)^2}{12} = 43.353 - 0.75 = 42.603$$ $\mu_4(\text{corrected}) = \mu_4 - \frac{1}{2}i^2, \mu_2 + \frac{7}{240}i^4 = 5508.567 - \frac{1}{2}(3)^2(43.353) + \frac{7}{240}(3)^4$ = 5508.567 - 195.0885 + 2.3625 = 5315.841 # BETA AND GAMMA COEFFICIENTS (OR BETA AND GAMMA MEASURES) BASED ON MOMENTS Karl Pearson has developed Beta and Gamma Coefficients (or Beta and Gamma Measures) based on the central moments which are given below: | Beta Coefficients or Beta Measures | Gamma Coefficients or Gamma
Measures | |--|--| | $\beta_1 = \frac{\mu_3^2}{3}$ | $\gamma_1 = \sqrt{\beta_1} = \frac{\mu_3}{\sqrt{\mu_2^3}}$ | | $\frac{\mu_2}{\sqrt{\beta_1} = \frac{\mu_3}{l_{*,3}}}$ | $\gamma_2 = \beta_2 - 3$ | | $\beta_2 = \frac{\mu_4}{\mu_2^2}$ | $\gamma_2 = \frac{\mu_4}{\mu_2^2} - 3$ | Note: These coefficients are used in the calculation of skewness and kurtosis. It needs to be mentioned here that the above coefficients are pure numbers and independent of the units Example 9. The first four central moments are: 0, 4, 8 and 144. Find β and γ coefficients. Solution: We are given: $$\mu_1 = 0$$, $\mu_2 = 4$, $\mu_3 = 8$, $\mu_4 = 144$ $$\begin{split} \beta_1 &= \frac{\mu_2^2}{\mu_2^2} = \frac{(8)^2}{(4)^3} = \frac{64}{64} = 1 & \therefore & \beta_1 = 1 \\ \beta_2 &= \frac{\mu_4}{\mu_2^2} = \frac{144}{(4)^2} = \frac{144}{16} = 9 & \therefore & \beta_2 = 9 \\ \gamma_1 &= \sqrt{\beta_1} = \frac{\mu_3}{\sqrt{\mu_2^3}} = \frac{8}{\sqrt{(4)^3}} = \frac{8}{\sqrt{64}} = \frac{8}{8} = 1 \\ \gamma_2 &= \beta_2 - 3 = 9 - 3 = 6 \end{split}$$ #### ■ MEASURE OF SKEWNESS BASED ON CENTRAL MOMENTS A mesure of skewness may be obtained by making use of the second and third central moments Skewness is measured by β_1 coefficient (read as β_1 coefficient) which is defined and given by: $$\beta_1 = \frac{\mu_3^2}{\mu_2^3} = \frac{\text{(Third Central Moment)}^2}{\text{(Second Central Moment)}^3}$$ and Measures of Kurtosis primetrical distribution, β_1 shall be zero. The greater the values of β_1 , the more skewed the But β_1 as a measure of skewness cannot tell us about the direction of skewness, i.e., positive or negative. Therefore, instead of β_1 , sometimes $\sqrt{\beta_1}$ is used as a measure of the same of β_1 , sometimes $\sqrt{\beta_1}$ is used as a measure of $$\sqrt{\beta_1} = \frac{\mu_3}{\sqrt{\mu_2^3}}$$ where $\sqrt{\beta_1}$ = Moment Coefficient of Skewness The value of $\sqrt{\beta_1}$ is interpreted as follows: (a) If $\sqrt{\beta_1} = 0$, there is no skewness, i.e., the distribution is symmetric. (a) If $\sqrt{\beta_1} > 0$, there is positive skewness, i.e., the distribution is positively skewed. (c) If $\sqrt{\beta_1}$ < 0, there is negative skewness, i.e., the distribution is negatively skewed. [C] 1471 The first three central moments of a distribution are: 0, 2.5, 0.7. Find the moment coefficient of skewness. coefficient of skewness. We are given: $\mu_1 = 0, \mu_2 = 2.5, \mu_3 = 0.7$ Moment coefficient of skewness = $$\sqrt{\beta_1} = \frac{\mu_3}{\sqrt{\mu_2^3}} = \frac{0.7}{\sqrt{(2.5)^3}} = \frac{0.7}{\sqrt{15625}} = \frac{0.7}{3.953} = 0.177$$ graphe 11. The first four moments of a distribution about the value 5 of the variable are 2, 20, 40 and 50. Calculate the moment coefficient of skewness. We are given: $A = 5, \mu'_1 = 2, \mu'_2 = 20, \mu'_3 = 40, \mu'_4 = 50$ $$\mu_1 = 0, \mu_2 = \mu'_2 - (\mu'_1)^2 = 20 - (2)^2 = 16$$ $$\mu_3 = \mu_3' - 3\mu_2' \cdot \mu_1' + 2\mu_1'^3 = 40 - 3(2)(20) + 2(2)^3
= -64$$ Moment coefficient of skewness = $\sqrt{\beta_1} = \frac{\mu_3}{\sqrt{\mu_2^3}} = \frac{-64}{\sqrt{(16)^3}} = -1$ #### EXERCISE 8.1 1. Calculate the first four moments about mean for the following data: | X: | . 3 | 6 | 8 | 10 | 18 | |-----------------|-----|---|-----------------|----------------------------|------------------------| | 2. Calculate of | No. | | [Ans. μ_1 = | $0, \mu_2 = 25.6, \mu_3 =$ | $= 97.2, \mu_4 = 1588$ | | X: | 2 | 3 | 4 | 5 | 6 | |----|---|---|---|---|---| | f: | | 2 | 7 | 3 | 1 | [Ans. $\mu_1 = 0, \mu_2 = 0.933, \mu_3 = 0, \mu_4 = 2.530$] 3. Calculate the first four central moments from the following data and also make Sheppards. corrections: | Variable: | 0-10 | 10-20 | 20 | 10 | |------------|------|----------------|----------------------------|-----------------------| | Frequency: | 1 | 3 | 4 | 1 2 | | Trequency | | 144 14 917 114 | corrected) = 71, μ_4 (| corrected) = 11058 65 | [Ans. $\mu_1 = 0, \mu_2 = 81, \mu_3 = -144, \mu_4 = 1$ 4. Calculate the first four moments about the mean from the following data and also find the | value of B1 and B | 2: | | | | | 50 60 | | |-------------------|------|-------|-------|-------|-------|-------|-------| | Marks: | 0—10 | 10-20 | 20-30 | 30—40 | 40—50 | 50—60 | 60-70 | | | 5 | - 12 | 18 | 40 | 15 | . 7 | 3 | | No. of students : | | | | | | | | [Ans. $\mu_1 = 0$, $\mu_2 = 177.39$, $\mu_3 = 47.982$, $\mu_4 = 95009.364$; $\beta_1 = 0.0004$, $\beta_2 = 3.02$] The first four moments of a distribution about the value A=5 are -2, 10, -25 and 50. Find the first four about \overline{X} and about zero. [Ans. μ_1 = 0, μ_2 = 6, μ_3 = 19, μ_4 = 42, ν_1 = 1, ν_2 = 7, ν_3 = 38, ν_4 = 155] The arithmetic mean of a series is 5 and the first four central moments are 0, 3, 0 and 26. Find the four moments (i) based on assumed mean '4' and (ii) based on zero. [Ans. (i) 1, 4, 10 and 45 (ii) 5, 28, 170, 1101] 7. Examine whether the following results for obtaining 2nd order central moments are consistent or not: N = 50, $\Sigma X = 100$, $\Sigma X^2 = 160$. [Ans.Inconsistent] [Hint: See Example 27] 8. If the first three moments about origin for distribution are 10, 225 and 0 respectively, If the first three moments about origin for distribution. calculate the first three moments about value '5' for the distribution. [Ans. $\mu'_1 = 5$, $\mu'_2 = 150$, $\mu'_3 = -2750$] 9. The first four central moments of a distribution are 0; 2.5, 0.7 and 18.75. Test the skewness [Ans. $\beta_1 = 0.31$, the distribution is slightly skewed] of the distribution. 10. The first four moments of a distribution about value 2 are 1, 2.5, 5.5 and 16 respectively. Calculate the four moments about mean and comment on the nature of distribution. [Ans. $\mu_1 = 0$, $\mu_2 = 1.5$, $\mu_3 = 0$, $\mu_4 = 6$, $\beta_1 = 0$, symmetrical, $\beta_2 = 2.67$, platy-kuric] 11. The first four central moments of a continous series with class intervals of 6 are arrived at 0, -60, 900 and -9500. Find their corrected values accending to Sheppard's corrections. [Ans. - 63, -8382.2] #### ■ KURTOSIS Kurtosis is a Greek word meaning bulkiness. In statistics, it refers to the degree of flatness of peakedness of a frequency curve. The degree of kurtosis (or peakedness) of a distribution is measured relative to the peakedness of the normal curve. To quote M.R. Speigal, "Kurtosis is the degree of peakedness of a distribution, usually taken relative to a normal distribution". According to Croxten and Cowden "A measure of kartosis indicates the degree to which a frequency distribution is peaked or flat-topped". Thus, a measure of kurtosis tells us the extent to which a distribution is more peaked or flat-topped than the normal curve. and Measures of Kurtosis Types of Kurtosis of three types of kurtosis in a distribution: three types of knowledge a high peak than the normal curve is called lepto-kurtic. In there is too much concentration of the items near the centre, there is to the curve, there is less concentration of items near the centre. Play-kurfie: A curve having a low peak (or flat topped) than the normal curve is called play-kurfie. In such a curve, there is less concentration of items near the centre. laty-kurtic: A curve, there is less concentration of items near the centre, provide In such a curve, and the second of thems near the centre. A curve having normal peak or the normal curve itself is called meso-kurtic, there is equal distribution of items around the central value. 3) Meso-kurtic: A culve harms normal peak or the normal curve itself acurve, there is equal distribution of items around the central value, the surface of a curve, there is equal distribution of items around the central value. och a curve, under a curve, under a curve, under a curve, under a curve curv (A) Lepto-kurtic, (B) Meso-kurtic, (C) Platy-kurtic A famous British statistician William Gosset (known as "Student") has very humorously the nature of the curves in these words "platy-kurtic curves are squat with short tails, he platyplus, lepto-kurtic curves are high with long tails like the Kangaroos". Gosset's sketch is reproduced below: #### asures of Kurtosis rtosis is measured by β_2 (read as beta two) which is defined and given by: Measure of kurtosis $\beta_2 = \frac{\mu_4}{2} = \frac{\text{Fourth Central Moment}}{1}$ (Second Central Moment)² μ_2^2 The value of β₂ is interpreted as follows: (i) It 3. > 3, the curve is more peaked than the normal curve, i.e., lepto-kurtic. (i) If 3, < 3, the curve is less peaked than the normal curve, i.e., platy-kurtic. (ii) If $\beta_2 = 3$, the curve is having moderate peak, i.e., meso-kurtic. ...(i) Alternative Measure Sometimes, the Kurtosis is measured by γ_2 (read as Gamma two) which is defined and given by: $$\gamma_2 = \beta_2 - 3 = \frac{\mu_4}{\mu_2^2} - 3$$ #### ▶ Interpretation The value of γ_2 is interpreted as follows: - (i) If γ_2 or $\beta_2 3 = 0$, the curve is meso-kurtic - (ii) If γ_2 or $\beta_2 3 > 0$ the curve is lepto-kurtic - (iii) If γ_2 or $\beta_2 3 < 0$ the curve is platy-kurtic. Note: It is easier to interpret kurtosis by calculating β_2 instead of $\gamma_2.$ Example 12. The first four moments about mean of a frequency distribution are 0, 100, -7 and 35,000. Discuss the kurtosis of the distribution. $$\mu_1 = 0, \mu_2 = 100, \mu_3 = -7, \mu_4 = 35,000$$ Solution: $$\mu_1 = 0, \mu_2 = 100, \mu_3 = -7, \mu_4 = 35,000$$ We are given: $\mu_1 = 0, \mu_2 = 100, \mu_3 = -7, \mu_4 = 35,000$ Coefficient of Kurtosis $\beta_2 = \frac{\mu_4}{\mu_2^2} = \frac{35,000}{(100)^2} = 3.5 > 3$. Coefficient of Kurtosis $$\beta_2 = \frac{\mu_4}{\mu_2^2} = \frac{\mu_4}{(100)^2} = \frac{\mu_4}{(100)^2}$$ Since the value of $\,\beta_2$ is greater than 3, the curve is more peaked than the normal curve, i.e., lepto-kurtic. Example 13. The first four moments of a distribution about the value '4' of the variable are -1.5, 17, -30 and 108. Discuss the kurtosis of the distribution. We are given: A = 4, $\mu'_1 = -15$, $\mu'_2 = 17$, $\mu'_3 = -30$, $\mu'_4 = 108$ Solution: For determining kurtosis, we need to determine $$\mu_2$$ and μ_4 . $$\mu_2 = \mu'_2 - (\mu'_1)^2$$ = $$17 - (-15)^2 = 14.75$$ $\mu_4 = \mu'_4 - 4\mu'_3 \cdot \mu'_1 + 6\mu'_2 \cdot (\mu'_1)^2 - 3(\mu'_1)^4$ $$= 108 - 4(-30)(-1.5) + 6(17)(-1.5)^{2} - 3(-1.5)^{4} = 142.3125$$ Now, Coefficient of Kurtosis $$\beta_2 = \frac{\mu_4}{\mu_2^2} = \frac{142.3125}{(14.75)^2} = \frac{142.3125}{217.5625} = 0.654 < 3$$ Since, $\beta_2 < 3$, the distribution is platy-kurtic. Example 14. Calculate first four central moments and coefficient of kurtosis for the following | Variable: | 0—5 | 5—10 | 10—15 | 15—20 | 20-25 | 25—30 | 30-35 | |------------|-----|------|-------|-------|-------|-------|-------| | Frequency: | 2 | 5 | 7 | 13 | 21 | 16 | 8 | Solution: We shall first determine moments about assumed mean, and then calculate the central moments using the appropriate formulae: Calculation of M. Is and Measures of Kurtosis | | No. 1 | | 10. 11011 | Moment | | | | | |--------------|-------|-------------|-----------|--------|--------------------|------------------------|-------------------------|------------------| | ariable | f | M.V.
(m) | d = X - A | d'=d/5 | fď | fd ² | | | | 0-5 | - 2 | 2.5 | -20 | -4 | - | <i>J</i> u | fd' ³ | fd ⁴ | | 5-10 | 5 | 7.5 | -15 | -3 | -8 | 32 | -128 | 610 | | 0-15 | 7 | 12.5 | -10 | -2 | -15
-14 | 45 | -135 | 512
405 | | 5—20 | 13 | 17.5 | -5 | -1 | -13 | 28 | -56 | 112 | | 0-25 | 2-1 | 22.5 = A | 0 | 0 | 0 - | 13 | -13 | 13 | | 5—30 | 16 | 27.5 | +5 | +1 - | +16 | 0 | 0 | 0 | | 0-35 | 8 | 32.5 | +10 | +2 | +16 | 16 | +16 | 16 | | 5_40 | 3 | . 37.5 | +15 | +3 | +9 | 32 | +64 | 128 | | | N=75 | | | | $\Sigma f d' = -9$ | 27 | +81 | 243 | | TOTAL STREET | | | | | 2ju9 | $\Sigma f d^2$
=193 | $\Sigma f d^{3}$ = -171 | Σfd ⁴ | $$\mu_{1}' = \frac{\sum fd'}{N} \times i = \frac{-9}{75} \times 5 = -0.6$$ $$\mu_{2}' = \frac{\sum fd'^{2}}{N} \times i^{2} = \frac{193}{75} \times 25 = 64.33$$ $$\mu_{3}' = \frac{\sum fd'^{3}}{N} \times i^{3} = \frac{-171}{75} \times 125 = -285$$ $$\mu_{4}' = \frac{\sum fd'^{4}}{N} \times i^{4} = \frac{1429}{75} \times 625 = 11908.33$$ ing moments about assumed mean, central moments are calculated as: $\mu_1 = 0$ (Always) $$\mu_2 = \mu_2' - {\mu_1'}^2 = 64.33 - (-0.6)^2 = 64.33 - 0.36 = 63.97$$ $$\mu_3 = \mu'_3 - 3\mu'_2\mu'_1 + 2\mu'_1^3 = -285 - 3(-0.6)(64.33) + 2(-0.6)^3$$ $$= -285 + 115.794 - 0.432 = -169.638$$ $$\mu_4 = \mu'_4 - 4\mu'_3\mu'_1 + 6\mu'_2 \cdot {\mu'_1}^2 - 3{\mu'_1}^4$$ $$= 11908.33 - 4 (-285)(-0.6) + 6 (64.33)(-0.6)^2 + 3(-0.6)^4$$ $$=11908.33 - 684 + 138.953 - 0.3888 = 11362.895$$ Coefficient of kurtosis $$\beta_2 = \frac{\mu_4}{\mu_2^2} = \frac{11362.895}{(63.97)^2} = \frac{11362.895}{4092.1609} = 2.776$$ ince β_2 < 3, the distribution is platy-kurtic. The standard deviation of a symmetrical distribution is 3. What must
be the value of he fourth moment about the mean in order that the distribution be meso-kurtic? For a meso-kurtic distribution $\beta_2 = 3$ $$\frac{\mu_4}{\mu_2^2}$$ We are given: $$\sigma = 3$$ $\mu_2 = \sigma^2 = (3)^2 = 9$ Thus, $\beta_2 = 3$, $\mu_2 = 9$ Putting the value in (i) $\beta_2 = \frac{\mu_4}{\mu_2^2} \Rightarrow 3 = \frac{\mu_4}{9^2}$ or $\mu_4 = 243$ μ_2 . Thus, the fourth moment about the mean must be 243 in order that distribution b_{c} meso-kuruc. Example 16. The following data are given to an economist for the purpose of economic analysis, The data refers to the length of a certain type of batteries: The data refers to the length of the Poisson $$N = 100$$, $\Sigma fd = 50$, $\Sigma fd^2 = 1970$, $\Sigma fd^3 = 2948$ and $\Sigma fd^4 = 86,752$ in which $d = X - 48$ and $$\Sigma f d^* = 86,752$$ in which $d - X$ Do you think that the distribution is platy-kurtic? Given, $N = 100, \Sigma f d = 50, \Sigma f d^2 = 1970, \Sigma f d^3 = 2948$ and $\Sigma f d^4 = 86,752$. Solution: We shall first determine moments about assumed mean, then calculate the central moments using the appropriate formula: moments using the appropriate formula: $$\mu_1' = \frac{\Sigma / d}{N} = \frac{50}{100} = 0.50; \qquad \qquad \mu_2' = \frac{\Sigma / d^2}{N} = \frac{1970}{100} = 19.70$$ $$\mu_3' = \frac{\Sigma / d^3}{N} = \frac{2948}{100} = 29.48; \qquad \qquad \mu_4' = \frac{\Sigma / d^4}{N} = \frac{86752}{100} = 867.52$$ Using moments about assumed mean, the central moments are: $$\begin{split} & \mu_1 = 0 \\ & \mu_2 = \mu_2' - (\mu_1')^2 = 19.70 - (0.50)^2 = 19.45 \\ & \mu_4 = \mu_4' - 4\mu_3' \cdot \mu_1' + 6\mu_2' \cdot (\mu_1')^2 - 3(\mu_1')^4 \\ & = 867.52 - 4(29.48)(0.50) + 6(19.70)(0.5)^2 - 3(0.5)^4 \\ & = 867.52 - 58.96 + 29.55 - 0.1875 = 837.9225 \\ & \text{Coefficient of Kurtosis } \beta_2 = \frac{\mu_4}{\mu_2^2} = \frac{837.9225}{(19.45)^2} = \frac{837.9225}{378.3025} = 2.215 < 3 \end{split}$$ Since β_2 < 3, the distribution is platy-kurtic. ### COMBINED EXAMPLES ON SKEWNESS AND KURTOSIS Example 17. Compute the coefficient of skewness (β_1) and coefficient of kurtosis (β_2) based on | Amar | 25_30 | 30_35 | 35_40 | 40_45 | 45_50 | 5055 | 55-60 | 60- | |------------|-------|-------|-------|-------|-------|-------|-------|-----| | Age: | 25 50 | 30 33 | 33 40 | 40-45 | 45-50 | 30 35 | - | 2 | | Frequency: | 2 | 8 | 18 | 27 | 25 | 16 | 7 | _ | nts and Measures of Kurtosis Calculation of Mon | Age | f | M.V. | d | $d' = \frac{d}{d'}$ | ents fd' | | | | |---------|-------|----------|-----|---------------------|-------------|---------------------|---------------------------|------------------| | 25-30 | 2 | 27.5 | -15 | -3 | Ju | fd ² | fd' ³ | fd ⁴ | | 30—35 | 8 | 32.5 | -10 | -2 | -6 | 18 | -54 | | | 35-40 | 18 | 37.5 | -5 | -1 | -16 | 32 | -64 | 162 | | 40-45 | 27 | 42.5 = A | 0 | 0 | -18 | 18 | -04 | . 128 | | 45—50 | 25 | 47.5 | +5 | +1 | 0 | 0 | 0 | 18 | | 50-55 | 16 | 52.9 | +10 | +2 | +25 | 25 | +25 | 0 | | 55-60 | 7 | 57.5 | +15 | +3 | +32 | 64 | +128 | 25
256 | | 60-65 | - 2 | 62.5 | +20 | +4 | +21 | 63 | +189 | 567 | | 80 00 | N=105 | | | 1.7 | +8 | 32 | +128 | 512 | | A grant | 11.1 | | | | Σfď
= 46 | $\Sigma f d^2$ =252 | Σfd' ³
≈334 | Σfď ⁴ | $$\mu_{1}' = \frac{\sum fd'}{N} \times i = \frac{46}{105} \times 5 = 2.19, \qquad \qquad \mu_{2}' = \frac{\sum fd'^{2}}{N} \times i^{2} = \frac{252}{105} \times 5^{2} = 60$$ $$\mu_{3}' = \frac{\sum fd'^{3}}{N} \times i^{3} = \frac{334}{105} \times 5^{3} = 397.625 \qquad \mu_{4}' = \frac{\sum fd'^{4}}{N} \times i^{4} = \frac{1668}{105} \times 5^{4} = 9892.85$$ #### Moments about Mean $$\begin{split} &\mu_1 = 0 \\ &\mu_2 = \mu_2' - (\mu_1')^2 = 60 - (2.19)^2 = 55.20 \\ &\mu_3 = \mu_3' - 3\mu_2' \cdot \mu_1' + 2\mu_1'^3 = 397.625 - 3(60)(2.19) + 2(2.19)^3 = 24.43 \\ &\mu_4' = \mu_4' - 4\mu_3' \cdot \mu_1' + 6\mu_2' \cdot \mu_1'^2 - 3\mu_1'^4 \\ &= 9892.85 - 4 (397.625)(2.19) + 6(60)(2.19)^2 - 3(2.19)^4 \\ &= 9892.85 - 3483.195 + 1726.596 - 69.007 = 8067.25 \\ &\text{Now, Moment Coefficient of Skewness} \ &(\beta_1) = \frac{\mu_3^2}{\mu_3^3} = \frac{(24.43)^2}{(55.20)^3} = 0.0035 \end{split}$$ Moment Coefficient of Kurtosis $(\beta_2) = \frac{\mu_4}{\mu_2^2} = \frac{8067.25}{(55.20)^2}$ le 18. The first four central moments of a distribution are 0, 2.5, 0.7 and 18.75. Test the skewness and kurtosis of the distribution. Given $\mu_1 = 0$, $\mu_2 = 2.5$, $\mu_3 = 0.7$ and $\mu_4 = 18.75$. #### **Testing Skewness** Skewness is measured by the coefficient β_1 which is defined as: $$\beta_1 = \frac{\mu_3^2}{\mu_2^3} = \frac{(0.7)^2}{(2.5)^3} = 0.031$$ Since, $\beta_1 = 0.031$, the distribution is slightly skewed, i.e., it is not perfectly symmetrical. For testing kurtosis, we compute the value of β_2 which is defined as esting kurtosis, we compute the variables $$\beta_2 = \frac{\mu_4}{\mu_2^2} = \frac{18.75}{(2.5)^2} = \frac{18.75}{6.25} = 3$$ Since β_2 is exactly 3, the distribution is meso-kurtic. Since β_2 is exactly 3, the distribution about the value 4 are 1, 4, 10 and 45. Oblain a Example 19. The first four moments of a distribution about the value 4 are 1, 4, 10 and 45. Oblain a measure of skewness and kurtosis. We are given A = 4, $\mu'_1 = 1$, $\mu'_2 = 4$, $\mu'_3 = 10$ and $\mu'_4 = 45$ Solution: Moments about Mean $$\begin{split} & \mu_1 = 0 \\ & \mu_2 = \mu_2 - (\mu_1')^2 = 4 - (1)^2 = 3 \\ & \mu_3 = \mu_3' - 3\mu_2' \cdot \mu_1' + 2\mu_1'^3 = 10 - 3(4)(1) + 2(1)^3 = 10 - 12 + 2 = 0 \\ & \mu_4 = \mu_4' - 4\mu_3' \cdot \mu_1' + 6\mu_2' \cdot \mu_1'^2 - 3\mu_1'^4 \\ & = 45 - 4(10)(1) + 6(4)(1)^2 - 3(1)^4 = 45 - 40 + 24 - 3 = 26 \end{split}$$ Measure of Skewness Skewness is measured by the coefficient $\beta_{1}\mbox{which}$ is defined as $$\beta_1 = \frac{\mu_3^2}{\mu_2^3} = \frac{0}{(3)^3} = 0$$ Since $\beta_1 = 0$, the distribution is symmetrical. Measures of Kurtosis Kurtosis is measured by the coefficient β_2 which is defined as $$\beta_2 = \frac{\mu_4}{\mu_2^2} = \frac{26}{(3)^2} = 2.89$$ Since β_2 < 3, the distribution is platy-kurtic. #### EXERCISE 8.2 - 1. The first four moments of a distribution about x = 4 are -1.5, 17, -30, 108. Discuss the [Ans. $\beta_1 = 0.65$, platy-kurtic] kurtosis of the distribution. - 2. The first four central moments of a distribution are 0, 19.67, 29.26 and 866. Test the skewness and kurtosis of the distribution. [Ans. $\beta_1 = 1125$, $\beta_2 = 2.238$, platy-kurlic] Find a measure of kurtosis for the following distribution: | rind a measure | of Kurtosi | is for the | ionowing | aistribut | ion: | | 2.9 | | |------------------|------------|------------|----------|-----------|-------|-------|------|-------| | Marks: | 30—35 | 35—40 | 40-45 | 45—50 | 50—55 | 55-60 | 6065 | 65-70 | | No. of students: | . 5 | 14 | 16 | 25 | 14 | 12 | 8 | 6 | [Ans. $\beta_2 = 2.34$, platy-kurtic] nts and Measures of Kurtosis For a meso-kurtic distribution, the first moment about 7 is 23 and second moment about origin is 1000. Find coefficient of variation and fourth moment about moment about mean. [Ang. C.V. Ent about mean. [Ans. C.V. = 33.33, μ₄ = 30,000] Analyse the frequency distribution by the method of moments. 2 Hint: See Example 24] [Ans. $\overline{X} = 4, \sigma = 0.966, \sqrt{\beta_1} = 0, \ \beta_2 = 2.91$] ror the following utsate of th 14 20 **[Ans.** $\mu_1 = 0$, $\mu_2 = 254$, $\mu_3 = 540$, $\mu_4 = 1,49,000$, $\beta_1 = 0.177945$, $\beta_2 = 2.31$] 17 For a distribution it has been found that the first four moments about 27 are 0, 256, 2871 For a distribution it has been death that the first four moments about 27 are 0, 256, -2871 and 1.88,462 respectively. Obtain the first four moments about zero. Also calculate the fig. and B₂ and comment. values of β_1 and β_2 and comment. values of β_1 and β_2 and common [Hint: See Example 28] [Ans. $\nu_1 = 27, \nu_2 = 985, \nu_3 = 37548, \nu_4 = 15, 29, 579, \beta_1 = 0.49, \beta_2 = 2.875]$ For a distribution mean is 10, standard deviation is 4, $\sqrt{\beta_1} = 1$ and $\beta_2 = 4$. Obtain the first four moments about origin, *i.e.*, zero. Hint: See Example 21] [Ans. $v_1 = 10$, $v_2 = 116$, $v_3 = 1544$, $v_4 = 23,184$] ### MISCELLANEOUS EXAMPLES Example 20. Calculate first four central moments from the following and also find the value of | Plana P2. | | | | | | |---------------------|-------|------|-------|-------|-------| | Sales (Rs. crores): | 40—50 | 5060 | 60—70 | 70—80 | 80—90 | | No. of companies: | 10 | 25 | . 30 | 23 | 12 | Solution: Calculations for Moments | Sales (Rs. crores) | f | Mid values
m | d = m - A | $d'=\frac{d}{10}$ | fď | fď² | fd' ³ | fd ⁴ | |--------------------|------------|-----------------|-----------|-------------------|-------------------|-----------------------|-------------------------|------------------------| | 40-50 | 10 | 45 | - 20 | -2 | -20 | 40 | -80 | 160 | | 50-60 | 25 | 55 | -10 | -1 | -25 | 25 | -25 | 25 | | 60—70 | 30 | 65 = A | 0 | 0 | 0 | 0 | 0 | .0 | | 70—80 | 23 | 75 | 10 | +1 | +23 | 23 | +23 | 23 | | 80-90 | 12 | 85 | 20 | +2 | +24 | 48 | +96 | 192 | | A Many | N
= 100 | tie. | | | $\Sigma f d'$ = 2 | $\Sigma f d'^2 = 136$ | $\Sigma f d^{3}$ $= 14$ | $\Sigma f d^{4} = 400$ | $$\mu'_1 = \frac{\Sigma f d'}{N} \times i = \frac{2}{100} \times 10 = 0.2;$$ $\mu'_2 = \frac{\Sigma f d'^2}{N} \times i^2 = \frac{136}{100} \times 100 = 136$ $$\mu'_{1} = \frac{\sum \beta d'^{3}}{N} \times i^{3} = \frac{14}{100} \times 1000 = 140; \ \mu'_{4} = \frac{\sum \beta d'^{4}}{N} \times i^{4} = \frac{400}{100} \times 10,000 = 40,000$$ $$\mu'_{2} = \mu'_{2} - (\mu'_{1})^{2} = 136 - (0.2)^{2} = 135.96$$ $$\mu'_{3} = \mu'_{3} - 3\mu'_{2}\mu'_{1} + 2\mu'_{1})^{3}$$ $$= 140 - 3(136)(0.2) + 2(0.2)^{3} = 140 - 81.6 + 0.016 = 58.416$$ $$\mu_{4} = \mu'_{4} - 4\mu'_{3}\mu'_{1} + 6\mu'_{2}\mu'_{1}^{2} - 3\mu'_{1}^{4}$$ $$= 40,000 - 4(140)(0.2) + 6(136)(0.2)^{2} - 3(0.2)^{4}$$ $$= 40,000 - 112 = 32.64 - 0.0048 = 39,920.64$$
$$\beta_{1} = \frac{\mu'_{3}}{\mu^{3}} = \frac{(58.416)^{2}}{(135.96)^{3}} = 0.0014$$ β_1 is a measure of skewness. Since the value of β_1 is very close to zero, the distribution is more or less symmetrical. $$\beta_2 = \frac{\mu_4}{\mu_2^2} = \frac{39,920.64}{(135.96)^2} = 2.16$$ β_2 is a measure of kurtosis. Since the value of β_2 is less than 3, the curve is platy-kurtic. **Example 21.** For a distribution mean is 10, standard deviation is 4, $\sqrt{\beta_1} = 1$ and $\beta_2 = 4$. Obtain the first four moments about the origin. Given: $\overline{X} = 10$, $\sigma = 4$, $\sqrt{\beta_1} = 1$, $\beta_2 = 4$, Solution: $$\mu_{2} = \sigma^{2} = (4)^{2} = 16$$ $$\beta_{1} = \frac{\mu_{3}^{2}}{\mu_{2}^{3}} \implies 1 = \frac{\mu_{3}^{2}}{(16)^{3}} \implies \mu_{3}^{2} = 4096$$ $$\mu_{3} = \sqrt{4096} = 64$$ $$\beta_{2} = \frac{\mu_{4}}{\mu_{2}^{2}} \implies 4 = \frac{\mu_{4}}{(16)^{2}} \implies \mu_{4} = 4 \times 256 = 1024$$ $$\mu_3 = \sqrt{4096} = 64$$ $$\beta_2 = \frac{\mu_4}{\mu_2^2}$$ \Rightarrow $4 = \frac{\mu_4}{(16)^2}$ \Rightarrow $\mu_4 = 4 \times 256 = 1024$ \therefore $\mu_1 = 0$ (always), $\mu_2 = 16, \mu_3 = 64, \mu_4 = 1024$ Moments about Zero $$v_1 = \overline{X} \text{ or } A + \mu_1' = 10$$ $$v_2 = \mu_2 + v_1^2 = 16 + (10)^2 = 116$$ $$v_3 = \mu_3 + 3v_2 \cdot v_1 - 2v_1^3$$ $$= 64 + 3(116)(10) - 2(10)^3 = 64 + 3480 - 2000 = 1544$$ $$v_4 = \mu_4 + 4v_3 \cdot v_1 - 6v_2 \cdot v_1^2 + 3v_1^4$$ $$= 1024 + 4(1544)(10) - 6(116)(10)^2 + 3(10)^4$$ = 1024 + 61760 - 69600 + 30000 = 23,184 The first four moments of a distribution about X = 4 are 1, 4, 10 and 45. Obtain the Comment upon the nature of distribution on the basis of the information given. Comment open. We are given: A = 4, $\mu'_1 = 1$, $\mu'_2 = 4$, $\mu'_3 = 10$ and $\mu'_4 = 45$ We are given ... $\mu_4 = 45$ According to the formulae on moments, the different possible characteristics of the (i) Mean of distribution $\overline{X} = A + \mu'_1 = 4 + 1 = 5$ (ii) S.D. of the distribution or $\sigma = \sqrt{\mu_2} = \sqrt{\mu_2' - (\mu_1')^2}$ $$= \sqrt{4 - (1)^2} = \sqrt{4 - 1} = \sqrt{3} = 1.732$$ $$- (\mu_1')^2 = 4$$ (iii) Variance = $$\sigma^2 = \mu_2 = \mu'_2 - (\mu'_1)^2 = 4 - 1 = 3$$ (iv) Coefficient of variance or C.V. = $$\frac{\sigma}{X} \times 100$$ = $\frac{1.732}{5} \times 100 = 34.64\%$ (v) Coefficient of skewness or $\beta_1 = \frac{\mu_3^2}{\mu_2^2}$ Where, $\mu_3 = \mu_3' - 3\mu_2' \cdot \mu_1' + 2(\mu_1')^3 = 10 - 3(4)(1) + 2(1)^3$ and $\mu_2 = 3$ Where, $$\mu_3 = \mu'_3 - 3\mu'_2 \cdot \mu'_1 + 2(\mu'_1)^3 = 10 - 3(4)(1) + 2(1)^3 = 10 - 12 + 2 = 0$$ and $\mu_2 = 3$ Thus, $$\beta_1 = \frac{\mu_3^2}{\mu_2^3} = \frac{0}{(3)^2} = \frac{0}{27} = 0$$ Comment: As $\beta_1 = 0$, the distribution is symmetric. (vi) Coefficient of kurtosis or $\beta_2 = \frac{\mu_4}{2}$ Where, $$\mu'_4 = \mu'_4 - 4\mu'_3 \cdot \mu'_1 + 6\mu'_2 \cdot (\mu'_1)^2 - 3(\mu'_1)^4$$ = $45 - 4(10)(1) + 6(4)(1)^2 - 3(1)^4 = 45 - 40 + 24 - 3 = 26$ and $\mu_2 = 3$ $$\frac{\beta_2}{\mu_2} = \frac{\mu_4}{\mu_2^2} = \frac{26}{(3)^2} = 2.88$$ Comment: As β_2 < 3, the distribution is platy-kurtic. Pls 23. Compute the coefficient of skewness (β_1) and kurtosis (β_2) based on moments from | X: | 4.5 | 14.5 | 24.5 | 34.5 | 44.5 | 54.5 | 64.5 | 74.5 | 84.5 | 94.5 | |----|-----|------|------|------|------|------|------|------|------|------| | f: | 1 - | 5 | 12 | 22 | 17 | 9 | 4 | 3 | 1 | 1 | #### Solution: ### Calculation of Skewness and Kurtosis | | | Carcan | 1 | fd'2 | fd ³ | 11 | |------|--------|-----------------------------|---------------------|----------------------|----------------------|--------------------------| | X | f | $d' = \frac{X - 44.5}{100}$ | fď | Ja | manumo") | fd'4 | | ^ | | 10 | -4 | 16 | -64 | 256 | | 4.5 | 11 | -4 | -15 | 45 | -135 | 405 | | 14.5 | 5 | -3 | -24 | 48 | -96 | 192 | | 24.5 | 12 | -2 | -22 | 22 | -22 | 22 | | 34.5 | 22 | -l | 0 | 0 | 0 | 0 | | 44.5 | 17 | 0 | +9 | 9 | +9 | 9 | | 54.5 | 9 | +1 | +8 | 16 | +32 | 64 | | 64.5 | 4 | +2 | +9 | 27 | +81 | 243 | | 74.5 | 3 | +3 | +4 | 16 | +64 | 256 | | 84.5 | 1 | +4 | +5 | 25 | +125 | 625 | | 94.5 | 1 | +5 | | $\Sigma f d^2 = 224$ | $\Sigma f d'^3 = -6$ | | | | N = 75 | 100 | $\Sigma f d' = -30$ | $\Sigma f d^2 = 224$ | $2Ja^{-}=-6$ | $\Sigma f d^{4} = 2,072$ | $$\mu_{1}' = \frac{\sum f d'}{N} \times i = \frac{-30}{75} \times 10 = -4; \qquad \qquad \mu_{2}' = \frac{\sum f d'^{2}}{N} \times i_{3}^{2} = \frac{224}{75} \times 10^{2} = 298.66$$ $$\mu_{3}' = \frac{\sum f d'^{3}}{N} \times i_{3}^{3} = \frac{-6}{75} \times 10^{3} = -80 \qquad \qquad \mu_{4}' = \frac{\sum f d'^{4}}{N} \times i^{4} = \frac{2.072}{75} \times 10^{4} = 27626.66$$ $$\mu_{1} = 0$$ $$\mu_{2} = \mu_{2}' - (\mu_{1}')^{2} = 298.66 - (-4)^{2} = 282.66$$ $$\mu_{3} = \mu_{3}' - 3\mu_{2}' \cdot \mu_{1}' + 2\mu_{1}'^{3} = -80 - 3 (298.66)(-4) + 2(-4)^{3} = 3375.92$$ $$\mu_{4} = \mu_{4}' - 4 \cdot \mu_{5}' + \mu_{7}' + 6\mu_{2}' \cdot \mu_{1}'^{2} - 3(\mu_{1}')^{4}$$ $$= 27626.66 - 4 (-80)(-4) + 6(298.66)(-4)^{2} - 3(-4)^{4}$$ $$= 27626.66 - 1280 + 28671.36 - 768 = 302890.02$$ Skewness: $$\beta_1 = \frac{\mu_3^2}{\mu_3^2} = \frac{(3375.92)^2}{(282.66)^3} = 0.504$$ For kurtosis we have to compute the value of β_2 $$\beta_2 = \frac{\mu_4}{\mu_2^2} = \frac{302890.02}{(282.66)^2} = 3.79 > 3$$ Since the value of β_2 is greater than 3, the curve is more peaked than the normal curve, i.e., lepto-kurtic. ### Example 24. Given the frequency distributed | <i>X</i> : | 2 | 3 | 1 | 5 (-61) | |------------|---|---|----|-----------| | f: | 1 | 3 | 7. | The state | Show that the distribution is symmetric and platy-kurtic. Moments and Measures of Kurtosis For determining the symmetricity and kurtosis of the distribution we are to assess the value of β_1 and β_2 and for this, we compute the first four moments about the mean, | × | f | fX | $\overline{X} = 4$ | | nents | 100 | | |--------------|--------|------------------|--------------------|-----------------|--------------------|--------------------|-----------------| | | | | $X - \overline{X}$ | fx | fx² · | fx ³ | fx ⁴ | | 2 | 1 | 2 | -2 | -2 | <u> </u> | | | | 3 | 3 | 9 | -1 | _3 | 4 | -8 | 16 | | 4 | 7 | 28 | 0 | 0 | 3 | -3 | 3 | | 5 | 3 | 15 | ÷1 | - 12 | 0 | 0 | . 0 | | _ | 1 | 6 | +2 | +3 | 3 | +3 | . 3 | | 0 | N = 15 | $\Sigma fX = 60$ | 72 | +2 | 4 . | +8 | 16 | | | N = 13 | $2j\lambda = 60$ | | $\Sigma fx = 0$ | $\Sigma fx^2 = 14$ | $\Sigma f x^3 = 0$ | Σ6·4= 21 | We have $$\overline{X} = \frac{\sum fX}{N} = \frac{60}{15} = 4$$ $$\begin{split} \mu_1 &= \frac{\sum f x}{N} = \frac{0}{15} = 0; \\ \mu_3 &= \frac{\sum f x^3}{N} = \frac{0}{15} = 0; \\ \mu_3 &= \frac{14}{15} = 0.933 \\ \mu_4 &= \frac{\sum f x^4}{N} = \frac{38}{15} = 2.533 \\ \mu_5 &= \frac{\mu_3^2}{\mu_5^2} = \frac{(0)^2}{(0.933)^2} = 0 \end{split}$$ Since, the value of $$\beta_1$$ is 0, the distribution is symmetric $$\beta_2 = \frac{\mu_4}{\mu_2^2} = \frac{2.533}{(0.933)^2} = 2.91$$ Since, the value of β_2 is less than 3, the distribution is platy-kurtic. Example 25. The first four central moments of a continuous series with class intervals of 10 are arrived at 0, 20, 40 and 50 respectively. Find the corrected values of the moments according to Sheppard's corrections. According to Sheppard, the first and third moments about the mean need no correction. Hence, the 2nd and 4th moments only are corrected as follows: We are given, $\mu'_1 = 0$, $\mu'_2 = 20$, $\mu'_3 = 40$ and $\mu'_4 = 50$, i = 10 $$\begin{split} \mu_2(\text{corrected}) &= \mu_2 - \frac{i^2}{12} = 20 - \frac{10^2}{12} = 20 - \frac{100}{12} = 20 - 8.33 = 11.67 \\ \text{and} \ \mu_4(\text{corrected}) &= \mu_4 - \frac{1}{2} i^2 \cdot \mu_2 + \frac{7}{240} (i)^4 = 50 - \frac{1}{2} \cdot (10)^2 (20) + \frac{7}{240} (10)^4 \\ &= 50 - 1000 + \frac{7}{240} (10,000) = 50 - 1000 + 29167 = -658.33 \end{split}$$ **IMPORTANT TYPICAL**Example 26. For a distribution, the mean is 10, standard deviation is 4, $\sqrt{\beta_1} = 1$, and $\beta_2 \approx 4$. Oblain the first four moments about '4'. the first four moments about '4'. Given, $\overline{X} = 10$, $\sigma = 4$, $\sqrt{\beta_1} = 1$ and $\beta_2 = 4$ $$\mu_2 = \sigma^2 = (4)$$ $\beta_1 = \frac{\mu_3^2}{\mu_2^3} \implies 1 = \frac{\mu_3^2}{(16)^3} \implies \mu_3^2 = 4096$ $$\beta_2 = \frac{\mu_4}{\mu_2^2}$$ \Rightarrow $4 = \frac{\mu_4}{(16)^2}$ \Rightarrow $\mu_4 = 4 \times 256 = 102$ $$\mu_2$$ $$\mu_1 = 0, \, \mu_2 = 16, \, \mu_3 = 64, \, \mu_4 = 1024$$ Moments about 4 $$\mu_1' = \overline{X} - A = 10 - 4 = 6$$ $$\mu'_1 = \lambda^2 + (\mu'_1)^2 = 16 + (6)^2 = 52$$ $$\mu_3' = \mu_3 + 3\mu_2' \cdot \mu_1' - 2(\mu_1')^3$$ $$=64+3(52)(6)-2(6)^3=64+936-432=568$$ $$\mu'_4 = \mu_4 + 4\mu'_3 \cdot \mu'_1 - 6\mu'_2 \cdot (\mu'_1)^2 + 3(\mu'_1)^4$$ Example 27. Examine whether the following results of a piece of computation for obtaining the second central moments are consistent or not: $$N = 120$$, $\Sigma f X = -125$, $\Sigma f X^2 = 128$ Solution: $$\mu_1 = \frac{-125}{120} = -1.042$$ $$\mu_2' = \frac{128}{120} = 1.066$$ $$\mu_2 = \mu_2' - {\mu_1'}^2 = 1.066 - (1.042)^2 = 1.066 - 1.085 = -0.019$$ As the variance $\mu_2 = \sigma^2$ can never be negative, the data for obtaining μ_2 are not consistent $$\sigma^2 = \mu_2 = \frac{\Sigma_f X^2}{N} - \left(\frac{\Sigma_f X}{N}\right)^2 = \frac{128}{120} - \left(\frac{-125}{120}\right)^2 = 1.066 - 1.085 = -0.015$$ ribution it has because $\frac{1}{N} = \frac{128}{N} - \frac{128}{N} = \frac{128}$ Example 28. For a distribution it has been found that the first four moments about 27 are 0,756 and 1,88,462 respectively. Outline the first four moments about zero. Also calculate the values of β_1 and β_2 and comment. Given, A = 27, $\mu'_1 = 0$, $\mu'_2 = 256$, $\mu'_3 = -2871$, $\mu'_4 = 1,88,462$ Moments about Mean: $$\mu_2 = \mu'_2 - (\mu'_1)^2 = 256 - 0 = 256$$ $$\mu_3 = \mu'_3 - 3\mu'_2 \cdot \mu'_1 + 2(\mu'_1)^3 = -2871 - 3(256)(0) + 2(0) = -2871$$ $$\mu_4
= \mu'_4 - 4\mu'_3 \cdot \mu'_1 + 6\mu'_2 \cdot (\mu'_1)^2 - 3(\mu'_1)^4$$ $$= 188462 - 4(-2871)(0) + 6(256)(0)^{2} - 3(0)^{4} = 188462$$ Moments about Zero: $$v_1 = \overline{X} = A + \mu_1' = 27 + 0 = 27$$ $$v_2 = \mu_2 + v_1^2 = 256 + (27)^2 = 256 + 729 = 985$$ $$v_3 = \mu_3 + 3v_2 \cdot v_1 - 2v_1^3$$ $$=-2871+3(985)(27)-2(27)^3$$ $$=-2871+79785-39366=37548$$ $$v_4 = \mu_4 + 4v_3 \cdot v_1 - 6v_2 \cdot (v_1^2) + 3(v_1^4)$$ $$= 188462 + 4(37548)(27) - 6(985)(27)^2 + 3(27)^4$$ $$= 188462 + 4055184 - 4308390 + 1594323 = 1529579$$ $$\beta_1 = \frac{\mu_3^2}{\mu_2^3} = \frac{(-2871)^2}{(256)^3} = \frac{8242641}{16777216} = 0.49$$ Comment: Since, $\beta_1 = 0.49$, the distribution is positively of skewed. $$\beta_2 = \frac{\mu_4}{\mu_2^2} = \frac{188462}{(256)^2} = \frac{188462}{65536} = 2.875$$ Comment: As β_2 < 3, the distribution is platy-kurtic. Example 29. For a meso-kurtic distribution, the first moment about 7 is 23 and the second moment about origin is 1000. Find the coefficient of variation and the fourth moment about the mean. Since the distribution is given to be meso-kurtic, we have $$\beta_2 = 3 \qquad \Rightarrow \qquad \frac{\mu_4}{2} = 3 \qquad \Rightarrow \qquad \mu_4 = 3\mu_2^2 \qquad ...(i)$$ First moment about '7' is 23 *i.e.*, $$\mu'_1$$ (about 7) = 23 (Given) Mean = $$7 + \mu_1' = 7 + 23 = 30$$...(ii) But mean is the first moment about origin. μ'_1 (about origin) = 30 $$\begin{array}{ll} & \text{Moments About Origin} \\ & \mu'_1 = 1,000 \text{ (Given)} \\ & \mu'_2 = 1,000 \text{ (Given)} \\ & \mu'_1 = \frac{1}{100} \frac{1$$ Coefficients $G_{\mu_2} = 100$, in (i), the fourth moment about mean is given by: Substituting the value of $\mu_2 = 100$, in (i), the fourth moment about mean is given by: $G_{\mu_2} = 100$. $\mu_4 = 3 \times (100)^2 = 30,000.$ $\mu_4=3\times(100)=50,000.$ $\mu_4=3\times(100)=50,000.$ Example 30. If $\beta_1=+1$, $\beta_2=4$ and variance = 9, find the values of μ_3 and μ_4 and comment upon β_4 . nature of the distribution. We are given, $\beta_1 = +1$, $\beta_2 = 4$ and variance $= \mu_2 = 9$ We are given, $$\beta_1 = \frac{1}{4} + \frac{1}{4} = \frac{1}$$ Also, $$\beta_2 = 4$$ $\Rightarrow \frac{1}{\mu_2^2}$ $\therefore \mu_3 = \pm 27$ and $\mu_4 = 324$. Nature of the Distribution: Since $\beta_1\neq 0,$ but $\beta_1=1,$ the distribution is moderately skewed. Further, since μ_3 (= ± 27) can be positive or negative, we cannot tell the direction of the skewness. Also $\beta_2 = 4 > 3$. Hence, the given distribution is lepto-kurtic, i.e., more peaked than the normal curve. Example 31. The first three moments of the distribution about the value '2' of the variables at 1, 16 and – 40. Show that the mean is 3, variance is 15 and $\mu_3 = -$ 86. Solution: We are given, A = 2, $$\mu_1'$$ = 1, μ_2' = 16, μ_3' = -40 Mean $$(\overline{X})$$ = A + μ'_1 = 2 + 1 = 3 Variance (σ^2) = μ_2 = μ'_2 - $(\mu'_1)^2$ = 16 - (1)² = 16 - 1 = 15 $$\mu_3 = \mu_3' - 3\mu_2' \mu_1' + 2(\mu_1')^3$$ = -40 - 3(16)(1) + 2(1)³ $$=-40-3(16)(1)+2(1)^3$$ =-40-48+2=-86 Example 32. The first four moments of a distribution about the value '3' of the variable are 12.11 - 22 and 180. Find the value of β_2 . We are given, $\mu_1' = 1.2, \mu_2' = 13, \mu_3' = -22, \mu_4' = 180$ $$\beta_2 = \frac{\mu}{\mu}$$ $$\mu_2 = \mu'_2 - (\mu'_1)^2 = 13 - (-1.2)^2 = 13 - 1.44 = 11.56$$ Moments and Measures of Kurtosis $$\begin{split} & \mu_4 = \mu_4' - 4\mu_3' \, \mu_1' + 6\mu_2' (\mu_1')^2 - 3(\mu_1')^4 \\ &= 180 - 4(-22) \, (-1.2) + 6(13) \, (-1.2)^2 - 3(-1.2)^4 \\ &= 180 - 105.6 + 112.32 - 6.2208 \\ &= 292.32 - 111.8208 = 180.4992 \end{split}$$ Now, $$\beta_2 = \frac{\mu_4}{\mu_2^2}$$ Here, $$\mu_4 = 180.4992$$, $\mu_2 = 11.56$ $$\beta_2 = \frac{180.4992}{(11.56)^2} = \frac{180.4992}{133.6336} = 1.35$$ Since β_2 is less than 3, so the curve is platy-kurtic. #### IMPORTANT FORMULAE Moments about Mean nts about Mean $$\mu_1 = \frac{\Sigma (X - \overline{X})^1}{N} = 0, \qquad \qquad \mu_2 = \frac{\Sigma (X - \overline{X})^2}{N}$$ $$\mu_3 = \frac{\Sigma (X - \overline{X})^3}{N}, \qquad \qquad \mu_4 = \frac{\Sigma (X - \overline{X})^4}{N}$$ For a Frequency Distribution $$\mu_1 = \frac{\sum f(X - \overline{X})^1}{N}, \qquad \qquad \mu_2 = \frac{\sum f(X - \overline{X})^2}{N} \text{ etc.}$$ Moments about Arbitrary Origin 'A' $$\mu'_1 = \frac{\Sigma(X - A)^1}{N},$$ $\mu'_2 = \frac{\Sigma(X - A)^2}{N},$ $\mu'_3 = \frac{\Sigma(X - A)^3}{N},$ $\mu'_4 = \frac{\Sigma(X - A)^4}{N}$ Fór a Frequency Distribution Frequency Distribution $$\mu'_1 = \frac{\sum f(X - A)^1}{N} \times i \qquad \text{or} \qquad \mu'_1 = \frac{\sum fd'}{N} \times i$$ $$\mu'_2 = \frac{\sum f(X - A)^2}{N} \times i^2 \qquad \text{or} \qquad \mu'_2 = \frac{\sum fd'^2}{N} \times i^2$$ $$\mu'_3 = \frac{\sum f(X - A)^3}{N} \times i^3 \qquad \text{or} \qquad \mu'_3 = \frac{\sum fd'^3}{N} \times i^3$$ Moments about Zero $$v_1 = \frac{\Sigma \chi^2}{N}, \qquad v_4 = \frac{\Sigma \chi^2}{N}$$ $$v_1 = \frac{\Sigma \chi^3}{N}, \qquad v_4 = \frac{\Sigma \chi^4}{N}$$ Relationship between Central and Non-central Moments $$\mu_1 = 0$$ $$\mu_2 = \mu_2^2 - \mu_1^2$$ $$\mu_3 = \mu_3^2 - 3\mu_2^2 \cdot \mu_1^2 + 2\mu_1^2$$ $$\mu_4 = \mu_4^2 - 4\mu_3^2 \cdot \mu_1^2 + 6\mu_2^2 \cdot \mu_1^2 - 3(\mu_1^2)^4$$ Relationship between Central Moments and Moments about Origin and Augustian Service $$v_2 = \mu_2 + v_1^2$$ $$v_3 = \mu_3 + 3\mu_2 \cdot v_1 + (v_1)^3, \qquad v_4 = \mu_4 + 4\mu_3 \cdot v_1 + 6\mu_2 \cdot (v_1)^2 + (v_1)^4$$ Skewness and Kurtosis $$\beta_1 = \frac{\mu_2^2}{\mu_2^2}, \qquad \gamma_1 = \sqrt{\beta_1} = \frac{\mu_3}{\sqrt{\mu_2^3}}$$ $$\beta_2 = \frac{\mu_4}{\mu_2^2}, \qquad \gamma_2 = \beta_2 - 3$$ #### QUESTIONS - 1. What do you understand by skewness and kurtosis? Give formulae for measuring them. - 2. Explain the term kurtosis. How does kurtosis differ from skewness? - 3. What is kurtosis? How is it measured? - 4. Define moments. How are skewness and kurtosis calculated from central moments? - 5. Distinguish between skewness and kurtosis. - 6. What is kurtosis? What purpose does it serve? - 7. Define Moments. How are they useful in analysing the different aspects of a frequent distribution? - 8. Discuss various measures of kurtosis? - 9. How do you measure skewness and kurtosis by using moments? - 10. Give measures of skewness and kurtosis. - 11. What is kurtosis? Explain the methods to measure kurtosis. What are Sheppard's corrections for grouping errors? State the conditions under Sheppard's corrections are applicable. # PART- # Correlation ## INTRODUCTION In our day-to-day life, we find many examples when a mutual relationship exists between two variables, i.e., with fall or rise in the value of one variable, the fall or rise may take place in the value of other variable. For example, price of a commodity rises as the demand for the commodity goes in. Upto a certain time-period, weight of a person increases with the increase in age. Similarly, the temperature rises with the rise in the sun light. These facts indicate that there is certainly some mutual relationship that exists between the demand for a commodity and its price, the age of a second and his weight, and the sunlight and temperature. The correlation refers to the estication mutual relationship that exists between the demand for a commodity and its price, the age of a person and his weight, and the sunlight and temperature. The correlation refers to the statistical technique used in measuring the closeness of the relationship between the variables. #### DEFINITION OF CORRELATION Some important definitions of correlation are given below: - 1. Correlation analysis deals with the association between two or more variables. - 2. If two or more quantities vary in sympathy, so that movement in one tend to be accompanied by corresponding movements in the other, then they are said to be correlated. -Conner - 3. Correlation analysis attempts to determine the degree of relationship between variables. —Ya-Lun Chou Thus, correlation is a statistical technique which helps in analysing the relationship between two or more variables. #### UTILITY OF CORRELATION The study of correlation is of immense significance in statistical analysis and practical life, which is clear from the following points: - (1) Most of variables show same kind of relationship. For example, there is relationship een price and supply, income and expenditure, etc. With the help of correlation analysis, we can measure the degree of relationship in one figure between different variables like supply and price, income and expenditure, etc. - (2) Once we come to know that the two variables are mutually related, then we can estimate the the of one variable on the basis of the value of another. This function is performed by regression thingue, which is based on correlation. In other words, the concept of regression is based on correlation. - (3) Correlation is also useful for economists. An economist specifies the relationship between different variables like demand and supply, money supply and price level by way of correlation. (4) In business, a trader makes the estimation of costs, sales, prices, etc., with the help (4) In business, a traue. (4) In business, a traue. (5) relation and makes appropriate plans. (6) In business, a traue. (7) In business, a traue. (8) In business, a traue. (9) In business, a traue. (9) In business, a traue. (9) In business, a traue. (10) In business, a traue. (11) In business, a traue. (12) In business, a traue. (13) In business, a traue. (14) In business, a traue. (15) In business, a traue. (16) In business, a traue. (17) In business, a traue. (17) In business, a traue. (18) tra correlation and makes appropriate plans. correlation and makes or . Thus, in every field of practical life, correlation analyzing their mutual relationship comparative study of two or more related phenomena and analyzing their mutual relationship comparative study
of two or more related phenomena. TYPES OF CORRELATION Main types of correlation are given below: Main types of correlation are given occur. (1) Positive and Negative Correlation: On the basis of direction of change of the variable classified into two types: correlation can be classified into two types: clation can be classified into two types. (a) Positive Correlation: If two variables X and Y move in the same direction, i.e., if the correlation is two and vice versa, then it is a called as positive correlation. Example 1. Positive Correlation: If two variables A and I allow a positive correlation, i.e., if or rises too and vice versa, then it is a called as positive correlation. Examples of rises, other rises too and vice versa, then it is a called as positive correlation. Examples of rises, other rises too and vice versa, then it is a called as positive correlation. rises, other rises too and vice versa, men it is a sound and supply, between money supplied to the rises too and vice versa, men it is a sound and supply, between money supplied to the rises too and vice versa, men it is a sound as - and prices, etc. (ii) Negative Correlation: If two variables X and Y move in opposite direction, i.e., if on Negative Correlation: If two variances A and I moot in expectation, i.e., if on its called as negative correlation rises, other falls, and if one falls, other rises, then it is called as negative correlation rises, other falls, and if one falls, are the relationship between demand rises, other falls, and it one rails, outcomes a field to be a field to be falls, and it one rails, outcomes falls, and it one rails, other falls, and it one rails, other falls, and it one rails of the falls, and it one rails, other rails of the falls, and it one rails of the falls, other falls, and it one rails of the falls o investment and rate of interest, etc. - (2) Linear and Curvi-Linear Correlation: On the basis of change in proportion, correlation - (i) Linear Correlation: If the ratio of change of two variables X and Y (ΔY / ΔX) remain constant throughout, then they are said to be linearly correlated, like as when everyting supply of a commodity rises by 20% as often as its price rises by 10%, then such two variables have linear relationship. If values of these two variables are plotted on a graph then all the points will lie on a straight line. - (ii) Curvi-Linear Correlation: If the ratio of change between the two variables is not consu but changing, correlation is said to be curvi-linear, like as when everytime price of commodity rises by 10%, then sometimes its supply rises by 20%, sometimes by 10% then so sometimes by 40%, then non-linear or curvi-linear correlation exists between them. In or of curvi-linear correlation, values of the variables plotted on a graph will give a curve - (3) Simple Partial and Multiple Correlation: On the basis of number of variables studies correlation may be classified into three types: - (i) Simple Correlation: When we study the relationship between two variables only, in is called simple could be add we is called simple correlation. Relationship between two variables only income and consumption get and demand, height and weight income and consumption get. - income and consumption, etc., are all examples of simple correlation (ii) Partial Correlation: When three or more variables are taken but relationship between two of the variables; it is called two of the variables is studied, assuming other variables are taken but relationship between of the variables is studied, assuming other variables as constant, then it is called between the correlation. Suppose, under variables as constant, then it is called between the constant of amount of rainfall and wheat yield the state of - amount of rainfall and wheat yield, then this will be called as partial correlation. Multiple Correlation was (iii) Multiple Correlation: When we study the relationship among three or more, the rainful multiple correlation to relationship among three or more, the rainful multiple correlation to rainful multiple correlation to relationship among three or more was a study of the relationship among three or more was a study of the rainful multiple correlation to the relationship among three or more was a study of the rainful multiple correlation. then it is called multiple correlation. For example, if we study the relationship among three or more varianfall, temperature and yield of wheel of the control cont rainfall, temperature and yield of wheat, then it is called as multiple correlation. Correlation # CORRELATION AND CAUSATION Correlation is a numerical measure of direction and magnitude of the mutual relationship netween the values of two or more variables. But the presence of correlation should not be taken as between the values of the variables. But the presence of correlation should not be taken as the belief that the two correlated variables necessarily have causal relationship as well. Correlation does not always arise from causal relationship but with the presence of causal relationship, the presence of causal relationship, the presence of causal relationship, the presence of causal relationship. does not all prosence of causal relationship, correlation is certain to exist. Presence of high degree of correlation between different variables may be due to the following reasons: (1) Mutual Dependence: The study of economic theory shows that it is not necessary that only (1) Mutual by the strength one variable and the strength of th one variables may affect each other mutually. In such situation, it is difficult to know which one is the cause and which one is the effect. For example, price of a commodity is affected by the forces of demand and supply. According to the for example, Proceeding to the law of demand, with the rise in price (other things remaining constant), demand for the commodity law of centains, will fall. Here rise in price is the cause and fall in demand is the effect. On the other hand, with fall in demand, price of the commodity falls. Here fall in demand is the cause and fall in price is the effect. Thus there may be high degree of correlation between two variables due to mutual dependence, but it is difficult to know which one is the cause and which one is the effect. (2) Due to Pure Chance: In a small sample it is possible that two variables are highly correlated but in universe, these variables are unlikely to be correlated, such correlation may be due to either the fluctuations of pure random sampling or due to the bias of investigator in selecting the sample. The following example makes the point clear: | Income (in Rs.) | 5,000 | 6,000 | 7,000 | 8,000 | 9,000 | |-----------------|-------|-------|-------|-------|-------| | Weight (in Kg.) | 100 | 120 | 140 | 160 | 180 | In the data as stated above, there is perfect positive correlation between income and weight, i.e., weight increases with rise in income and the rate of change of the two variables is also the same. Still such kind of correlation cannot be said to be meaningful. Such relationship is said to be spurious or non-sense (3) Correlation Due to any Third Common Factor: Two variables may be correlated due to some common third factor rather than having direct correlation. For example, if there is high degree of positive correlation between per hectare field of tea and rice, then this does not imply that rice yield has risen due to the rich yield of tea. Another reason of the good yield of these two is the good rainfall well in time that affects both of these two. #### DEGREE OF CORRELATION Degree of correlation can be known by coefficient of correlation (r). The following can be various types of the degree of correlation: - (1) Perfect Correlation - (2) High Degree of Correlation - (3) Moderate Degree of Correlation - (4) Low Degree of Correlation - (5) Absence of Correlation. (1) Perfect Correlation: When two variables vary at constant ratio in the same direction of change is opposite, it is perfect correlation and when the direction of change is opposite, it is perfect that the correlation coefficient (a). (1) Perfect Correlation: When two variables vary at constant ratio in the same direction, it is perfect neglect positive correlation and when the direction of change is opposite, it is perfect neglect positive correlation and when the direction coefficient (r) is equal to +1, and to correlation. In case of perfect positive correlation coefficient (r) is equal to -1. correlation. In case of perfect positive correlation, correlation coefficient (r) case of perfect negative correlation, correlation coefficient (r) is equal to -1. correlation. In case of perfect negative correlation, correlation exists in very large magnitude, then it is called the correlation of the correlation coefficient ranges between ±0.75 and \$\frac{1}{2}\$, high degree of correlation. In such a case, correlation coefficient, on being within the table of correlation. th degree of correlation. In such a case, controlling the degree of correlation coefficient, on being within the limits ±0.23 (3) Moderate Degree of Correlation. and ±0.75 is termed as moderate degree of correlation. and ±0.75 is termed as moderate degree of correlation: (4) Low Degree of Correlation: When correlation exists in very small magnitude, then it is cally as low degree of correlation. In such a case, correlation coefficient ranges between 0 and ±0.25. as low degree of correlation. low degree of correlation. In such a case, controlled to the variables, then correlations. When there is no relationship between the variables, then correlations to the variables of correlation, the value of correlation coefficients. (5) Absence of Correlation: When there is no relationship to the advantage state of the correlation coefficient is zero, is found to be absent. In case of absence of correlation of value of correlation coefficient can be ound to be absent. In case of assence
of each control to the contr with th | ollowi | ng table: | Positive | Negative ' | |--------|-----------------------------------|------------------------|------------------------| | S.No. | Degree of Correlation | Tostave | Puri Chancer li | | 1. | Perfect Correlation | +1 | Between -0.75 to -1 | | 2. | High Degree of Correlation | Between +0.75 to +1 | 10115-2-7911-0-1 | | 3. | Moderate Degree of
Correlation | Between +0.25 to +0.75 | Between -0.25 to -0.75 | | 4 | Low Degree of Correlation | Between 0 to + 0.25 | Between 0 to -0.25 | | 4. | Absence of Correlation | 0 | 0 100 | #### ■ METHODS OF STUDYING CORRELATION Correlation can be determined by the following methods: - (1) Graphic Methods - (2) Algebraic Methods - (i) Scatter Diagram - (i) Karl Pearson's Coefficient of Correlation (ii) Spearman's Rank Correlation Method - (ii) Correlation Graph - (iii) Concurrent Deviation Method (1) GRAPHIC METHOD o (i) Scatter Diagram Scatter Diagram is a graphic method of finding out correlation between two variables. By this Scatter diagram is a general method of mining our correlation between two variables. By this method, direction of correlation can be ascertained. For constructing a scatter diagram, X-variable is represented on X-axis and the Y-variable on Y-axis. Each pair of values of X and Y series is the two-dimensional space of X—Y. Thus we get a scatter discussion of X and Y series is is represented on X-axis and the r-variable on Y-axis. Each pair of values of X and Y series is plotted in two-dimensional space of X—Y. Thus we get a scatter diagram by plotting all the pair of values. Different points may be scattered in various ways in the scatter diagram whose analysis gives us an idea about the direction and magnitude of correlation in the following ways: (a) Perfect Positive Correlation (r = +1): If all points are plotted in the above the g us an loca according to the following ways: (f) Perfect Positive Correlation (r = +1): If all points are plotted in the shape of a straight line, passing from the lower corner of left side to the upper corner at right side, then both series X and Y have perfect positive correlation, as is clear from the diagram (A) below. (ii) Perfect Negative Correlation (r=-1): When all points lie on a straight line from up to down. then X and Y have perfect negative correlation, as is clear from the diagram (B) below. (iii) High Degree of Positive Correlation: When concentration of points moves from left to right upward and the points are close to each other, then X and Y have high degree of positive correlation, as is clear from the diagram (C) below. (iv) High Degree of Negative Correlation: When points are concentrated from left to right downward, and the points are close to each other, then X and Y have high degree of negative correlation, as is clear from the diagram (D) below. (v) Zero Correlation (r = 0): When all the points are scattered in four directions here and there and are lacking in any pattern, then there is absence of correlation, as is clear from the diagram (E) below. Example 1. | iven the | following | pairs of | values of | the variabl | e X and Y | : | |----------|-----------|----------|-----------|-------------|-----------|-----| | X: | 10 | 20 | 30 | 40 | 50 | 60 | | ν. | 25 | | - | 100 | 125 | 150 | | | 25 | 50 | 75 | 100 | | | (i) Make a Scatter Diagram. (ii) Is there any correlation between the variables X and Y? (ii) By looking at the scatter diagram, we can say that there is perfect position at the scatter diagram, we can say that there is perfect position. by tourning at the seattle straightful and correlation between X and Y variables. # Merits and Demerits of Scatter Diagram Merits and Demerits of Scalars. Determining correlation by the method is easy because no mathematical computations are by Determining correlation by the method is that degree of correlation cannot be determined done. The major shortcoming of this method is that degree of correlation cannot be determined. n the following pairs of values of the variables X and Y: | . 61 | ven me to | Howing bon. | | | | | | |------|-----------|-------------|---|------|---|----|----| | | ν. | 2 | 3 | 5 | 6 | 8 | 9 | | - | λ: | - | | 7 | 0 | 12 | 11 | | - 1 | Y: | 6 | 5 | - 1- | 0 | 12 | | (a) Make a scatter diagram. (b) Is there any correlation between the variables X and Y? 2. Draw three hypothetical scatter diagrams showing the following values of 'r': (i)r=-1 (ii)r=+1 (iii)r=0 #### O (ii) Correlation Graph Correlation can also be determined with help of correlation graph. Under this method, to curves are drawn by marking the time, place, serial number, etc., on X-axis and the values of become that variables series on Y-axis. The degree and direction of correlation is judged on the base curves in the followcorrelated variables' series on Y-axis. The degree and direction of correlation is judged on the same of these curves in the following ways: (a) If curves of both series move up or down in the same direction, then they have positive correlation, and (b) If curves of both series move in a oppositive correlation, and (b) If curves of both series move in a oppositive correlation. This method too has the same merits and demension therefore the same merits and demensions of a scatter diagram. those of a scatter diagram. Example 2: Construct a correlation graph on the basis of the following data and comment or relationship between _______ relationship between | Year: | Totion and | consump | otion; | 1 | | |----------------------------|------------|---------|--------|------|------| | Production (in lakh tons): | 1990 | 1991 | 1992 | 1993 | 1994 | | Consumption (in lakh tons) | 40 | 48 | 58 | 58 | 64 | | tons) | 40 | 42 | 54 | 55 | 58 | Correlation In above shown graph, years are shown on OX axis and the production and consumption are shown on OY axis. This graph reveals that the two variables are closely related. Both curves are moving in one direction only. The distance between them also remains almost constant, therefore, there is high degree of positive correlation between them. #### EXERCISE 1.2 1. From the following data, ascertain whether the income and expenditure of the 100 workers of a factory are correlated: | Year: | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | |--------------------------|------|------|------|------|------|------|------|------|------|------| | Average income (in Rs.): | 100 | 102 | 105 | 105 | 101 | 112 | 118 | 120 | 125 | 130 | | Average expenditure: | 90 | 91 | 93 | 95 | 92 | 94 | 100 | 105 | 108 | 110 | [Ans. Closely Related] From the following data, ascertain with the help of correlation graph, whether the demand and price of a commodity are correlated. | Year: | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | |------------------|------|------|------|------|------|------|------|------| | Demand in units: | 50 | 55 | 62 | 70 | 75 | 78 | 80 | 82 | | Price in Rs.: | 40 | 38 | 35 | 30 | 27 | 22 | 20 | 16 | [Ans. Negatively correlated] ### (2) ALGEBRAIC METHOD (I) Karl Pearson's Coefficient of Correlation It is quantitative method of measuring correlation. This method has been given by Karl Pearson and after his native method of measuring coefficient of correlation. This is the best method of and after his name, it is known as Pearson's coefficient of correlation. This is the best method of working out correlation coefficient. This method has the following main characteristics: (1) Knowledge of Direction of Correlation: By this method, the direction of correlation of correlation and the state of th (1) Knowledge of positive of negative. (2) Knowledge of Degree of Relationship: By this method, it becomes possible to measure of the correlation quantitatively. The coefficient of correlation quantitatively. The coefficient of correlation gives knowledge about the size of relationship. orrelation quantities gives knowledge arount the deficient of correlation gives knowledge arount the efficient of correlation gives knowledge arount the efficient of correlation as it is based on (3) Ideal Measure: It is considered to be an ideal measure of correlation as it is based on (3) Ideal Measure: It is considered to be an ideal measure of correlation as it is based on (3) Ideal Measure: It is considered to be an ideal measure of correlation as it is based on (3) Ideal Measure: It is considered to be an ideal measure of correlation as it is based on (3) Ideal Measure: It is considered to be an ideal measure of correlation as it is based on (3) Ideal Measure: It is considered to be an ideal measure of correlation as it is based on (3) Ideal Measure: It is considered to be an ideal measure of correlation as it is based on (3) Ideal Measure: It is considered to be an ideal measure of correlation as it is based on (3) Ideal Measure: It is considered to be an ideal measure of correlation as it is based on (3) Ideal Measure: It is considered to be an ideal measure of correlation as it is based on (3) Ideal Measure: It is considered to be an ideal measure of correlation as it is based on (3) Ideal Measure: It is considered to be an ideal measure of correlation as it is based on (3) Ideal Measure: It is considered to be an ideal measure of correlation as it is based on (3) Ideal Measure: It is considered to be an ideal measure of correlation as it is based on (3) Ideal Measure: It is considered to be an ideal measure of correlation as it is based on (3) Ideal Measure: It is considered to be an ideal measure of correlation as it is based on (3) Ideal Measure: It is considered to be an ideal measure of correlation as it is based on (3) Ideal Measure: It is considered to be an ideal measure of correlation as it is based on (3) Ideal Measure: It is considered to be an ideal measure of correlation as it is based on (3) Ideal Measure: It is based on (3) Ideal Measure: It is based on (3) Ideal Measure: It is based on d standard deviation. (4) Covariance: Karl
Pearson's method is based on co-variance. The formula for co-variance variance: Karl Pearson 3... $$\frac{\sum (X - \overline{X})(Y - \overline{Y})}{N} = \frac{\sum XY}{N} - \overline{X}\overline{Y}$$ $$\frac{\sum XY}{N} - \frac{\sum XY}{N} = \frac{\sum XY}{N} - \frac{\overline{X}}{N}\overline{Y}$$ Leads to express CO The magnitude of co-variance can be used to express correlation between two variables, At The magnitude of co-variance can be used to express correlation to the degree of correlation, otherwige magnitude of co-variance becomes greater, higher will be the degree of correlation, otherwige magnitude of co-variance for covariance, correlation will be positive. On the contrary magnitude of co-variance becomes greater, migner with the contrary correlation, otherwise lower. With positive sign of covariance, correlation will be positive. On the contrary, correlation will be negative if the sign of covariance is negative. - O Calculation of Karl Pearson's Coefficient of Correlation The calculation of Karl Pearson's coefficient of correlation can be divided into two parts: (A) Calculation of Coefficient of Correlation in the case of Individual Series or Ungrouped Data (B) Calculation of Coefficient of Correlation in the case of Grouped Data. - ▶ (A) Calculation of Coefficient of Correlation in case of Individual Series or Ungrouped Data The following are the main methods of calculating the coefficient of correlation in individual This method is useful when arithmetic mean happens to be in whole numbers or integers. This method involves the following steps: - (1) First, we compute the arithmetic mean of X and Y series, i.e., \overline{X} and \overline{Y} are worked out. - (2) Then from the arithmetic means of the two series, deviations of the individual values when the deviations of X-series are denoted by x and of the Y-series by y, i.e., $x = X - \sqrt{|x|}$ - (3) Deviations of the two series are squared and added up to get Σx^2 and Σy^2 . - (4) The corresponding deviations of the two series (x and y) are multiplied and summed ^{up to go}y. - (5) Finally, correlation coefficient is found out by using the following formula: $$r = \frac{\sum_{xy}}{\sqrt{\sum_{x} x^{2} \times \sum_{y}^{2}}} \text{ or } \frac{\sum_{x} (X - \overline{X})(Y - \overline{Y})}{\sqrt{\sum_{x} (X - \overline{X})^{2}} \sqrt{\sum_{x} (Y - \overline{Y})^{2}}}$$ relation coefficient has the value The correlation coefficient has the value always ranging between -1 and +1. The follouples clarify the computation procedure $x_1, x_2, x_3 \in \mathbb{R}^{n-1}$ ine contenation coefficient has the value arways language examples clarify the computation procedure of this method: Correlation Example 3. From the following data, calculate Karl Pearson's coefficient | | 0.64 | | | | ocificient (| or correlati | on: | |----|------|---|---|---|--------------|--------------|-----| | X: | 2 | 3 | 4 | 5 | 6 | 7 | | | Y: | 4 | 7 | 8 | 9 | 10 | B 0 273 | 0 | | | | | | | 10 | 14 | 18 | Solution: | x | (X-X)
x | x ² | Y | (Y-\overline{Y}) | v ² | ху | |-------------------------|----------------|-------------------|-----------------|------------------|--------------------|------------------| | 2 | -3 | 9 | 4 | -6 | 36 | +18 | | 3 | -2 | 4 | 7 | -3 | 9 | +6 | | 4 | -1 . | 1 | 8 | -2 | 4 | +2 | | 5 | 0 | 0 | 9 | -1 | 1 | 0 | | 6 | +1 | 1 | 10 | 0 | 0 | 0. | | 7 | +2 | 4 | 14 | +4 | 16 | +8 | | 8 | +3 | 9 | 18 | +8 | 64 | +24 | | $\Sigma X = 35$ $N = 7$ | $\Sigma x = 0$ | $\Sigma x^2 = 28$ | $\Sigma Y = 70$ | $\Sigma y = 0$ | $\Sigma y^2 = 130$ | $\Sigma xy = 58$ | $$\overline{X} = \frac{\sum X}{N} = \frac{35}{7} = 5, \quad \overline{Y} = \frac{\sum Y}{N} = \frac{70}{7} = 10$$ $$r = \frac{\sum xy}{\sqrt{\sum x^2 \times \sum y^2}} = \frac{58}{\sqrt{28 \times 130}} = \frac{58}{\sqrt{3640}}$$ $$= \frac{58}{60.33} = +0.96$$ Thus, there is a high degree of positive correlation between the variables X and Y. Example 4. From the following data, compute the coefficient of correlation between X and Y | | X-Series | Y-Series | |----------------------------------|----------|----------| | Number of items: | - 15 | 15 | | Arithmetic mean: | 25 | 18 | | Squares of deviations from mean: | 136 | 138 | Summation of product of deviations of X and Y series from their respective arithmetic means = 122. We are given: N = 15, $\overline{X} = 25$, $\overline{Y} = 18$, $\Sigma x^2 = 136$, $\Sigma y^2 = 138$, $\Sigma xy = 122$ Applying the formula, $$r = \frac{\sum xy}{\sqrt{\sum x^2 \cdot \sum y^2}} = \frac{122}{\sqrt{136 \times 138}}$$ $$= \frac{122}{\sqrt{18768}} = \frac{122}{136.996} = +0.89$$ Solution: IMPORTANT TYPICAL EXAMPLES In calculate the coefficient of correlation by Karl Pear | following table, Care | | | -41201 | |---|---------------|-------|--------| | Example 5. From the following table, cardense method: | 10 | 4 | | | Example 3. method: 6 | _ | 8 | 8 | | X: 9 11 | | | 7] | | V. | and & respect | ively | | Arithmetic means of X and Y series are 6 and 8 respectively. Arithmene means of x and x and let us denote it by a. Let us first find the missing value of Y and let us denote it by a. Arithmetic means of Y and let us denote Let us first find the missing value of Y and let us denote $$\overline{Y} = \frac{\Sigma Y}{N} = \frac{9+11+a+8+7}{5} = \frac{35+a}{5}$$ $$35 + a = 40 \Rightarrow a = 5$$ | Thus, the complete series is: X: 6 2 10 4 8 | Thus the com | plete series is | | | | | |--|--------------|-----------------|----|----|---|---| | X: 0 11 5 7 | Tilus, ure | 6 | 2 | 10 | 4 | 8 | | | X: | 0 | 11 | 5 | 8 | 7 | Now we find the coefficient of correlation. #### Calculation of Coefficient of Correlation | х | Z =6
x | x ² | Y | <u>¥</u> =8 | y ² | ху | |-----------------|----------------------|-------------------|-----------------|----------------|-------------------|------------------| | 6 | 0 | 0 | 9 | 1 | 1 | 0 | | 2 | -4 | 16 | 11 | 3 | 9 | -12 | | 10 | 4 | 16 | 5 | -3 | 9 | -12 | | 4 | -2 | 4 | 8 | 0 | 0 | 0 | | 8 | 2 | 4 | 7 | -1 | and and | -2 | | $\Sigma X = 30$ | $\Sigma x = 0$ | $\Sigma x^2 = 40$ | $\Sigma Y = 40$ | $\Sigma y = 0$ | $\Sigma y^2 = 20$ | $\Sigma ry = -2$ | $$\bar{X} = \frac{\Sigma X}{N} = \frac{30}{5} = 6, \quad \bar{Y} = \frac{\Sigma Y}{N} = \frac{40}{5} = 8$$ Applying the formula: $$r = \frac{\Sigma xy}{\sqrt{\Sigma x^2 \times \Sigma y^2}} = \frac{-26}{\sqrt{40 \times 20}}$$ $$= \frac{-26}{\sqrt{800}} = \frac{-26}{28.2843}$$ $$= -0.9192$$ Correlation Example 6. From the data given below, find the number of items (N): r = 0.5, $\Sigma xy = 120$, Standard Deviation of $Y(\sigma_y) = 8$, $\Sigma x^2 = 90$ Where, x and y are deviations from arithmetic means. Given: $$r = 0.5$$, $\Sigma xy = 120$, $\Sigma x^2 = 90$, $\sigma_y = 8$ Now, $\sigma_y = \sqrt{\frac{\Sigma y^2}{N}}$ when $y = Y - \overline{Y}$ [Formula of S.D.] $8 = \sqrt{\frac{\Sigma y^2}{N}}$, squaring both sides, we get Squaring both sides $$0.25 = \frac{(120)^2}{90 \times 64N} \implies 0.25 = \frac{14400}{5760 N}$$ $$\Rightarrow (0.25) (5760) N = 14400$$ ⇒ $$(0.23)(3760)N = 14400$$ ⇒ $(1440)N = 14400$ ∴ $N = \frac{14400}{1440} = 10$ ### EXERCISE 1.3 1. Catqulate Karl Pearson's coefficient of correlation between the heights of fathers and sons from the following: | Height of fathers (in inches): | 65 | 66 | 67 | 68 | 69 | 70 | 71 | |--------------------------------|----|----|----|----|----|----|----| | Height of sons (in inches): | 67 | 68 | 66 | 69 | 72 | 72 | 69 | [Ans. r = 0.668] Calculate Pearson's coefficient of correlation between X and Y from the following data: 24 21 26 22 20 19 Y: 36 48 37 50 45 33 41 39 [Ans. r = 0.947] Calculate the coefficient of correlation using Karl Pearson's formula based on actual mean value according to the coefficient of correlation using Karl Pearson's formula based on actual mean value according to the coefficient of correlation using Karl Pearson's formula based on actual mean value according to the coefficient of correlation using Karl Pearson's formula based on actual mean value according to the coefficient of correlation using Karl Pearson's formula based on actual mean value according to the coefficient of correlation using Karl Pearson's formula based on actual mean value according to the coefficient of correlation using Karl Pearson's formula based on actual mean value according to the coefficient of correlation using Karl Pearson's formula based on actual mean value according to the coefficient of correlation of the coefficient of o value of the series given below | 10 | 12 | 15 | 23 | 20 | |----|----|----|----|----| | 14 | 17 | 23 | 25 | 21 | [Ans. r = 0.864] pearson coefficient of correlation; | u-wing data, compute Rent | X-series | Y-series | |---|----------|------------| | From the following data, compute Karl Pearson | . 7 | Id Store 7 | | | 4 | Smp - 8 | | Number of items: Arithmetic mean: | 28 | 76 | Sum of squares of deviations of X and Y series from their respective means is 46. Summation of products of deviations of X and Y series from their respective means is 46. IAns. 7=306 5/16r = 0.25, $\Sigma y = 45$, $\sigma_y = 3$, $\Sigma x^2 = 50$, where x and y denote deviations from their respects means, find the number of observations. Ans. N=72 means, find the number of costs and series as deviations from their respective means are given to Two variates X and Y when expressed as deviations from their respective means are given follows: 2 -3 y: Find the coefficient of correlation between them. 3 [Ans. r = -0.00 [Ans. r=0.28] [Hint: See Example 51] [mm. Sec Leanipe -1] 7. Calculate Karl Pearson's coefficient of correlation, taking deviations from actual means. | X: | 44 | 46 | 46 | 48 | 52 | 54 | ? | 56 | 60 | (| |----|----|----|----|----|----|----|----|----|----|---| | Y: | 36 | 40 | 42 | 40 | ? | 44 | 46 | 48 | 50 | 1 | 8. Determine
Pearson's coefficient of correlation from the following data: $\Sigma X = 250, \Sigma Y = 300, N = 10, \Sigma (X - 25)^2 = 480, \Sigma (Y - 30)^2 = 600$ and $\Sigma(X-25)(Y-30)=150$ #### (2) Assumed Mean Method This method is useful when arithmetic mean is not in whole numbers but in fractions. In the method, deviations from assumed means of both the series (X and Y) are calculated. Correlated coefficient by this method can be determined in the following manner: (1) Any values of X and Y are taken and the following manner: (1) Any values of X and Y are taken as their assumed mean, Ax and Ay. (2) Deviations of the individual values of both the series (X and Y) are worked out from the assumed means. Deviations of X series (X - Ax) are denoted by Ax and of Y series (Y - Ay) by Ax (3) Deviations are summed up to Ax (2) are denoted by Ax and of Ax (3) Exercise Ax (4) are denoted by Ax (3) Deviations are summed up to Ax (3) Ax (4) are denoted by Ax (4) Ax (5) Ax (6) Ax (7) Ax (8) (3) Deviations are summed up to get Σdx and Σdy . (4) Then, squares of the deviations dx^2 and Dx^2 are worked out and summed up to Dx^2 respectively. Σdy^2 respectively. (5) Each dx is multiplied by the corresponding dy and the products (dxdy) are added dx (6) Finally, correlation coefficient is obtained by using any one of following formula: Correlation or $$r = \frac{\sum dx dy - \frac{\sum dx \cdot \sum dy}{N}}{\sqrt{\sum dx^2 - \frac{\left(\sum dx\right)^2}{N}} \sqrt{\sum dy^2 - \frac{\left(\sum dy\right)^2}{N}}} \dots (i)$$ or $$r = \frac{N \cdot \Sigma dx dy - \Sigma dx \cdot \Sigma dy}{\sqrt{N \cdot \Sigma dx^2 - (\Sigma dx)^2} \cdot \sqrt{N \cdot \Sigma dy^2 - (\Sigma dy)^2}} \qquad \dots (ii)$$ $$= \frac{\sum dxdy - N(\overline{X} - Ax)(\overline{Y} - Ay)}{N.\sigma_x.\sigma_y} ...(iii)$$ 13 Unless otherwise specifically asked, formula (ii) should be used as it makes the computation The following examples clarify the computation process of this method: Example . Find the coefficient of correlation from the following date | / | | | | | one the to | nowing u | ala. | | | |---|------|----|-----|----|------------|----------|------|----|----| | / | X: | 10 | 12 | 18 | 16 | 15 | 19 | 18 | 17 | | | 37 . | 20 | 0.0 | | | | ., | 10 | 17 | | | x: | 30 | 35 | 45 | 44 | 42 | 48 | 47 | 46 | #### Calculation of Coefficient of Correlation | X | A=16 | dx² | Y | A=42
dy | dy² | dxdy | |-------------------|------------------|--------------------|-------------------|-----------------|---------------------|---------------------| | 10 | -6 | 36 | 30 | -12 | 144 | 72 | | 12 | -4 | 16 | 35 | -7 | 49 | 28 | | 18 | +2 | 4 | 45 | +3 | 9 | 6 | | 16'= A | 0 | 0 . | - 44 | +2 | 4 | 0 | | 15 | -1.71 | 1 | 42 = A | 0 | 0 | 0 . | | 19 | +3 | 9 | 48 | +6 | 36 | 18 | | 18 | +2 | 4 | . 47 | +5 | 25 | 10 | | 17 | +1 | 1 | 46 | +4 | 16 | 4 | | ΣX = 125
N = 8 | $\Sigma dx = -3$ | $\Sigma dx^2 = 71$ | ΣY = 337
N = 8 | $\Sigma dy = 1$ | $\Sigma dy^2 = 283$ | $\Sigma dxdy = 138$ | $$\overline{X} = \frac{\sum X}{N} = \frac{125}{8} = 15.62$$, $\overline{Y} = \frac{\sum Y}{N} = \frac{337}{8} = 42.12$ Since the actual means are not whole numbers, we take 16 as assumed mean for X and 42 as assumed mean for Y. Applying the formula, $$= \frac{N \cdot \Sigma dx dy - \Sigma dx \cdot \Sigma dy}{\sqrt{N \cdot \Sigma dx^2 - (\Sigma dx)^2} \cdot \sqrt{N \cdot \Sigma dy^2 - (\Sigma dy)^2}}$$ $$= \frac{8 \times 138 - (-3)(1)}{\sqrt{8 \times 71 - (-3)^2} \sqrt{8 \times 283 - (1)^2}}$$ Solution: $$\frac{14}{\sqrt{568-9}} \frac{1004+3}{\sqrt{2264-1}} = \frac{1107}{\sqrt{559}} \frac{1107}{\sqrt{2263}}$$ $$= \frac{1107}{\sqrt{1265017}} = \frac{1107}{1124.72} = 0.98$$ $$\sigma_z = \sqrt{\frac{\Sigma dx^2}{N} - \left(\frac{\Sigma dx}{N}\right)^2} = \sqrt{\frac{71}{8} - \left(\frac{-3}{8}\right)^2} = \sqrt{\frac{71}{8} - \frac{9}{64}} = 2.95$$ $$\sigma_y = \sqrt{\frac{\Sigma dy^2}{N} - \left(\frac{\Sigma dy}{N}\right)^2} = \sqrt{\frac{283}{8} - \left(\frac{1}{8}\right)^2} = \sqrt{\frac{283}{8} - \frac{1}{64}} = 5.94$$ Applying the formula $$r = \frac{\Sigma dx dy - N(\overline{X} - Ax)(\overline{Y} - Ay)}{N.\sigma_x.\sigma_y}$$ $$= \frac{138 - 8(15.62 - 16)(42.12 - 42)}{8 \times 2.95 \times 5.94} = \frac{138 - 8(-0.38)(0.12)}{140.184}$$ $$= \frac{138 - 0.3648}{140.184} = \frac{137.6352}{140.184} = 0.98$$ Pearson's coefficient of correlation from the following data: | 5. 1 | Calcula | e Kari | realso. | 11 3 000 | Hickory | . 01 001 | | | | | | | |------|---------|--------|---------|----------|---------|----------|----|----|----|----|----|----| | | X: | 24 | 27 | 28 | 28 | 29 | 30 | 32 | 33 | 35 | 35 | 40 | | | v. | 19 | 20 | 22 | 25 | 22 | 28 | 28 | 30 | 27 | 30 | 22 | (You may use 32 as working mean for X and 25 that for Y.) | X | A=32
dx | dx ² | Y | A=25
dy | dy ² | |--------------|-------------------|---------------------|--------|------------------|--------------------------------| | 24 | -8 | 64 | 18 | - 127 | 91 49 | | 27 | -5 | 25 | 20 | -5 | 25 | | 28 | 4 | 16 | 22 | -3 | 9 | | 28 | -4 | 16 | 25 = A | 0 | 0 | | 29 | -3 | 9 | 22 | -3 | 9 | | 30
32 = A | -2 | 4 | 28 | +3 | 9 | | 32 = A | 0 | 0 | 28 | +3 | 9 | | 35 | 1 | 1 | 30 | +5 | 25 | | 35 | 3 | 9 . | 27 | +2 | 4 | | 40 | 3 | 9 | 30 | +5 | 25 | | V=11 | $\Sigma dx = -11$ | 64 | 22 | -3 | 9 Σdx | | _ | | $\Sigma dx^2 = 217$ | W-0 | $\Sigma dv = -3$ | $\Sigma dy^2 = 173 \Sigma dt$ | $$r = \frac{\sum dxdy - \frac{\sum dx \cdot \sum dy}{N}}{\sqrt{\sum dx^2 - \frac{(\sum dx)^2}{N}} \sqrt{\sum dy^2 - \frac{(\sum dy)^2}{N}}}$$ $$= \frac{98 - \frac{(-11)(-3)}{11}}{\sqrt{217 - \frac{(-11)^2}{11}} \times \sqrt{173 - \frac{(-3)^2}{11}}} = \frac{98 - 3}{\sqrt{217 - 11}\sqrt{173 - 0.82}}$$ $$= \frac{95}{\sqrt{206 \times 172.18}} = \frac{95}{188.33} = 0.504$$ r can be calculated by using the formula: $$\frac{\sum \Delta t x dy \times N - \sum \Delta t x \Delta ty}{\sqrt{N \cdot \sum \Delta t}^2 - (\sum \Delta t x)^2 \sqrt{N \cdot \sum \Delta t}^2 - (\sum \Delta t y)^2}$$ $$= \frac{98 \times 11 - (-11)(-3)}{\sqrt{11 \times 217 - (-11)^2 \times \sqrt{11 \times 173 - (-3)^2}}}$$ $$= \frac{1078 - 33}{\sqrt{2387 - 121} \sqrt{1993 - 9}} = \frac{1045}{\sqrt{2266} \sqrt{1894}}$$ $$= \frac{1045}{\sqrt{4291804}} = \frac{1045}{2071.66} = 0.504$$ Example 9. Deviations of the items of two series X and Y from assumed mean are as under: | Deviations of X: | +5 | -4 | -2 | +20 | -10 | 0 | +3 | 0 | -15 | -5 | |------------------|----|-----|----|-----|-----|----|----|----|-----|-----| | Deviations of Y: | +5 | -12 | -7 | +25 | -10 | -3 | 0 | +2 | -9 | -15 | Calculate Karl Pearson's coefficient of correlation. | dx | dx ² | dy | dy ² | dxdy | |------------------|---------------------|-------------------|----------------------|---------------------| | +5 | 25 | +5 | 25 | 25 | | -4 | 16 | -12 | 144 | 48 | | -2 | 4 | -7 | 49 | 14 | | +20 | 400 | +25 | 625 | 500 | | -10 | 100 | -10 | 100 | 100 | | 0 | 0 | -3 | 9 | 0 | | +3 | 9 | 0 | 0 | 0 | | 0 | 0 | +2 | 4 | 0 | | -15 | 225 | -9 | 81 | 135 | | -5 | 25 | -15 | 225 | 75 | | $\Sigma dx = -8$ | $\Sigma dx^2 = 804$ | $\Sigma dy = -24$ | $\Sigma dy^2 = 1262$ | $\Sigma dxdy = 897$ | $$r = \frac{N \times \Sigma dx dy - \Sigma dx \ \Sigma dy}{\sqrt{N \cdot \Sigma dx^2 - (\Sigma dx)^2} \sqrt{N \cdot \Sigma dy^2 - (\Sigma dy)^2}}$$ $$= \frac{10 \times 897 - (-8)(-24)}{\sqrt{10 \times 804 - (-8)^2} \sqrt{10 \times 1262 - (-24)^2}}$$ $$= \frac{8970 - 192}{\sqrt{8040 - 64} \sqrt{12620 - 576}} = \frac{8778}{\sqrt{7976} \sqrt{12044}}$$ $$= \frac{8778}{\sqrt{96062944}} = \frac{8778}{9801.17} = 0.895$$ Calculation of Coefficient of Correlation by taking a Common Factor Calculation of Coefficient of Correlation by taking a Common Factor Ocalculation of Coefficient or Correlation, by Caking a Common Factor Common factor may be used to simplify the calculation of coefficient of correlation, by important to note here that there will be no effects on the formula of coefficient of correlation if the common factor is used. The main reason is that the coefficient of correlation is independent of the common factor is used. The main reason is that the coefficient of correlation. The main factor is used. The origin is shifted or scale is changed, it will not affect the valued coefficient of correlation. Fra | mnle 10. | Calculate co | petticient of | Conciation | nom are rer | | | 100 | |-----------|--------------|---------------|------------|-------------|-----|-----|-----| | ampie 20. | X: | 100 | 200 | 300 | 400 | 500 | 600 | | | Y: | 110 | 120 | 135 | 140 | 160 | 165 | To simplify the calculation, let $$dx = \frac{X - 400}{100}, dy = \frac{Y - 140}{5}$$ #### Calculation of Coefficient of Correlation | X | dx | dx ² | Y | dy | dy ² | dxa | |--------------|------------------|--------------------|-------|------------------|--------------------|------| | 100 | -3 | 9 | 110 | -6 | 36 | 18 | | 200 | -2 | 4 | 120 | -4 | 16 | - 8 | | 300 | -l | 1 | 135 | -1 | A Visit | | | 400 | 0 | 0 | 140 | 0 | 0 | _ | | 500 | +1 | 1 | 160 - | 4 | 16 | - | | 600
N = 6 | +2 | 4 | 165 | 5 | 25 | - | | ,,-0 | $\Sigma dx = -3$ | $\Sigma dx^2 = 19$ | | $\Sigma dy = -2$ | $\Sigma dy^2 = 94$ | Lara | $$r = \frac{N \times \Sigma dx dy - \Sigma dx \ \Sigma dy}{\sqrt{N \cdot \Sigma dx^2 - (\Sigma dx)^2} \sqrt{N \cdot \Sigma dy^2 - (\Sigma dy)^2}}$$ $$= \frac{6 \times 41 - (-3)(-2)}{\sqrt{6 \times 19 - (-3)^2} \times \sqrt{6 \times 94 - (-2)^2}}$$ $$= \frac{246 - 6}{\sqrt{105} \sqrt{560}} = \frac{240}{\sqrt{58800}} = \frac{240}{242.487} = 0.9897$$ Correlation # IMPORTANT TYPICAL EXAMPLES Example 11. From the following data, calculate the Karl Pearson's coefficient of correlation between age of students and their playing habits: | Age: | 15 | 16 | | | All . | | |------------------|-----|-----|-----|-----|-------|------| | | | 16 | 17 | 18 | 19 | . 20 | | No. of students: | 250 | 200 | 150 | 120 | 100 | | | Regular players: | 200 | 150 | 90 | | | 80 | | | | | 90 | 48 | 30 | 12 | Since it is asked to find the correlation
between age and playing habits, it is required to find the percentage of regular players which is obtained as follows: | No. of students | Regular players | % of Regular players | | |-----------------|-----------------|-----------------------------------|--| | 250 | 200 | $\frac{200}{250} \times 100 = 80$ | | | 200 | 150 | $\frac{150}{200} \times 100 = 75$ | | | - 150 | 90 | $\frac{90}{150} \times 100 = 60$ | | | 120 | 48 | $\frac{48}{120} \times 100 = 40$ | | | 100 | 30 | $\frac{30}{100} \times 100 = 30$ | | | W .53° 80 | 12 | $\frac{12}{80} \times 100 = 15$ | | Now we calculate the correlation coefficient between age and percentage of regular players. Denoting the age by X and per | X | dx | dx ² | Y | dy | dy ² | dxdy | |--------|-----------------|--------------------|--------|-------------------|----------------------|----------------------| | 15 | -2 | 4 | 80 | +20 | 400 | -40 | | 16 | -1 | 1 | 75 | +15 | 225 | -15 | | 17 = A | 0 | 0 | 60 = A | 0 | 0 | 0 | | 18 | +1 | 1 | 40 | -20 | 400 | -20 | | 19 | +2 | 4 | 30 | -30 | 900 | -60 | | 20 | +3 | 9 | 15 | -45 | 2025 | -135 | | N=6 | $\Sigma dx = 3$ | $\Sigma dx^2 = 19$ | | $\Sigma dy = -60$ | $\Sigma dy^2 = 3950$ | $\Sigma dxdy = -270$ | $$r = \frac{N \times \Sigma dxdy - \Sigma dx \Sigma dy}{\sqrt{N \cdot \Sigma dx^2 - (\Sigma dx)^2} \sqrt{N \cdot \Sigma dy^2 - (\Sigma dy)^2}}$$ $$= \frac{6 \times (-270) - (3)(-60)}{\sqrt{6 \times 19 - (3)^2} \times \sqrt{6 \times 3950 - (-60)^2}}$$ $= \frac{-1620 + 180}{\sqrt{114 - 9} \sqrt{23700 - 3600}} = \frac{-1440}{\sqrt{2110500}} = \frac{-1440}{1452.75} \frac{-1440}{1452.$ There is a high degree of negative correlation between age and playing habits shows that as age increases, the tendency to play decreases. shows that as age increases, the renouncy to party accordances. Example 12. From the following data, calculate Karl Pearson's coefficient of correlation be age and blindness: | and blindness: | No. of persons
(in thousands) | Blinds | |----------------|----------------------------------|-------------------------| | | 100 | na vier mile ferie - 55 | | 0—10 | 60 | 40 | | 10-20 | 40 | 40 | | 30-40 | 36 | 40 | | 40—50 | 24 | 36 | | 50-60 | 11 | 22 | | 60—70 | 6 | 18 | | 70—80 | 3 | 15 | First, we shall find the number of blinds per lakh of population in each group as: | No. of persons
(*000) | Blinds | No. of blinds
(per lakh) | |--------------------------|--------|--| | 100 | 55 | 55
100000 × 100000 = 55 | | 60 | 40 | $\frac{40}{60000} \times 100000 = 67$ | | 40 | 40 | $\frac{40}{40000} \times 100000 = 100$ | | 36 | 40 | $\frac{40}{36000} \times 100000 = 11$ | | 24 | 36 | $\frac{36}{24000} \times 100000 = 150$ | | Н | 22 | $\frac{22}{11000} \times 100000 = 20$ | | 6 | 18 | $\frac{18}{6000} \times 100000 = 300$ | | , | 15 | $\frac{15}{3000} \times 100000 = 500$ | Denoting the Mid Value of Age by X and No. of Blinds per lakh by Y, of Coefficient of correlation. | Age | MV
(X) | $dx = \frac{35}{X - 35}$ | dx ² | Y | A=185
dy = Y-185 | dy ² | dxdy | |-------|-----------|--------------------------|--------------------|-----|---------------------|------------------------|-----------------------------| | 0—10 | 5 | -3 | 9 | 55 | -130 | 16900 | 390 | | 10-20 | 15 | -2 | 4 | 67 | -118 | 13924 | | | 20-30 | 25 | -1 | 1 | 100 | -85 | 7225 | 236 | | 30-40 | 35 | 0 | 0 | 111 | -74 | 5476 | . 85 | | 40-50 | 45 | +1 | - 1 | 150 | -35 | 1225 | 0 | | 50-60 | 55 | +2 | 4 | 200 | +15 | 225 | -35 | | 60-70 | 65 | +3 | 9 | 300 | +115 | 13225 | 30 | | 70-80 | 75 | +4 | 16 | 500 | +315 | 99225 | 345 | | N = 8 | | $\Sigma dx = 4$ | $\Sigma dx^2 = 44$ | | $\Sigma dy = 3$ | $\Sigma dy^2 = 157425$ | 1260 $\Sigma dxdy = 2311$ | | $\sum dxdy - \frac{\sum dx}{N}$ | Σ dy | 2311 | $1-\frac{(4)(3)}{8}$ | |---|--|--|-----------------------------------| | $\int \sum dx^2 - \frac{(\sum dx)^2}{N} \sqrt{\sum dx^2}$ | $dy^2 - \frac{(\Sigma dy)^2}{N}$ | $=\frac{1}{\sqrt{44-\frac{(4)^2}{8}}}$ | $\sqrt{157425 - \frac{(3)^2}{8}}$ | | $2311 - \frac{(4)(3)}{8}$ | 2311- | -1.5 | | | $= \sqrt{\frac{44 - \frac{(4)^2}{8}}{\sqrt{157425 - \frac{(3)^2}{8}}}} \sqrt{157425 - \frac{(3)^2}{8}}$ | $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{42}} \sqrt{15}$ | 7423.87 | | | = = _ = _ = _ = _ = _ = _ = _ = _ = | $\frac{309.5}{396.76} = \frac{230}{257}$ | $\frac{09.5}{1.001} = +0.898$ | | Example 13. From the following data, calculate the coefficient of correlation between X-series and | Hall the section of the section of | X-series | Y-series | |------------------------------------|----------|----------| | Mean | 74.5 | 125.5 | | Assumed mean | 69 | 112 | | Standard deviation (0) | 13.07 | 15.85 | Sum of products of corresponding deviations of X and Y series from their assumed mean ($\sum dxdy$) = 2176 and no. of pairs of observations = 8. Given: N = 8, $\overline{X} = 74.5$, $A_x = 69$, $\sigma_x = 13.07$, $\bar{Y} = 125.5$, $A_y = 112$, $\sigma_y = 15.85$, $\Sigma dxdy = 2176$ Applying the formula: $$r = \frac{\sum dxdy - N(\overline{X} - A_x)(\overline{Y} - A_y)}{N \cdot \sigma_x \cdot \sigma_y}$$ 1224 312 $= \frac{8 \times 13.07 \times 15.05}{8 \times 13.07 \times 15.85} = \frac{2176 - 594}{1657.276} = \frac{1582}{1657.276} = 10.9546$ Example 14. From the following data, calculate the coefficient of correlation between 'age' | 'playing habits': | No. of students | No. of regular players | |-------------------|-----------------|--| | Age | 200 | 150 | | 15-16 | 270 | 162 | | 16-17 | 340 | 170 | | 17—18 | 360 | 180 | | 18—19 | 400 | 180 | | 19-20 | 300 | 120 | | 20-21 | | The second secon | we shall find the percentage of regular players as follows: | No. of students | No. of regular players | % of regular players | |-----------------|------------------------|-----------------------------------| | 200 | 150 | $\frac{150}{200} \times 100 = 75$ | | 270 | 162 | $\frac{162}{270} \times 100 = 60$ | | 340 | 170 | $\frac{170}{340} \times 100 = 50$ | | 360 | 180 | $\frac{180}{360} \times 100 = 50$ | | 400 | 180 | $\frac{180}{400} \times 100 = 45$ | | 300 | 120 | $\frac{120}{300} \times 100 = 40$ | Denoting Mid-Value of Age by X and Percentage of Regular Players by Y. | Age
15-16 | M.V.
(X) | A=17.5
dx | dx ² | % of
Regular
players (Y) | A= 50
dy | dy ² | |--------------|-------------|--------------|--------------------|--------------------------------|------------------|---| | 16-17 | 15.5 | -2 | . 4 | 75 | +25 | 625 | | 17-18 | 17.5 = A | -1 | 1 | 60 | +10 | 100 | | 18-19 | 18.5 | 1 | .0 | 50 = A | 0 | 0 | | 19-20 | 19.5 | +1 | 1 | 50 | 0 | 0 | | 20-21 | 20.5 | +2 | 4 | 45 | 10.25 de | 25 | | N=6 | | +3
Σdx =3 | 9 | 40 | -10 | $\frac{100}{\Sigma dy^2 = 850} \frac{\Sigma dy}{\Sigma} dy$ | | | _ | - LECT = 3 | $\Sigma dx^2 = 19$ | Maria Maria | $\Sigma dy = 20$ | $\Sigma dy^2 = 850$ | Correlation. $$r = \frac{N \times \Sigma dx dy - \Sigma dx \ \Sigma dy}{\sqrt{N \cdot \Sigma dx^2 - (\Sigma dx)^2} \sqrt{N \cdot \Sigma dy^2 - (\Sigma dy)^2}}$$ $$= \frac{6 \times (-100) - (3)(20)}{\sqrt{6 \times 19 - (3)^2} \sqrt{6 \times 850 - (20)^2}}$$ $$= \frac{-660}{\sqrt{105} \sqrt{4700}} = \frac{-660}{702 \cdot 4956} = -0.9395$$ It shows that there is high degree of negative correlation between age and playing pabits. From the data given below, calculate the coefficient of correlation by Karl Pearson's method between density of population and death rate: 120 80 Cities Area in sq. miles Population (in '000) No. of deaths 150 300 В 180 90 1440 C .100 560 D 60 840 First we calculate density of population and death rate by using the formula and denote them by X and Y. 72 Density of Population = $\frac{\text{Population}}{\lambda}$ | ensity | of Population | Area |
 | | |--------|-----------------------|--|-------------------|----------------------------|--| | | Death Rate | $= \frac{\text{No.of Do}}{\text{Populat}}$ | eaths
ion ×100 | 0 | Allen L | | Cities | Area
(in sq. mile) | Population
('000) | No. of
deaths | Density
(X) | Death rate (%) | | A | 150 | 30,000 | 300 | $\frac{30,000}{150} = 200$ | $\frac{300}{30,000} \times 1,000 = 10$ | | В | 180 | 90,000 | 1440 | $\frac{90,000}{180} = 500$ | $\frac{1,440}{90,000} \times 1,000 = 16$ | | С | 100 | 40,000 | 560 | $\frac{40,000}{100} = 400$ | $\frac{560}{40,000} \times 1,000 = 14$ | | D | 60 | 42,000 | 840 | $\frac{42,000}{60} = 700$ | $\frac{840}{42,000} \times 1,000 = 20$ | | E | 120 | 72,000 | 1224 | $\frac{72,000}{120} = 600$ | $\frac{1224}{72,000} \times 1,000 = 17$ | | F | 80 | 24,000 | 312 | $\frac{24,000}{80} = 300$ | $\frac{312}{24,000} \times 1,000 = 13$ | Correlation | Density | alculation of $\bar{X} = 450$ $X - 450$ | x ² | Death
Rate
(Y) | $\overrightarrow{Y} = 15$ $y = Y - 15$ | y ² | |------------------------------------|---|-------------------|----------------------|--|------------------------------| | Cities (X) | x = 50 | 25 | 10 | -5 | 25 | | 200 | -5 | 1 | 16 | +1 | 1 | | A 500 | +l | $\dot{-}$ | 14 | -1 | 1 | | B 400 | -1 | 25 | 20 | +5 | 25 | | C 700 | +5 | 9 | 17 | +2 | .4 | | E 600 | +3 | 9 | 13 | -2 | 4 | | F 300
$N = 6$ $\Sigma X = 2700$ | -3 $\Sigma x = 0$ | $\Sigma x^2 = 70$ | $\Sigma Y = 90$ | $\Sigma y = 0$ | $\Sigma y^2 = 60$ Σx | $\overline{X} = \frac{\sum X}{N} = \frac{2700}{6} = 450,$ $\overline{Y} = \frac{\sum Y}{N} = \frac{90}{6} = 15$ N b Since the actual means of X and Y are whole numbers, we should take deviation from actual means of X and Y to simplify the calculations: $$r = \frac{\sum y}{\sqrt{\sum x^2} \cdot \sqrt{\sum y^2}}$$ $$= \frac{64}{\sqrt{70} \times \sqrt{60}} = \frac{64}{\sqrt{70 \times 60}}$$ $$= \frac{64}{64.81} = +0.9875$$ There is a high degree of positive correlation between density of population and death rate. #### **EXERCISE 1.4** 1. Calculate the Correlation Coefficient from the following data of marks obtained in Commerce (Y) and Ferral | | | | mics (Y | ,. | | 49 | NEW AND IN | | |----|----|----|---------|----|----|----|------------|-------| | X: | 50 | 60 | 58 | 47 | 49 | 33 | 65 | 43 46 | | Y: | 48 | 66 | | | ., | | | 10 50 | | - | 10 | 03 | 50 | 48 | 55 | 58 | 63 | 48 | 2. Seven students obtained the following percentage of marks in the college test (X) and ink final examination (Y). Find out the coefficient of correlation between these variables. X: 50 62 | X: | 50 | | | | Annual way | | 60 | |----|----|----|----|----|------------|----|---------| | Y: | 48 | 62 | 72 | 25 | 20 | 60 | 66 | | | | 65 | 74 | 33 | 25 | 55 | = 0.974 | Calculate Karl Pearson's coefficient of correlation between the values of X and Y for the following data: | X: | 78 | 89 | 96 | 69 | 59 | 79 | 68 | 61 | |----|-----|-----|-----|-----|-----|-----|-----|-----| | Y: | 125 | 137 | 156 | 112 | 107 | 136 | 123 | 108 | Assume 69 and 112 as the mean values for X and Y respectively. [Ans. r = +0.954] 4. From the following data, calculate the coefficient of correlation between X-series and Y-series: | et all compliants in the said | X-series | Y-series 4 | |-------------------------------|----------|------------| | Mean: | 381.2 | 24.5 | | Assumed mean: | 380 | 25 | | Standard deviation (o): | 16.79 | 2.97 | Summation of products of corresponding deviations of X and Y series from their assumed means $(\Sigma dxdy) = 390$ and no. of pairs of observations = 10. [Ans. r = 0.794] means (2014)—30 and its of parasot or attacks—10. [Ans. r=0.094] The following table gives the distribution of items of production and also the relative defectile items among them, according to size groups. Find the correlation coefficient between size and defect in quality. | Size group: | 15—16 | 16—17 | 17—18 | 18—19 | 19—20 | 20-21 | |-------------------------|-------|-------|-------|-------|-------|-------| | No. of items: | 200 | 270 | 340 | 360 | 400 | 300 | | No. of defective items: | 150 | 162 | 170 | 180 | 180 | 114 | [Hint: See Example 52] [Ans. r = -0.95] | X: | . 300 | 350 | 400 | 450 | 500 | 550 | 600 | 650 | 700 | |----|----------|-----|-------|------|------|------|------|------|------| | Y: | 9T800 g/ | 900 | 1,000 | 1100 | 1200 | 1300 | 1400 | 1500 | 1600 | [Hint: Let $$dx = \frac{X - 500}{50}$$, $dy = \frac{Y - 1200}{100}$] [Ans. $r = +1$] Calculate the coefficient of correlation between age group and mortality rate from the following data: | Age group : | 0-20 | 20-40 | 40—60 | 60—80 | 80—100 | |---------------------|------|-------|-------|-------|-----------| | Rate of mortality : | 350 | 280 | 540 | 760 | 900 | | | | | | | LA 0 0471 | Calculate Karl Pearson's coefficient of correlation between age and playing habits from the | Age: | 16 | 17 | 18 | 19 | 20 | 21 | 22 | |------------------|-----|-----|-----|-------|-----|-----|----| | No. of students: | 350 | 320 | 280 | 240 | 180 | 120 | 50 | | Regular players: | | 256 | 182 | . 132 | 63 | 18 | 4 | [Ans. r = -0.994] 9. Following figures give the rainfall in inches and production in '00 tons for Rabi and Khari and Khari and India a Rainfall: 18 18 20 21 20 Rabi production: 17 15 [Ans. r = +0.917] Kharif production: Vith the following data in 4 cities, calculate the coefficient of correlation by Pearson; | od between the | Area in sq.km. | Population
('000) | No. of death | |----------------|----------------|----------------------|--------------| | Cities | 200 | 40 | 480 | | A | 150 | 75 | 1200 | | В | 120 | 72 | 1080 | | С | 80 | 20 | 280 | | D | . 00 | 200 | Line I Dans | 11. Calculate 'r' from the following data: Calculate r from the following value $\Sigma X = 225, \Sigma Y = 189, N = 10, \Sigma (X - 22)^2 = 85, \Sigma (Y - 19)^2 = 25$ and $\Sigma (X - 22)(Y - 19) = 41$ [Ans, r=0.96] [Hint: See Example 53 Aliter] #### (3) Method Based on the Use of Actual Data This method is also known as Product moment method. When number of observations are few, correlation coefficient can also ecalculated without taking deviations either from actual mean or from assumed mean i.e. from actual X and Y values. In this method, the correlation coefficient can be detained in described in the correlation can be detained correlat can be determined in the following way: - (1) First of all, values of the variables X and Y series are summed up to get ΣX and ΣY . - (2) The values of the variables of X and Y series are squared up to get ΣX and $\Sigma^{1/2}$. (3) The values of Y when ΣX and $\Sigma^{1/2}$ and $\Sigma^{1/2}$. (3) The values of X variable and Y variable are multiplied and the product is added up to get EXY. - (4) Finally, the following formula is used to get the correlation coefficient: $$r = \frac{\sum_{XY} - \sum_{X} \sum_{Y} Y}{\sqrt{\sum_{XY} - (\sum_{Y})^{2}} \sqrt{\sum_{Y} Y^{2} - (\sum_{Y})^{2}} \sqrt{\sum_{Y} \sum_{Y} \sum_{Y} Y}}$$ $$r = \frac{N \cdot \sum_{XY} - \sum_{X} \sum_{Y} Y}{\sqrt{N \cdot \sum_{Y} \sum_{Y} - (\sum_{Y})^{2}} \sqrt{N \cdot \sum_{Y} Y^{2} - (\sum_{Y})^{2}}}$$ Correlation Example 16. From the following data, find Karl Pearson coefficient of co | | | | - | - Controlle of Ci | offeration. | | |----|----|---|---|-------------------|-------------|---| | X: | 2 | 3 | 1 | 5 | 6 | 4 | | Y: | 40 | 5 | 3 | 4 | 6 | 2 | | | | | | | U | | Calculation of Coefficient of Correlation | X | X ² | Ý | y ² | XY | |-----------------------|-------------------|-----------------|--------------------|------------------| | 2 | 4 | 4 | 16 | 8 | | 3 | 9 | 5 | 25 | 15 | | 1 1 | 1 - | 3 | 9 | 3 | | 5 | 25 | 4 | 16 | 20 | | 6 | 14(Pro) 36 | 6 . | 36 | 36 | | 16 4 4 1 1 1 N | 16 | 2 | 4 | 8 | | $N=6$, $\Sigma X=21$ | $\Sigma X^2 = 91$ | $\Sigma Y = 24$ | $\Sigma Y^2 = 106$ | $\Sigma XY = 90$ | Applying the formula: $$r = \frac{N. \Sigma XY - \Sigma X. \Sigma Y}{\sqrt{N. \Sigma X^2 - (\Sigma X)^2} \sqrt{N. \Sigma Y^2 - (\Sigma Y)^2}}$$ $$= \frac{6 \times 90 - (21)(24)}{\sqrt{6 \times 91 - (21)^2} \sqrt{6 \times 106 - (24)^2}} = \frac{540 - 504}{\sqrt{546 - 441} \sqrt{636 - 576}}$$ $$= \frac{36}{\sqrt{105} \sqrt{60}} = \frac{0.36}{\sqrt{6300}} = \frac{36}{79.37} = +0.453$$ Example 17. Calculate product mo ment correlation coefficient from the following data: | • | Calculate pro | duct mom | CITE COITCIALI | on coefficie | in irom the | tollowing da | ıa. | |---|---------------|----------|----------------|--------------|-------------|--------------|-----| | | X: | -5 | -10 | -15 | -20 | -25 - | -30 | | | Y: | 50 | 40 | 30 | 20 | 10 | 5 | In this question the mean of X and Y series may come in fractions or negative signs. It will pose a problem in computing deviations, so here method based on the use of actual values will be used. Calculation of Coefficient of Correlation | X | X ² | Y | Y ² | XY | |-------------------------|---------------------|----------|---------------------|---------------------| | -5 | 25 | 50 | 2500 | -250 | | -10 | 100 | 40 | 1600 | -400 | | -15 | 225 | 30 | 900 | -450 | | -20 | 400 | 20 | 400 | -400 | | -25 | 625 | 10 | 100 | -250 | | -30 | 900 | 5 | 25 | -150 | | $\sum X = -105$ $N = 6$ | $\Sigma X^2 = 2275$ | ΣY = 155 | $\Sigma Y^2 = 5525$ | $\Sigma XY = -1900$ | $$r = \frac{N.\Sigma XY - \Sigma X.\Sigma Y}{\sqrt{N.\Sigma X^2 - (\Sigma Y)^2} \sqrt{N.\Sigma Y^2 - (\Sigma Y)^2}}$$ $$= \frac{6\times (-1900) - (-105)(155)}{\sqrt{6\times 2275 - (-105)^2} \sqrt{6\times 5525 - (155)^2}}$$ $$= \frac{-11400 + 16275}{\sqrt{13650 - 11025} \sqrt{33150 - 24025}}$$ $$= \frac{4875}{\sqrt{2625} \sqrt{9125}} = \frac{4875}{\sqrt{23933125}} = \frac{4875}{4894.19} = 0.996$$ Example 18. Find the Coefficient of Correlation for the following data: N = 10, $\vec{X} = 5.5$, $\vec{Y} = 4$, $\Sigma X^2 = 385$, $\Sigma Y^2 =
192$, $\Sigma (X + Y)^2 = 947$ Solution: $$\frac{\Sigma X}{X} \Rightarrow 5.5 = \frac{\Sigma X}{10} \Rightarrow \Sigma X = 55$$ $$\bar{y} = \frac{\Sigma Y}{N} \Rightarrow 4 = \frac{\Sigma Y}{10} \Rightarrow \Sigma Y = 40$$ $$\frac{\Sigma (X+Y)^2 = \Sigma X^2 + \Sigma Y^2 + 2\Sigma XY = 947}{2\Sigma XY = 185}$$ $$\Rightarrow 385 + 192 + 2\Sigma XY = 947$$ $$\Rightarrow 385 + 192 + 2\Sigma XY = 185$$ $$r = \frac{N \cdot \Sigma XY - \Sigma X \cdot \Sigma Y}{\sqrt{N \cdot \Sigma X^2 - (\Sigma X)^2} \sqrt{N \cdot \Sigma Y^2 - (\Sigma Y)^2}}$$ Putting the given values, we get $$= \frac{10 \times 185 - (55)(40)}{\sqrt{10 \times 385 - (55)^2} \sqrt{10 \times 192 - (40)^2}}$$ $$= \frac{1850 - 2200}{\sqrt{3850 - 3025} \sqrt{1920 - 1600}} = \frac{-350}{\sqrt{825 \times 320}}$$ $$= \frac{-350}{513.80} = -0.681$$ # IMPORTANT TYPICAL EXAMPLES Example 19. Calculate the coefficient of correlation from the following data and interpressult: Solution: $$\Sigma XY = 8425, \overline{X} = 28.5, \overline{Y} = 28.0, \sigma_x = 10.5, \sigma_y = 5.6$$ and $N = 10$ correlation coefficient: one that the calculation spiren, we use direct method for the calculation coefficient: $$r = \frac{N \cdot \Sigma XY - \Sigma X \cdot \Sigma Y}{\sqrt{N \cdot \Sigma X^2 - (\Sigma X)^2} \sqrt{N \cdot \Sigma Y^2 - (\Sigma Y)^2}}$$ For this formula, the value of ΣXY and N are known, the values of ΣX , ΣY , ΣX^2 and ΣY^2 are to be calculated. $$\overline{X} = \frac{\Sigma X}{N} \Rightarrow \Sigma X = N\overline{X} = 10 \times 28.5 = 285 \qquad \dots(i)$$ $$\overline{Y} = \frac{\Sigma Y}{N} \Rightarrow \Sigma Y = N\overline{Y} = 10 \times 28.0 = 280$$...(ii) $$\sigma_x = \sqrt{\frac{\Sigma X^2}{N} - (\overline{X})^2}$$ (Formula of S.D.) $$\Rightarrow \quad \sigma_x^2 = \frac{\Sigma X^2}{N} - (\overline{X})^2$$ $$\Sigma X^2 = N[\sigma^2_x + (\overline{X})^2] = 10[(10.5)^2 + (28.5)^2] = 9225$$...(iii) Similarly, $$\Sigma Y^2 = N[\sigma_y^2 + (\overline{Y})^2] = 10[(5.6)^2 + (28.0)^2] = 8153.6$$...(iv) $$\Sigma XY = 8425$$ (given), $N = 10$ Now, $$r = \frac{N \cdot \Sigma XY - \Sigma X \cdot \Sigma Y}{\sqrt{N \cdot \Sigma X^2 - (\Sigma X)^2} \sqrt{N \cdot \Sigma Y^2 - (\Sigma Y)^2}}$$ $$= \frac{10 \times 8425 - (285)(280)}{\sqrt{9225 \times 10 - (285)^2} \sqrt{8153.6 \times 10 - (280)^2}}$$ $$= \frac{4450}{\sqrt{11025} \sqrt{3136}} = \frac{4450}{5880} = 0.756$$ Interpretation: There is a positive correlation between X and Y. Aliter: r can be calculated as follows: $$r = \frac{Cov(X,Y)}{\sigma_x.\sigma_y}$$ $Cov(X, Y) = \frac{1}{N} \Sigma(X - \overline{X})(Y - \overline{Y}) = \frac{1}{N} \Sigma XY - \overline{X} \overline{Y}$ Substituting the values, we have $$Cov(X, Y) = \frac{1}{10}(8425) - (28.5)(28.0)$$ $$= 842.5 - 798 = 44.5$$ $$r = \frac{Cov.(X, Y)}{\sigma_x.\sigma_y} = \frac{44.5}{(10.5)(5.6)} = \frac{44.5}{58.8} = 0.756$$ From the value of r = 0.756, it appears that there is positive correlation between X and Y. Example 20. The following are the nine pairs of values of variable X and Y: The following are the nine pairs of various A and Y: N=9, $\Sigma X=45$, $\Sigma Y=135$, $\Sigma X^2=285$, $\Sigma Y=2085$, $\Sigma XY=731$ N=9, $\Sigma X=43$, $\Sigma X=43$, while checking it was found out that two pairs were copied as: | 1 8 1 | 10 | |-------|-------| | 6 | 8 | | inste | ad of | | 12 | 6 | | 10 | 7 | | | | Obtain the correlation coefficient for the corrected data. Obtain the correlation coefficients SXY = 285, SXY = 285, SXY = 731 Replacing the wrong values by correct values, new values are placing the wrong values $$\Sigma$$ $$\Sigma X = 45 - 8 - 6 + 12 + 10 = 53$$ $$\Sigma Y = 135 - 10 - 8 + 6 + 7 = 130$$ $$\Sigma Y^2 = 285 - 64 - 36 + 144 + 100 = 429$$ $$\Sigma Y^2 = 2085 - 100 - 64 + 36 + 49 = 2006$$ $$\Sigma XY = 731 - 80 - 48 + 72 + 70 = 745$$ $$r = \frac{1}{\sqrt{N \cdot \Sigma X^2 - (\Sigma X)^2}} \sqrt{N \cdot \Sigma Y^2 - (\Sigma Y)^2}$$ $$= \frac{9 \times 745 - (53)(130)}{\sqrt{9 \times 429 - (53)^2}} \sqrt{9 \times 2006 - (130)^2}$$ $$= -0.153$$ Example 21. While calculating the coefficient of correlation between the variables X and Y, a computer obtained the following constants: $$N = 20, r = 0.3, \overline{X} = 15, \overline{Y} = 20, \sigma_x = 4 \text{ and } \sigma_y = 5$$ In the course of checking, however, it was detected that an item 27 has been worth taken as 17 in case of X series and 35 instead of 30 in case of Y series. Obtain the correct value of r. correct value of r. ution: Given $$N = 20, \overline{X} = 15, \overline{Y} = 20, \sigma_x = 4, \sigma_y = 5, r = 0.3$$ We have $$\overline{X} = \frac{\sum X}{N}$$ $\Rightarrow \sum X = N\overline{X} = 20 \times 15 = 300$ as on an introduced But this is not the correct value of ΣX due to mistakes Corrected $\Sigma X = 300 - 17 + 27 = 310$ $$\overline{Y} = \frac{\Sigma Y}{N} \Rightarrow \Sigma Y = N\overline{Y} = 20 \times 20 = 400$$ But this is not the correct value of ΣY due to mistakes Corrected $\Sigma Y = 400 - 35 + 30 = 395$ (Formula of S.D.) $$\sigma_x^2 = \frac{\Sigma X^2}{N} - (\overline{X})^2$$ $\therefore \Sigma X^2 = N[\sigma_x^2 + (\overline{X})^2] = 20[16 + 225] = 4820$ But this is not the correct value of ΣX^2 due to mistakes Corrected $\Sigma X^2 = 4820 - 17^2 + 27^2 = 4820 - 289 + 729 = 5260$ Corrected $$\Sigma X^2 = 4820 - 17^2 + 27^2 = 4820 - 289 + 729 = 5260$$...(iii) $$\sigma_{y} = \sqrt{\frac{\sum Y^2}{N} - (\overline{Y})^2}$$ (Formula of S.D.) Corrected $$2X = 4820 - 17 + 27^2 = 4820 - 289 + 729 = 5260$$...(i $$\sigma_{y,} = \sqrt{\frac{\Sigma Y^2}{N} - (\overline{Y})^2} \qquad \qquad \text{(Formula of S.D.)}$$ $$\Rightarrow \quad \sigma_y^2 = \frac{\Sigma Y^2}{N} - (\overline{Y})^2 \qquad \qquad \therefore \quad \Sigma Y^2 = N[\sigma_y^2 + (\overline{Y})^2] = 20[25 + 400] = 8500$$ But this is not the correct value of ΣY^2 due to mistakes Corrected $$\Sigma Y^2 = 8500 - 35^2 + 30^2 = 8500 - 1225 + 900 = 8175$$...(iv) #### Calculation of Corrected ΣXY $$r = \frac{N \cdot \Sigma XY - \Sigma X \cdot \Sigma Y}{\sqrt{N \cdot \Sigma X^2 - (\Sigma X)^2} \sqrt{N \cdot \Sigma Y^2 - (\Sigma Y)^2}}$$ $$0.3 = \frac{20 \times \Sigma XY - (300)(400)}{\sqrt{20 \times 4820 - (300)^2} \sqrt{20 \times 8500 - (400)^2}}$$ $$0.3 = \frac{20 \Sigma XY - 1,20,000}{80 \times 100}$$ $$0.3 \times 8000 = 20 \Sigma XY - 1,20,000$$ $$20\Sigma XY = 1,22,400$$ $$\Sigma XY = 6120$$:. Incorrected $\Sigma XY = 6120$ But this is not the correct value of XXY due to mistakes Corrected $$\Sigma XY = 6120 + 810 - 595 = 6335$$ Now, the correct value of r would be calculated as: $$r = \frac{N \cdot \Sigma XY - \Sigma X \cdot \Sigma Y}{\sqrt{N \cdot \Sigma X^2 - (\Sigma X)^2} \sqrt{N \cdot \Sigma Y^2 - (\Sigma Y)^2}}$$ $$= \frac{20 \times 6335 - (310)(395)}{\sqrt{20 \times 5260 - (310)^2} \sqrt{20 \times 8175 - (395)^2}}$$ $$= \frac{126700 - 122450}{\sqrt{105200 - 96100} \sqrt{163500 - 156025}}$$ $$= \frac{4250}{\sqrt{9100} \sqrt{7475}} = \frac{4250}{8247.57} = 0.5153$$...(v) | EXERCISE 1.5 | ient of correlation between X a | and Y from the following | |-----------------------------|---------------------------------|--------------------------| | Find Karl Pearson's coeffic | ient of correlation between X a | 2 l | What will be the correlation coefficient between 2X + 3 and 5Y - 4. [Ans. r = -0.1980, No effect] [Hint: See Example 50] [Hint: See Example 30] 2. Calculate Karl Pearson's coefficient of correlation between the values of X and Y given | low:
X: | -15 | +18 | -12 | -10 | +15 | -20 | -25 | +15 | +16 | Γ | |------------|-----|-----|-----|-----|-----|------|----------|--|---------|---| | γ: | +8 | -10 | +5 | +12 | -6 | +4 | +11 | -9 | -7 | T | | 1. | | _ | | | THE | 1013 | a a harm | de de la composición dela composición de la composición dela composición de la composición dela composición dela composición de la composición de la composición de la composición dela composición de la composición
dela c | [Ans. r | _ | 3. Calculate 'r' from the following data: $\Sigma X = 225, \Sigma Y = 189, N = 10, \Sigma (X - 22)^2 = 85$ $\Sigma(Y-19)^2 = 25$ and $\Sigma(X-22)(Y-19) = 43$ Hint: See Example 53] [Ans. r=0.9598] 4. Following result were obtained from an analysis of 12 pairs of observations: n = 12, $\Sigma X = 30$, $\Sigma Y = 5$, $\Sigma X^2 = 670$, $\Sigma Y^2 = 285$, $\Sigma XY = 334$ Later on it was discovered that one pair of values (X = 11, Y = 4) were copied wrongly, the correct values of the pair was (X = 10, Y = 14). Find the correct value of correlation [Ans. r=0.7746] coefficient. 5. Calculate the coefficient of correlation from the following data and interpret the result: $N = 10, \overline{X} = 15, \overline{Y} = 12, \Sigma XY = 1500, \sigma_x = 4, \sigma_y = 9.0$ [Ans. r = -0.833] 6. Given the following: $$r = -1$$, $\overline{X} = 4.5$, $\overline{Y} = 5.5$, $\sigma_x^2 = 5.25$, $\sigma_y^2 = 5.25$, $N = 8$ One pair of observation One pair of observation (X = 9, Y = 10) omitted to be included and hence to be included calculate the correct configuration (X = 9, Y = 10) omitted to be included and hence to be included. calculate the correct coefficient of correlation. [Ans. r = -0.4] 7. In two sets of variables X and Y with 50 items each, the following data were observed: $\overline{X} = 10^{-2}$ $\bar{X} = 10, \sigma_x = 3, \bar{Y} = 6, \sigma_y = 2, r = 0.3$ However, on subsequent verification it was found that one value of X(=10) and one $Y_0^{[\mu\nu]}$ $Y_0^{[\mu\nu]}$ were inaccurate and hence $Y_0^{[\mu\nu]}$ was found that one value of $Y_0^{[\mu\nu]}$ in of $Y_0^{[\mu\nu]}$ Y(=6) were inaccurate and hence weeded out. With the remaining 49 pairs of values, how the original value of correlation contract. the original value of correlation coefficient affected? [Hint: See Example 54] [Ans. r = 0.3, it is not affect (4) Variance-Covariance Method This method of determining correlation coefficient is based on covariance. In this method, the This method is used to obtain correlation coefficient: Cov(X,Y) $$r = \frac{CoV(X,Y)}{\sqrt{Var(X)} \sqrt{Var(Y)}}$$ Or $$r = \frac{Cov(X,Y)}{\sigma_x \cdot \sigma_y} = \frac{\frac{\Sigma XY}{N} - \overline{XY}}{\sigma_x \cdot \sigma_y}$$ Where, $$Cov(X,Y) = \frac{\sum xy}{N} = \frac{\sum (X - \overline{X})(Y - \overline{Y})}{N} = \frac{\sum XY}{N} - \overline{XY}$$ The formula can also be written as: $$r = \frac{\sum xy}{N \cdot \sigma_x \cdot \sigma_y}$$ where, $x = X - \overline{X}$, $y = Y - \overline{Y}$ Example 22. For two series X and Y, Cov(X, Y) = 15, Var(X) = 36, Var(Y) = 25, calculate the coefficient of correlation Given Cov(X,Y) = 15, Var(X) = 36, Var(Y) = 25 $$r = \frac{Cov(X,Y)}{\sqrt{Var(X)}} = \frac{15}{\sqrt{36}\sqrt{25}}$$ $$= \frac{15}{\sqrt{900}} = \frac{15}{30} = +0.50$$ Example 23. From the following data, compute the coefficient of correlation between X and Y: | X-series | Y-series | |---------------------|---------------------| | N = 30 | N = 30 | | $\overline{X} = 40$ | $\overline{Y} = 50$ | | $\sigma_x = 6$ | $\sigma_{\nu} = 7$ | | $\Sigma xy = 360$ | | (Where, x and y are deviations from their respective means). We are given N = 30, \overline{X} = 40, \overline{Y} = 50, σ_x = 6, σ_y = 7, Σxy = 360 Karl Pearson's coefficient of correlation is given by: $$r = \frac{\sum xy}{N \cdot \sigma_x \cdot \sigma_y}$$ $$= \frac{360}{30 \times 6 \times 7} = \frac{360}{1260} = \frac{2}{7} = +0.286$$ [Ans. r=+0.945] $$r = \frac{\sigma_x \cdot \sigma_y}{\sigma_x \cdot \sigma_y}$$ $$r = \frac{12}{6 \times 7} = \frac{12}{42} = +0.286$$ IMPORTANT TYPICAL EXAMPLE Example 24. From two series X and Y, Cov (X,Y) = 25, r = 0.6, variance of X=36. Calculate the series X and Y. Cov (X,Y) = 25, r = 0.6, variance of X=36. Calculate the series X and Y. Cov (X,Y) = 25, r = 0.6, variance of X=36. Calculate the series X and Y. Cov (X,Y) = 25, r = 0.6, variance of X=36. Calculate the series X and Y. Cov (X,Y) = 25, r = 0.6, variance of X=36. Calculate the series X and Y. Cov (X,Y) = 25, r = 0.6, variance of X=36. Calculate the series X and Y. Cov (X,Y) = 25, r = 0.6, variance of X=36. Calculate the series X and Y. Cov (X,Y) = 25, r = 0.6, variance of X=36. Calculate the series X and Y. Cov (X,Y) = 25, r = 0.6, variance of X=36. Calculate the series X and Y. Cov (X,Y) = 25, r = 0.6, variance of X=36. Calculate the series X and Y. Cov (X,Y) = 25, r = 0.6, variance of X=36. Calculate the series X and Y. Cov (X,Y) = 25, r = 0.6, variance of X=36. Calculate the series X and Y. Cov (X,Y) = 25, r = 0.6, variance of X=36. Calculate the series X and Y. Cov (X,Y) = 25, r = 0.6, variance of X=36. Calculate the series X and Y. Cov (X,Y) = 25, r = 0.6, variance of X=36. Calculate the series X and Y. Cov (X,Y) = 25, r = 0.6, variance of X=36. Calculate the series X and Y. Cov (X,Y) = 25, r = 0.6, variance of X=36. Calculate the series X and Y. Cov (X,Y) = 25, r = 0.6, variance of X=36. Calculate the series X and Y. Cov (X,Y) = 25, r = 0.6, variance of X=36. Calculate the series X and Y. Cov (X,Y) = 25, r = 0.6, variance of X=36. Calculate the series X and Y. Cov (X,Y) = 25, r = 0.6, variance of X=36. Calculate the series X and Y. Cov (X,Y) = 25, r = 0.6, variance of X=36. Calculate the series X and Y. Cov (X,Y) = 25, r = 0.6, variance of X=36. Calculate the series X and Y. Cov (X,Y) = 25, r = 0.6, variance of X=36. Calculate the series X and Y. Cov (X,Y) = 25, r = 0.6, variance of X=36. Calculate the series X and Y. Cov (X,Y) = 25, r = 0.6, variance the series X and Y. Cov (X,Y) = 25, r = 0.6, variance the series X and Y. Cov (X,Y) = 25, r = 0.6, variance the series X and Y. Cov (X,Y) = 25, r = 0. $Cov(X,Y) = \frac{\sum xy}{N} = \frac{360}{30} = 12 \text{ where, } x = X - \overline{X}, y = Y - \overline{y}$ standard deviation of y. standard deviation of y. Given, Cov(X,Y) = 25, r = 0.6, $var(X) = 36 \Rightarrow \sigma_x = \sqrt{36} = 6$. [: $\sigma = \sqrt{variance}$] Given, $$Cov(X,Y) = 25$$, $F = 6.05$, in (c) $$r = \frac{Cov(X,Y)}{\sigma_x \cdot \sigma_y}$$ $$(0.6)(6 \times \sigma_y) = 25$$ $(3.6)(\sigma_y) = 25$ $\sigma_y = \frac{25}{3} = 6.9$ #### **EXERCISE 1.6** | The following results are obt | ained regarding two series. | Compute coefficient of corre | |---|-----------------------------|------------------------------| | | X-series | Y-series | | No. of items: | 15 | 15 | | Arithmetic mean: | 25 | 18 | | | 23 | | [Ans. 7=0.89] Sum of products of deviations of X and Y series from their means = 122. 3.01 2. Calculate the coefficient of correlation where Cov (X,Y) = 488; Variance of X = 824 and Variance of Y = 325. [Ans. 7=+0.83] find the coefficient of correlation. 4. Karl Pearson's coefficient of correlation between two variables X and Y is 0.64 tell covariance is 16. If the varies correlation between two variables X and Y is 0.64 tell covariance is 16. If the varies correlation between two variables X and Y is 0.64 tell covariance is 16. If the varies correlation between two variables X and Y is 0.64 tell covariance is 16. If the varies correlation between two variables X and Y is 0.64 tell covariance is 16. If the varies covariance is 16. If the variance of X is 9, find the standard deviation of Y-series. 5. The coefficient of correlation between two variables X and Y is 0.48 and their covaria 36. If the variance of X-series is 1.6. 36. If the variance of X-series is 16, find the second moment about mean of Y-series [i.e., variance of Y-series]. [Le., variance of Y-series]. Correlation # (B) Calculation of Coefficient of Correlation in Grouped Data/Bivariate Distribution When number of items in two series is very large, then we present them by means of a two-way when number of items in two series is very large, then we present them by means of a two-way frequency table. This table gives the frequency distribution of two variables X and Y. The class intervals for Y-variables are presented in column heading (captions) and class intervals for intervals are presented in row headings (stubs). Frequencies of the each of the column heading is the presented in row headings (stubs). intervals for x-variables are presented in row headings (stubs). Frequencies of the each cell of the table are counted by means of using tally bars. Correlation coefficient in case of grouped data is computed by using the following formula: $$r = \frac{\sum f dx dy - \frac{\sum f dx \cdot \sum f dy}{N}}{\sqrt{\sum f dx^2 - \frac{(\sum f dx)^2}{N}} \sqrt{\sum f dy^2 - \frac{(\sum f dy)^2}{N}}}$$ $$Or$$ $$r = \frac{N \times \sum f dx dy - (\sum f dx)(\sum f dy)}{\sqrt{N \times \sum f dx^2 - (\sum f dx)^2}} \sqrt{N \times \sum f dy^2 - (\sum f dy)^2}$$ - (1) Step deviations of X-variables are worked out and these are denoted by 'dx'. Similarly, step deviations of Y-variables are calculated and these are denoted by 'dy'. - (2) Step deviations of X-variables are multiplied by the corresponding frequencies and added up to get $\Sigma f dx$. Similarly $\Sigma f dy$ is obtained. - (3) By multiplying the squared deviations of X-variables with the corresponding frequencies or multiplying $\Sigma f dx$ by dx and adding up, we get $\Sigma f dx^2$. Similarly $\Sigma f dy^2$ are obtained. - (4) Multiplying dx and dy and further multiplying them with their corresponding cell frequencies yields fdxdy. This product is written in the cell down at the right side/corner. Adding together all the cornered values vertically and horizontally gives Σfdxdy. - (5) Putting the values of $\Sigma f dx$, $\Sigma f dx^2$, $\Sigma f dy^2$ and $\Sigma f dx dy$ in the above formula to obtain correlation coefficient. The following examples make clear the computation of correlation in grouped data: Example 25. 30 pairs of X and Y are given below: | X: | 14 | 20 | 33 | 25 | 41 | 18 | 24 | 29 | 38 | 45 | |----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | Y: | 147 | 242 | 296 | 312 | 518 | 196 | 214 |
340 | 492 | 568 | | X: | 23 | 32 | 37 | 19 | 28 | 34 | 38 | 29 | 44 | 40 | | Y: | 382 | 400 | 288 | 292 | 431 | 440 | 500 | 512 | 415 | 514 | | X: | 22 | 39 | 43 | 44 | 12 | 27 | 39 | 38 | 17 | 26 | | Y; | 382 | 481 | 516 | 598 | 122 | 200 | 451 | 387 | 245 | 413 | Prepare a correlation table taking class interval of X as 10 to 20, 20 to 30, etc. and that of Y as 100 to 200, 200 to 300, etc. and find Karl Pearson's coefficient of correlation. ration of Bivariate Frequency Distribution | Preparation 20-30 | 30—40 | 40—50 | T | |--|---------|---------|---------| | Y/X→ 10-20 20-30
100-200 (3) (3) | (2) | | Total 3 | | 100-200 (3)
200-300 (2) (4) | (1) | | | | 300—400 | THJ (5) | [(1) | ~;\ | | 400-500 | [(1) | THJ (5) | 0, | | 500-600 5 10 | . 9 | 6 | N=30 | # (Lanscape Table Given at Page 35) Applying the formula, $$r = \frac{N \times \Sigma f dx dy - \Sigma f dx \cdot \Sigma f dy}{\sqrt{N \times \Sigma f dx^2 - (\Sigma f dx)^2} \sqrt{N \times \Sigma f dy^2 - (\Sigma f dy)^2}}$$ $$= \frac{30 \times 35 - (16)(9)}{\sqrt{30 \times 38 - (16)^2} \sqrt{30 \times 55 - (9)^2}}$$ $$= \frac{1050 - 144}{\sqrt{140 - 256} \sqrt{1650 - 81}} = \frac{906}{\sqrt{884} \sqrt{1569}}$$ $= \frac{906}{29.73 \times 39.61} = \frac{906}{1177.60} = 0.76$ Example 26. Calculate Karl Pearson's coefficient of correlation from the following data: | X/Y | 10—25 | 25—40 | 40- | |-------|-------|-------|-----| | 0-20 | 10 | 4 | 6 | | 20-40 | 5 | 40 | 9 | | 40-60 | 3 | 8 | 15 | Solution: (Landscape Table Given at Page 36) $$r = \frac{N \times \Sigma f dx dy - (\Sigma f dx)(\Sigma f dy)}{\sqrt{N \times \Sigma f dx^2 - (\Sigma f dx)^2} \sqrt{N \times \Sigma f dy^2 - (\Sigma f dy)^2}}$$ $$= \frac{100 \times 16 - (6)(12)}{\sqrt{100 \times 46 - (6)^2} \sqrt{100 \times 48 - (12)^2}}$$ $$= \frac{1600 - 7}{\sqrt{4564} \sqrt{4656}}$$ $$= \frac{1528}{4609.77} = 0.33$$ | A . | _ | _ | - 1 | / farmi | | 4 | | 0 | | 12 | Σ fdxdy = 16 | 1 | _ | Cor | relati | 55 | c | orrelation | on · | ni in | fdxdy | . 01- | | 7- | 0 | | | -16 | Σ fability $= -38$ | \ | | 3 | r
 | |--|-------|-------|-----|---------|------|------|------|-----|-------|-------|---------------------|----------|----------------|--------|--------|---------|-------------------------|----------------------------------|-------------------|-------------|------------------|-------|------|------------|------|-------|--------------|-------|---------------------------|-----|-------|------------------|-----------| | h . | ¥. | | . : | Jax | | 20 | | 0 | | 26 | E fdx2 | 140 | | \ | | | | | | | fdy ² | ž | 2 | | 0 | | 2 | 50 | $\Sigma fdy^2 = 50$ | 1 | / | | | | | * . | i, | | Zqx | - | -20 | | .0 | | , 26 | . E fate | 9= | | | \ | 14 | | | | | fdy | | , | . <i>J</i> | 0 | | 6 | 01 | 1 E fdy | | | . \ | | | 9 | | | | ì | - | 20 | | 54 | | 26 | N = 100 | | $\sum fdy$ =12 | E fdy2 | =48 | 2 Jaxay | | | 22 | | +2 | | 4 | 2 | | | 6 | 8 | N = 40 | + | | = 47
\$ fdxdy | | | Correlation Table of Solution 26 | 40—55 | 47.5 | +15 | 7 | | 9 - | | , 6 | | 15 15 | 30 | 1 | 30 | 30 | + | 6 | | Correlation Table of Solution 27 | | 21 <u>.</u> | | 4 | 9 | -1 -2 | 7 | | 1 | * T | 3 | * 1 | | 0 0 | 7 | | lation Table | 25-40 | 32.50 | 0 | 0 | | | 0 | | 0. | 8 | 2 | 1 | 0 | 0 | / | 0 | | lation Table | | 20 | 0 | | 9 | | , 0 | 0 | 4,0 | ni di | 1 | = | 0 | 0 | 0 | | Corre | 30 01 | 17.5 | -15 | 7 | | 1 10 | 10 | 0 5 | 0 | -13 | £ 0 | <u>o</u> | -18 | 18 | | 7 | ı | Corre | 10 | 61 | 0.0- | | | l sis | | | -1
5
3 | 7 | -12 2 4 | | 1- | 1 | 9 | | <u>,</u> | | N.V. | | * | dr/ | Ť | | 0 | - | + | * | 1 | fdy | | Jay | fdxdy | | | | M.V. 18 | -2 | 1 | -2 - | 1 | | 0 | T, | 4 | ω. | | Jax . | fdx2 12 | fdxdy -12 | | Y - 32.50 | 2 | 1 | | | | -20 | , | 0 | | +20 | | | | | | | | | Y-12.5 | 1 | | dy. | -10 | . 1 | 7 | 0 | \$+ | 1 | +10 | 1 | • | 4 | 78 | | Let $dx = \frac{X - 30}{20}$, $dy = \frac{Y - 32.50}{20}$ | 707 | / | / | × - | .V.W | 9 | 2 | 0.0 | 2 | 20. | | | 1 | V. | | | The same of the same of | | dx = X - 20, dy = | × | / | M.V. | 2.5 | | 7.5 | 12.5 | 17.5 | | 22.5 | | | | | | Let dr | 1 | / | | 1 | | | 07-0 | | 20-40 | 9 0 | 00-0 | | | 1 | | 4 | | | Let de | 1 | | | 0-5 | | 2-10 | 10-15 | 00 91 | 07-61 | 20-25 | | | | e (de | greent of correlation from the following data | Example 27. Calculate Karl Pe | earson's coefficient 52 | 21 | 22 | Tald: | |-------------------------------|-------------------------|--|-------|-------| | Calculate Karri | 18 19 - | 3 | h 11 | Total | | Example 2 Y/X | | 3 | 2 | 1 | | 0-5 | - 7 | 10 | | -31 | | 5-10 | - 4 | | 41- | 17 | | 10-15 | | | 15 | 1 | | 15—20
20—25 | 3 2 11 | 16 | 3 | 40 | | Total | 3 | The state of s | 3 1 8 | 10 | (Landscape Table Given at Page 37) $N \times \Sigma f dx dy - (\Sigma f dx)(\Sigma f dy)$ $$r = \frac{N \times 2jdddy}{\sqrt{N \times 2jddy^2 - (\Sigma jdx)^2}} \frac{(-jdx)^2 (-(\Sigma jdx)^2)^2}{\sqrt{N \times \Sigma jdy^2 - (\Sigma jdy)^2}}$$ $$= \frac{40(-38) - (6)(9)}{\sqrt{40(47) - (9)^2}} \frac{\sqrt{40(50) - (6)^2}}{\sqrt{40(50) - (6)^2}}$$ $$= \frac{-1574}{\sqrt{1799} \sqrt{1964}} = \frac{-1574}{42.41 \times 44.32} = \frac{-1574}{1879.61}$$ $=-0.837'0 \approx -0.84.$ It shows a high degree of negative correlation between X and Y. #### **EXERCISE 1.7** 1. Calculate Karl Pearson's coefficient of correlation for the following distribution: | 600— | 500—600 | 400—500 | 300—400 | 200—300 | X | |------|---------|---------|---------|---------|-------| | 7 | 3 | | | - | 10—15 | | 3 | 4 | 9 | 4 | l H | 15—20 | | | 5 | 12 | 6 | 7 | 20-25 | | | 8 | 19 | 10 | 3 | 25—30 | Also calculate its probable error. [Ans. r = -0.438, PE = 0.054 2. Calculate the coefficient of correlation between marks and age from the following dist. 21 20 19 Marks 200-250 250-300 300-350 4 350-400 Can we conclude that increase in age causes increase in marks? 24 pairs of X and Y are given below: | 4 pans or | | | | | 100 | Se San | TO THE ! | Water | |-----------|----|----|----|-----|-----|--------|----------|-------| | . X | 15 | 0 | 1. | 3 | 16 | 2 | 18 | 5 | | Y | 13 | 1 | 2 | 7 | 8 | 9 | 12 | 9 | | - X | 4 | 17 | 6 | 19 | 14 | 9 | 8 | 13 | | Y | 17 | 16 | 6 | 18 | 11 | 3 | 5 | 4 | | X | 10 | 13 | 11 | 11 | 12 | 18 | 9 | 7 | | V . / | 10 | 11 | 14 | . 7 | 18 | 15 | 15 | 3 | Prepare a correlation table taking the magnitude of each class interval as four and the first Prepare a correlation table taking the inaginature of each class interval as four and the interval as equal to 0 and less than 4. Calculate Karl Pearson's coefficient between X and Y. [Ans. r = 0.578] The frequency distribution of marks obtained in Physics and Chemistry by 100 students are given in the following table. Determine: (i) Percentage of students passed in Physics and Chemistry, while for passing minimum 60% is required. (ii) Coefficient of correlation. | Chemistry
Physics | 40—49 | 50—59 | 60—69 | 70—79 | 80—89 | 90—99 | Total | |----------------------|---------------|------------|-------------------|-------|-------|-------|-------| | 90—99 | is engled it. | 50 ml L | * 1 <u>- 1</u> 1. | 2 | 4 | 4 | 10 | | 80—89 | Maria de | The Robert | 1 | 4 | 6 | 5 | 16 | | 70—79 | - | | . 5 | 10 | 8 | 1 | 24 | | 60—69 | 11 | 4 | 9 | 5 | 2 | _ | 21 | | 50—59 | 3 | 6 | 6 | 2 | _ | - | 17 | | 40—49 | 3 | 5 | 4 | _ | 4-4-4 | A-1-1 | 12 | | Total | 7 | 15 | 25 | 23 | . 20 | 10 | 100 | [Ans. (i) % of students in Physics = 71%, % of students passed in Chemistry = 78%, (ii) r = 0.8056] ## Assumptions of Karl Pearson' Coefficient of Correlation Karl Pearson's coefficient of correlation is based on the following assumptions: (I) Affected by a Large Number of Independent Causes: Series or variables which are lated, are affected by a large number of factors that result in a normal distribution. (2) Cause and Effect Relation: There is a cause and effect relationship between the forces feeling
the diameter. ecting the distribution of the items in the two series. (a) Linear Relationship: Two variables are linearly related. Plotting the values of the variables a scatter diagram. a scatter diagram yields a straight line. -1 and +1. Symbolically $$-1 \le r \le +1$$ This implies r can never exceed +1 and never becomes less than -1. It always lies between and +1. (2) Change of Origin and Scale: Shifting the origin or scale does not affect in any way to value of correlation coefficient. coefficient of correlation is independent of the change of origin as value of correlation coefficient. value of correlation coefficient. coemicient of configuration is shifted, then correlation coefficient re-scale. If the scale of a series is changed or the origin is shifted, then correlation coefficient re- changed. (3) Geometric Mean of Regression Coefficients: Correlation coefficient is the georgeometric Mean of Regression Symbolically: (3) Geometric Mean of Negression Coefficients byx and bxy. Symbolically: $$r = \sqrt{bxy \cdot byx}$$ (4) If X and Y are independent variables, then coefficient of correlation is zero but the converge is not necessarily true. [For proof, See Example 55]. (5) Pure Number: 'r' is a pure number and is independent of the units of measurements. The (5) rure number: (1) is a pure number and implies that even if the two variables are expressed in two different units of measurements in migness use even it use the failure of the same and s a pure number. Thus, it does not require that the units of both the variables should be the same. (6) Symmetric: The coefficient of correlation between the two variables x and y is symmetric $i.e._{r,y_{p}} = r_{y_{p}}$. It means that either we compute the value of correlation coefficient between x and yx between y and x, the coefficient of correlation remains the same. #### • Interpreting the Coefficient of Correlation Coefficient of correlation measures the degree of relationship between two variables. Its denoted by \dot{r} . The value of correlation coefficient lies between -1 and +1. The value of correlation coefficient as \dot{r} between -1 and +1. The value of correlation coefficient \dot{r} between -1 and +1. The value of correlation coefficient \dot{r} between -1 and +1. coefficient can be interpreted in the following ways: - (i) If r = +1, then there is perfect positive correlation. - (ii) If r = 0, then there is absence of linear correlation. - (iii) If r = +0.25, then there will be low degree of positive correlation. - (iv) If r = +0.50, then there is moderate degree of correlation. - (ν) If r = +0.75, then there is high degree of positive correlation. Similarly, negative values of r can be interpreted. # Probable Error and Karl Pearson's Coefficient of Correlation To test the reliability of Karl Pearson's Coreflicient of Correlation owing formula is used to determine probable correlation coefficient, probable error is following formula is used to determine probable error: Correlation Probable Error (P.E.) = $$0.6745 \times \frac{1-r^2}{\sqrt{N}}$$ Where, r is the coefficient of correlation and N, the number of pairs of observations. Where, 7 is a server of correlation. Thus rror of the coefficient of correlation. Thus, $$SE_r = \frac{1 - r^2}{\sqrt{N}}$$ Utility of Probable Error: (1) Probable error is used to interpret the value of the correlation efficient. Interpretation of r with the help of probable error is made clear by the following points: (i) |r| > 6 P.E., then coefficient of correlation (r) is taken to be significant. Tri < 6 P.E., then coefficient of correlation (r) is taken to be insignificant. This means that, there is no evidence of the existence of correlation in both the series. (2) Probable error also determines the upper and lower limits within which the correlation a randomly selected sample from the same universe will fall. Symbolically, Upper Limit = $r + P.E._{\tau}$, Lower Limit = r - P.E. Example 28. | ind the real reason s coefficient of confedential from the following data: | | | | | | | | | |--|-----|----|----|----|------|----|--|--| | X: | 9 | 28 | 45 | 60 | 70 . | 50 | | | | Y: | 100 | 60 | 50 | 40 | 33 | 57 | | | Also calculate probable error and point out whether the coefficient of correlation is significant or not. | | | Calculation | or Coenti | cient of Co | rrelation | | |--------|------------------|----------------------|-----------|------------------|----------------------|-----------------------| | X | dx | dx ² | Y | î dy | dy ² | dxdy | | 9 | -36 | 1296 | 100 | 50- | 2500 | -1800 | | 28 | -17 | 289 | 60 - | 10 | 100 | -170 | | 45 = A | han O | 0 | 50 = A | v 0 | . 0 | 0 | | - 60 | 15 | 225 | 40 | -10 | 100 | -150 | | 70 | 1) - 25 | 625 | 33 | -17 | 289 | -425 | | 50 | 5 | 25 | 57 | 7 | 49 | 35 | | N=6 | $\Sigma dx = -8$ | $\Sigma dx^2 = 2460$ | N process | $\Sigma dy = 40$ | $\Sigma dy^2 = 3038$ | $\Sigma dxdy = -2510$ | $$r = \frac{N \times \Sigma dxdy - \Sigma dx \cdot \Sigma dy}{\sqrt{N \times \Sigma dx^2 - (\Sigma dx)^2} \sqrt{N \times \Sigma dy^2 - (\Sigma dy)^2}}$$ $$= \frac{6 \times (-2510) - (-8)(40)}{\sqrt{6 \times 2460 - (-8)^2} \sqrt{6 \times 3038 - (40)^2}}$$ Calculation of P.E. $$P.E. = 0.6745 \times \frac{1 - r^2}{\sqrt{N}} = 0.6745 \times \frac{1 - (-0.94)^2}{\sqrt{6}}$$ $$= 0.6745 \times \frac{0.1164}{2.449} = 0.03205$$ Significance of r $$\frac{|r|}{P.E.} = \frac{0.94}{0.03205} = 29.32$$ $$|r| = 29.32 \text{ P.E.}$$ Since, |r| is more than 6 times the P.E., so, correlation coefficient is highly significant. Example 29. A student calculates the value of r as 0.7 when the value of n is 5 and concludes that is highly significant. Is he correct? We know that if the value of r > 6 P.E., then it is considered to be significant. Solution: P.E. = $$0.6745 = \frac{1-r^2}{\sqrt{N}}$$ = $0.6745 \times \frac{1-(0.7)^2}{\sqrt{5}} = 0.15$ Now, $\frac{r}{P.E.} = \frac{0.7}{0.15} = 4.67 \implies r = 4.67 P.E.$ Since r is less than six times the P.E., r is insignificant and the student is wrong in his calculation Example 30. Show by calculation which 'r' is more significant: (i) r = 0.90, P.E. = 0.03 (ii) r = 0.70, P.E. = 0.02. r is most significant in that case in which it is the highest number of times the P.E. list compared as below- compared as below: (i) $\frac{r}{P.E.} = \frac{0.90}{0.03} = 30$, so r is 30 times of P.E. (ii) $\frac{r}{P.E.} = \frac{0.70}{0.02} = 35$, so r is 35 times of P.E. It is clear from the above that coefficient of correlation is the most significant in case (a) EXERCISE 1.8 Find Karl Pearson's Coefficient of correlation from the following series of marks secured by 10 students in a class test in Mathematics and Statistics. | Maths (X): | 45 | 70 | 65 | 30 | 90 | 40 | 50 | 75 | 85 | 60 | |-----------------|----|----|----|----|----|----|----|----|----|------| | Statistics (Y): | 35 | 90 | 70 | 40 | 95 | 40 | 60 | 80 | 80 | - 50 | Also calculate probable error. Is the value of r significant or not? [Ans. r = 0.903, P.E. = 0.039, Highly significant] Calculate the coefficient of correlation between the heights of fathers and sons from the following: | Height of Fathers (inches): | 65 | 66 | 67 | 68 | 69 | 70 | 71 | |-----------------------------|----|----|----|----|----|----|----| | Height of Sons (inches): | | 68 | 66 | 69 | 72 | 72 | 69 | Also calculate its probable error. Is the value of r significant or not? [Ans. r = 0.668, P.E. = 0.141, Not significant] - 3. (a) Find r if N = 100, P.E. = 0.05 (b) Find N if P.E. = 0.025, r = .80 [Ans. (a) r = 0.5086 (b) N = 94] 4. Comment on the significance of rin the following situations: - (i) N = 25, r = 0.8 (ii) N=100, P.E. = 0.04 [Ans. (i) P.E. = 0.049, significant (ii) r = 0.63, significant] The correlation coefficient of a sample of 100 pairs of items was 0.92. Within what limits does it hold good for another sample taken from the same universe? [Ans. PE = 0.0103, 0.92 ± 0.0103] #### 0 (ii) Spearman's Rank Correlation Method This method of determining correlation was propounded by Prof. Spearman in 1904. By this method, correlation between qualitative data namely beauty, honesty, intelligence, etc., can be computed. Such types of variables can be assigned ranks but their quantitative measurement is not possible. Thus, rank correlation method is used in such cases. The following is the formula for the computation of rank correlation coefficient: $$R = 1 - \frac{6 \Sigma D^2}{N(N^2 - 1)}$$ or $1 - \frac{6 \Sigma D^2}{N^3 - N}$ Where, R = Rank coefficient of correlation, D = Difference between two ranks $(R_1 - R_2)$, N = Number of pair of observations. The value of rank correlation coefficient always lies between -1 and +1. - Note: 1. The value of rank correlation coefficient will be equal to the value of Pearson's Coefficient of Correlation for the two characteristics taking the ranks as values of the variables, provided no rank value is repeated *i.e.* the rank values of all the variables are different. - 2. The sum total of rank difference (i.e., ΣD) is always equal to zero, - i.e., $\Sigma D = \Sigma (R_1 R_2) = 0$. This serves as check on the calculation work. This method can be studied in the following three different situations: - (1) When ranks are given - (2) When ranks are not given - (3) When equal or tied ranks. - ► (1) When ranks are given (1) When ranks are given (1) When ranks are given, the following procedure is adopted to find the rank correlation coefficient. When ranks are given, the following procedure is adopted to find the ranks correlation coefficient. When ranks are given, the following procedure is adopted to find the ranks correlation coefficient (i) Ranks difference is found out by deducting the ranks of Y series from the corresponding ranks of X series. This is denoted by D, i.e., $D = R_1 - R_2$. ranks of A series. (ii) Squaring the rank differences and summing them up, we get ΣD^2 . - (iii)
Finally, the following formula is used: $$R = 1 - \frac{6 \Sigma D^2}{N^3 - N}$$ The following examples make the above said method clear: The following examples make the following ranks to eight Example 31. In a fancy-dress competition, two judges accorded the following ranks to eight | participants: | | | | | | | | 100 | |---------------|---|-----|---|-----|----|---|-----|-----| | Judge X: | 8 | -7 | 6 | 3 | 2 | 1 | 5 ' | 4 | | Judge Y: | 7 | - 5 | 4 | . 1 | '3 | 2 | 6 | 8 | | | | | | | | | | | Calculate coefficient of rank correlation | ant of faint conference. | | | |--------------------------|-------------|-------------| | Calculation of Rank | Correlation | Coefficient | | Judge X | Judge Y
R ₂ | $D=R_1-R_2$ | D ² | | |---------|---------------------------|-------------|----------------|--| | 8 | 7 | +1 | 1 | | | 7 | 5 | +2 | 4 | | | 6 | 4 | +2 | 4 | | | 3 | 1 | +2 | 4 | | | 2 | 3 | -1 | 1 | | | 1 | 2 | -1 | 1 | | | 5 | 6 | -1 | 1 | | | 4 | 8 | -4 | 16 | | | N = 8 | | ΣD=0 | ΣD^2 | | $$R = 1 - \frac{6 \Sigma D^2}{N^3 - N} = 1 - \frac{6 \times 32}{8^3 - 8} = 1 - \frac{192}{504}$$ = 1 - 0.381 = 0.619 There is, thus, moderate degree of positive relationship between the two judgen Example 32. Two ladies were asked to rank 10 different types of lipsticks. The ranks given by them are given below: | | Α. | D/ | · ć | - | - 20 | _ | | | | | |------------|----|----|-----|---|------|---|-----|----|---|----------| | Lipsticks: | A | D/ | C | D | E | F | G | Н | 1 | 1 | | Neelu: | 1 | 6 | .3 | 9 | 5 | 2 | 7 | 10 | • | <u> </u> | | | 6 | 8 | 3 | 7 | 2 | 1 | · - | 10 | 8 | 4 | | Neena: | 0 | | 3 | / | . 2 | 1 | 5 | 9 | 4 | 1 | Calculate Spearman's rank correlation coefficient. Solution: | Calculation | of Rank | Correlation | Coefficient | |-------------|---------|-------------|-------------| | | | | | | R_1 | R ₂ | $D=R_1-R_2$ | D^2 | |--------|----------------|----------------|--------------------| | 1 | 6 | -5 | 25 | | 6 | 8 | -2 | 4 | | 3 | 3 | | - 0 | | 9 | -7 | +2 | . 4 | | 5 | 2 | +3 | 9 | | 2 | 1 | +1 | 1 | | 7 | - 5 | +2 | 4 | | 10 | ۶ 9 | +1 | 1 | | 8 | 4 | +4 | 16 | | 4 | 10 | -6 | 36 | | N = 10 | | $\Sigma D = 0$ | $\Sigma D^2 = 100$ | $$R = 1 - \frac{6\Sigma D^2}{N^3 - N} = 1 - \frac{6 \times 100}{10^3 - 10} = 1 - \frac{600}{990}$$ $$=1-\frac{60}{99}=1-0.606=0.394$$ Example 33. Ten competitors in a beauty contest are ranked by three judges in the following order: | 1st Judge | 1 | 6 | 5 | 10 | 3 | 2 | 4 | 9 | 7 | -8 | |-----------|---|---|---|----|---|----|---|----|---|----| | 2nd Judge | 3 | 5 | 8 | 4 | 7 | 10 | 2 | 1 | 6 | 9 | | 3rd Judge | 6 | 4 | 9 | 8 | ī | 2 | 3 | 10 | 5 | 7 | Use the rank correlation coefficient to determine which pair of judges has the nearest approach to common tastes in beauty. In order to find out which pair of judges has the nearest approach to common tastes in beauty, we compare the rank correlation coefficient between the judgements of - (i) 1st Judge and 2nd Judge - (ii) 2nd Judge and 3rd Judge - (iii) 1st Judge and 3rd Judge. ## Calculation of Rank Correlation Coefficient | Rank by 1st | Rank by 2nd
Judge (R2) | Rank by 3rd
Judge (R ₃) | $(R_1 - R_2)^2$ D_{12}^2 | $\begin{array}{c} (R_2 - R_3)^2 \\ D_{23}^2 \end{array}$ | (R ₁ - , | |-------------|---------------------------|--|----------------------------|--|---------------------| | Judge (R1) | Judge (**2) | 6 | 4 | 9 | | | 1 | 3 | 4 | _1 | 1 | - 25 | | 6 | 5 | 9 | 9 | 7 7 1 1 1 1 | 4 | | 5 | 8 | 8 | 36 | 16 | 10 | | 10 | 7 | 1 | 16 | 36 | 4 | | 3 | 10 | 2 | 64 | 64 | / 0 | | 2 | 2 | 3 | 4 | 1 | 1 | | 4 | 1 | 10 | 64 | 81 | | | 7 | 6 | 5 | 1 | 1 | 4 | | 8 | 9 | 7 | 1 | 4 | | | N = 10 | N = 10 | N = 10 | $\Sigma D_{12}^2 = 200$ | $\Sigma D_{23}^2 = 214$ | ΣD_{13}^2 | Applying the formula, $$R_{12} = 1 - \frac{6 \Sigma D_{12}^2}{N^3 - N}$$ $$= 1 - \frac{6 \times 200}{10^3 - 10} = 1 - \frac{1200}{990} = -0.212$$ $$R_{23} = 1 - \frac{6 \Sigma D_{23}^2}{N^3 - N}$$ $$= 1 - \frac{6 \times 214}{10^3 - 10} = 1 - \frac{1284}{990} = -0.297$$ $$R_{13} = 1 - \frac{6 \Sigma D_{13}^2}{N^3 - N}$$ $$= 1 - \frac{6 \times 60}{10^3 - 10} = 1 - \frac{360}{990} = +0.636$$ Since the coefficient of rank correlation is positive and maximum in the judge the first and third judges, we conclude that they have the nearest approach to compost tastes in beauty. tastes in beauty. # (2) When ranks are not given When we are given the actual data and not the ranks, the following procedure is adopted to fir rank correlation coefficient: out rank correlation coefficient: (i) First of all, ranks are assigned to the items of X and Y series on the basis of their size. largest value is assigned rank first, second largest second rank and similarly other value. are ranked. Sometimes, the smallest value is assigned the highest rank *i.e.* in descending order of the values. However, the same order (*i.e.* ascending order or descending order) of assigning the ranks must be maintained in both the series. In the same of both the series $(D = P_i, P_i) = P_i$ - assigning the containing an ooth the series. (ii) Rank difference of both the series $(D = R_1 R_2)$ is found and squared up. The squared rank difference, thus obtained is summed upto get ΣD^2 . - (iii) Finally, the following formula is used to obtain rank correlation coefficient: $$R = 1 - \frac{6 \Sigma D^2}{N^3 - N}$$ The following example gives clarity to the above said method and its procedure. Example 34. Find out the coefficient of correlation between X and Y by the method of rank differences: | differen | | | | | | | | | | | |----------|----|----|----|----|------|----|----|------|----|-----| | X: | 15 | 17 | 14 | 13 | - 11 | 12 | 16 | 18 | 10 | - 9 | | Y: | 18 | 12 | 4 | 6 | 7 | 9 | 3 | . 10 | 2 | 5 | Calculation of Rank Correlation Coefficient | X | Rank
R ₁ | Y | Rank R ₂ | $D=R_1-R_2$ | D^2 | |--------|------------------------|-------------|---------------------|----------------|-------------------| | 15 | 4 | 18 | 1 | +3 | . 9 | | 17 | 2 | . 12 | 2 | 0 / | , -0 | | 14 | dend 5 a and | alif 4 lone | 8 | -3 | 9 | | 13 | 6 | 6 | 6 | 0 | . 0 | | 11 | 8 | 7 | 5 | +3 | 9 | | 12 | 7 | 9 . | 4 | +3 | 9 | | . 16 | 3 | 3 | 9 | -6 | 36 | | 18 | 1 | 10 | 3 | -2 | 4 . | | 10 | 9: | 2 | 10 | -1 | 1 | | 9 | 10 | 5 | 7 ~ | +3 | 9 | | N = 10 | 7 7 7 | | | $\Sigma D = 0$ | $\Sigma D^2 = 86$ | $$R=1-\frac{6\Sigma D^2}{N^3-N}$$ Here, $$N = 10$$, $\Sigma D^2 = 86$ $$R = 1 - \frac{6 \times 86}{10^3 - 10}$$ $$= 1 - \frac{516}{990} = 1 - 0.52 = 0.48$$ Thus, there is positive correlation between X and Y. (3) When equal or tied ranks When two or more items have equal values in a series, then in such case, items of equal values when two or more items have equal values for example, when item 10 appear are assigned common ranks, which is average of the ranks. For example, when item 10 appear are assigned common ranks, which is average of the ranks. For example, when item 10 appear twice in a series and their rank turns out to be 7 and 8 respectively, then they should be assigned twice in a series and their rank turns out to be 7 and 8 respectively, then they should be assigned to the ranks. In such case, some modification has to be made in the formula. Here, the standard ranks are determine rank correlation coefficient: 1+0 = 7.5 rank. In such that In such that In such that I is used to determine rank correlation coefficient: following formula is used to determine rank correlation coefficient: $R = 1 - \frac{6[\sum D^2 + \frac{1}{12}(m^3 - m) + \frac{1}{12}(m^3 - m) + \dots]}{N^3 - N}$ $$R = 1 - \frac{6[\sum D^2 + \frac{1}{12}(m^3 - m) + \frac{1}{12}(m^3 - m) + \dots]}{N^3 - N}$$ Here, m = Number of items of equal ranks. The correction factor of $\frac{1}{12}(m^3-m)$ is added to $\sum D^2$ for such number of times as the cases of equal ranks in the question. Example 35. Calculate coefficient of rank correlation from the following data: 28 12 10 16 20 X 15 10 18 11 10 12-- 18 1 12 16 Make corrections for tied ranks. Solution: | | of Coefficient | of Donle | Commolation | |-------------|----------------|----------|-------------| | Calculation | of Coefficient | OI KAHK | Correlation | | | | | | | | Carculat | on or enteres | | | | |-------|----------------|---------------|----------------|--------------------------|--------------------| | x | R ₁ | Y | R ₂ | $\mathbf{D} = R_1 - R_2$ | D2 | | 15 | 5 | 16 | 2 | 3 | 1. 9.00 | | 10 | 7.5 | 14 | 4 | 3.5 | 12.25 | | 20 | 2 | 10 | 8 | -6 | 36.00 | | 28 | 1 | 12 | 5.5 | -4.5 | 20.25 | | 12 | 6 | 11 | Ż | 1 | 1.00 | | 10 | 7.5 | 15 | 3 | 4.5 | 20.25 | | 16 | 4 | 18 | 1 | 4:3 | 9.00 | | 18 | 3 | 12 | 5.5 | -2.5 | 6.25 | | N = 8 | | | 5.5 | $\Sigma D = 0$ | $\Sigma D^2 = 114$ | In this question, the cases of equal rank are two, one for X series and other for series. Hence $\frac{1}{12}(m^3 - m)$ would be added for two times in ΣD^2 . Here, number 10 is repeated twice in series X and number 12 is repeated with series Y. Therefore, in both X and Y, m = 2. $$R=1-\frac{6\left[\Sigma D^{2}+\frac{1}{12}(m^{3}-m)+\frac{1}{12}(m^{3}-m)\right]}{N^{3}-N}$$ $-\frac{6[114+\frac{1}{12}(2^3-2)+\frac{1}{12}(2^3-2)]}{8^3-8}$ $=1 - \frac{6[114 + \frac{1}{12}(6) + \frac{1}{12}(6)]}{512 - 8} = 1 - \frac{6[114 + 0.5 + 0.5]}{504}$ $=1 - \frac{6[115]}{504} = 1 - \frac{690}{504} = 1 - 1.369 = -0.369$ Example 36. Calculate coefficient of correlation by means of ranking method from the following data: | - C - TITL - C - C - L - L - L - L - L - L - L - | | | | | | | | |--|-----|-----|-----|-----|-----|-----|-------| | Y: 80 | 120 | 160 | 170 | 130 | 200 | 210 | 130 . | Calculation of Rank Coefficient of Correlation | | | | - Correlation | | | | | | |------------|------------------|-------|----------------|--------------------------|----------------------|--|--|--| | mid X port | . R ₁ | Y | R ₂ | $\mathbf{D} = R_1 - R_2$ |
D^2 | | | | | 40 | 1 8 a f t | 80 | 8 | 0 | 0 | | | | | 50 | 6.5 | 120 | 7 | -0.5 | 0.25 | | | | | 60 | 4 1 | 160 | 4 | 0 | 0 | | | | | 60 | 4 | 170 | 3 | 1 | 1 | | | | | 80. | 1.1 | 130 | 53 | -4.5 | 20.25 | | | | | 50 | 6.5 | 200 | 2 | 4.5 | 20.25 | | | | | 70 | 2. | 210 | 1 | 1 | 1 | | | | | 60) | 4 . | . 130 | 5.5 | -1.5 | 2.25 | | | | | N = 8 | | | | ΣD=0 | $\Sigma D^2 = 45.00$ | | | | In this question in X series, the values 60 and 50 are repeated thrice and twice. The average rank for the value 60 is 4 (3 + 4 + 5 + 3) while for the value 50 it is 6.5 (6 + 7 + 2). In both the cases, the correlation factor will be $\frac{1}{12}(3^3 - 3)$ and $\frac{1}{12}(2^3 - 2)$. In series Y, the 130 is repeated twice. The average rank for the value 130 is 5.5 (5+6+2). In this case, correction factor will be $\frac{1}{12}(2^3 - 2)$. Applying the formula, $$R = 1 - \frac{6[\Sigma D^2 + \frac{1}{12}(m_1^3 - m_1) + \frac{1}{12}(m_2^3 - m_2) + \frac{1}{12}(m_3^3 - m_3)]}{(N^3 - N)}$$ $$\Sigma D^2 = 45$$, $m_1 = 3$, $m_2 = 2$, $m_3 = 2$, $N = 8$ By substituting values in the above formula, we get $$R = 1 - \frac{6[45 + \frac{1}{12}(3^3 - 3) + \frac{1}{12}(2^3 - 2) + \frac{1}{12}(2^3 - 2)]}{8(8^2 - 1)}$$ $$= 1 - \frac{6(45 + 2 + 0.5 + 0.5)}{8(63)} = 1 - \frac{6(48)}{504} = 1 - \frac{288}{504}$$ $$= 1 - 0.571 = 0.429$$ # IMPORTANT TYPICAL EXAMPLES Example 37. The ranks of the same 8 students in tests in Mathematics and Statistics were as follows the two numbers within brackets denoting the ranks of the same students in Mathematics and Statistics respectively: - (ii) What does the value of the coefficient obtained indicates? - (iii) If you have found out Karl Pearson's simple coefficient of correlation between the ranks of these 16 students. Would your results have been the same as obtained in (i) or any different? #### (i) Solution: ### Calculation of Rank Correlation Coefficient | Calci | HAUOUDI KAHK CUL | CIMITON COUNTY | 45 1000 | |----------------|---------------------|--------------------------|-------------------| | Ranks in Maths | Ranks in Statistics | $D=R_1-R_2'$ | D ² | | 1 | 4 | · _3_ | 9 | | . 2 | 2 | 0 | 0 | | 3 | 1 | +2 | 4 | | 4 | 6 | 7 W -2 (1256) 8 | 4 | | 5 | 8 | ুট <u>৯3</u> সমান মনু ত | 9 | | 6 | 3 | +3 rt rt s4 | 9 | | 7 | 5 | +2 | 4 | | 8 | 7 | +1 | 1 | | N = 8 | | The second second second | $\Sigma D^2 = 40$ | Applying the formula $$R = 1 - \frac{6 \Sigma D^2}{N^3 - N} = 1 - \frac{6 \times 40}{8^3 - 8} = 1 - \frac{240}{504}$$ $$= \frac{504 - 240}{504} = \frac{264}{504} = +0.523$$ (ii) The value of rank correlation coefficient indicates that there is moderate degree of positive correlation. #### Calculation of Karl Pearson's Coefficient of Correlation | Ranks in
Maths
(X) | A = 4 dx | dx ² | Ranks in
Statistics
(Y) | A = 4
dy | dy ² | dx dy | |--------------------------|-----------------|--------------------|-------------------------------|-----------------|--------------------|-------------------| | 1 | -3 | 9 | 4 | .0 | 0 . | 0 | | 2 | -2 | 4 | 2 | -2. | - 4 | 4 | | 3 | -1 | 1 | 1 | -3 | 9 | 3 | | 4 = A | 0 | 0 | 6 | +2 | 4 | 0 | | 5 | +1 | 11 | - 8 | +4 | 16 | 4 | | 6 | +2 | 4 | 3 | · -1 | 1 | -2 | | 7 | +3 | 9 | 5 | +1 | i | 3 | | . 8 | +4 | 16 | 7 | +3 | 9 | 12 | | N = 8 | $\Sigma dx = 4$ | $\Sigma dx^2 = 44$ | | $\Sigma dy = 4$ | $\Sigma dy^2 = 44$ | $\Sigma dxdy = 2$ | Applying the formula $$r = \frac{N \cdot \Sigma dxdy - \Sigma dx \cdot \Sigma dy}{\sqrt{N \cdot \Sigma dx^2 - (\Sigma dx)^2} \sqrt{N \cdot \Sigma dy^2 - (\Sigma dy)^2}}$$ $$= \frac{8 \times 24 - (4)(4)}{\sqrt{8 \times 44 - (4)^2} \sqrt{8 \times 44 - (4)^2}}$$ $$= \frac{192 - 16}{\sqrt{336} \sqrt{336}} = \frac{176}{336} = 0.523$$ It is evident that the value of correlation coefficient computed by using Karl Pearson is the same as obtained by rank correlation method. The reason is that when the ranks of the students are not repeated, then the two methods give the Example 38. Calculate rank correlation coefficient from the following data: | Serial No.: | 1 | 2 | 3 | 4 | 5 | 6 | 71 | 8 | 9 | 10 | |------------------|----|---|----|----|----|---|----|----|----|----| | Rank Difference: | -2 | ? | -1 | +3 | +2 | 0 | -4 | +3 | +3 | -2 | Correlation The total of rank differences (ΣD) is always equal to zero and on this base the missing rank difference will be calculated. Let the missing item be 'a'. As $$\Sigma D = 0 \Rightarrow -2 + a - 1 + 3 + 2 + 0 - 4 + 3 + 3 - 2 = 0$$ $$a=-2$$ | a Coofficient of Russia | | |-------------------------|--| | Rank Difference | D^2 | | 2 | 4 | | 2 | 4 | | 1 | 1 10 | | +3 | 9 | | | 4 | | | . 0 | | 4 | 16 | | +3 | 9 | | | 9 | | | 4 | | $\Sigma D = 0$ | $\Sigma D^2 = 60$ | | | 2
-2
-2
-1
+3
+2
0
-4
+3
+3
+3
-2 | $$R = 1 - \frac{6 \Sigma D^2}{N^3 - N} = 1 - \frac{6 \times 60}{10^3 - 10}$$ $$= 1 - \frac{360}{990} = 1 - 0.364 = +0.636$$ Example 39. The coefficient of rank correlation of marks obtained by 10 students in English and The confliction of rain conflictation of that the difference in rais in two subjects obtained by one of the students was wrongly taken as 3 instead of 1. Find the correct coefficient of rank correlation. Solution: Given, R = 0.5, N = 10, Incorrect difference of ranks (D) = 3 Correct difference of ranks (D) = 7 We know that: $$R = 1 - \frac{6 \Sigma D^2}{N^3 - N}$$ $$0.5 = 1 - \frac{6 \Sigma D^2}{10^3 - 10}$$ $$0.5 = 1 - \frac{6 \Sigma D^2}{990}$$ $$0.5 = 1 - \frac{6 \Sigma D^2}{990}$$ $$1 - 0.5 = 0.5$$ \Rightarrow Incorrected $\Sigma D^2 = 82.5$ Corrected $$\sum D^2 = 82.5$$ – (Incorrect value)² + (Correct value)² = $82.5 - 3^2 + 7^2 = 122.5$ Corrected Coefficient of Rank Correlation (R) = $1 - \frac{6 \Sigma D^2}{1 D^2}{1$ $$=1 - \frac{6 \times 122.5}{10^3 - 10} = 1 - \frac{735}{990} = 0.258$$ Thus, the correct value of rank correlation coefficient is 0.258. Example 40. The rank correlation coefficient between marks obtained by some students in 'Statistics' and 'Accountancy' is found to be 0.8. If the total of squares of rank differences is 33, find the number of students. Given, R = 0.8, $\Sigma D^2 = 33$ Now, $$R = 1 - \frac{6 \Sigma D^2}{N^3 - N}$$ $$\frac{198}{N^3 - N} = 1 - 0.8 = 0.2$$ $$\Rightarrow N^3 - N = \frac{198}{0.2} = 990$$ $$N(N^2-1)=990$$ [: $a^2-b^2=(a+b)(a-b)$] $N(N+1)(N-1)=990$ $$(N-1)(N)(N+1)=9\times10\times11$$ $$(N)(N+1)=9 \times 10 \times 11$$ Comparing both sides, we get: $$N-1=9$$ $$\Rightarrow N=10$$ Example 41. The rank correlation coefficient between marks obtained by 10 students in Mathematics and Economics was found to be 0.5. Find the sum of squares of differences of ranks. Solution: Foliation: Given, $$R = 0.5$$, $N = 10$ Now, $R = 1 - \frac{6 \Sigma D^2}{1 - \frac{1}{2}}$ $$\frac{6\Sigma D^2}{N^3-N}=1-R$$ $$\frac{6\Sigma D^2}{10^3 - 10} = 1 - 0.5 = 0.5$$ $$6\Sigma D^2 = 0.5 \times 990$$ $$6\Sigma D^2 = 0.5 \times 990$$ $$\Sigma D^2 = \frac{0.5 \times 990}{6} = 82.5$$ ▶ Merits and Demerits of Rank Correlation Method rits (1) This method is simple to understand and easy to apply as compared to Karl Per (1) This method is simple to understand and easy to apply as compared to Karl Per (1) This method is simple to understand and easy to apply as compared to Karl Per (1) This method is simple to understand and easy to apply as compared to Karl Per (1) This method is simple to understand and easy to apply as compared to Karl Per (1) This method is simple to understand and easy to apply as compared to Karl Per (1) This method is simple to understand and easy to apply as compared to Karl Per (1) This method is simple to understand and easy to apply as compared to Karl Per (1) This method is simple to understand and easy to apply as compared to Karl Per (1) This method is simple to understand and easy to apply as compared to Karl Per (1) This method is simple to understand and easy to apply as compared to the compare method. When the data are of qualitative nature like beauty, honesty, intelligence, etc., this method to be employed. only method to be employed. (3) When we are given the ranks and not the actual data, this method can be usefully employed. merits (1) This method cannot be used for finding correlation in a grouped frequency distribution. (1) This method cannot be used 101, including the calculations become quite tedious and require. (2) When the number of items exceed 30, the calculations become quite tedious and require. lot of time. ## **EXERCISE 1.9** 1. Ten commerce graduates appeared before a selection board consisting of two members Ten commerce graduates appeared solder in a certain bank. If the rank order of each of the members is given below, find out the coefficient of rank correlation: | members is given b | | 6 | 5 | 10 | 3 | 2 | 4 | 9 | 7 | 8 | |--------------------|---|---|---|----|---|----|---|-----|--------|-------| | Rank order by X: | 1 | 0 | - | | - | 10 | 2 | 1.2 | 6 | 0 | | Rank order by Y: | 3 | 5 | 8 | 4 | 7 | 10 | | | 0 | , | | Kank order by 2. | _ | | | | | | | ſΑ | ns. R= | -0.21 | 2. Ten competitors in an intelligence test are ranked by three judges in the following order. 10 8 2 4 6 Judge 1: 7 7 6 2 10 5 Judge II: 9 10 5 Judge III: 6 8 7 2 Use the rank correlation coefficient to determine: - (i) Which pair of judges agree the most? - (ii) Which pair of judges disagree the most? [Ans. $R_{12} = 0.71$, $R_{23} = 0.467$, $R_{13} = 0.36$] (i) Ist and IIIrd (ii) IInd and IIId 3. Find out the coefficient of correlation between X and Y by the method of rank difference 75. 81 88 80 70 60 142 120 130 140 130 115 110 [Ans. R = 0.7 Find out the coefficient of correlation between X and Y by the method of rank difference in the coefficient of correlation between X and Y by the method of rank difference in the coefficient of coeff X: 46 36 56 39 58 45 54 Y: 30 60 50 70 40 (iii) CONCURRENT DEVIATION METHOD 30 70 [Ans. R 5. Find the rank correlation coefficient from the following marks awarded by
the examiners | in statistics. | | | | | | | | | | | | |------------------------------|----|----|----|----|----|----|-----|----|----|----|----| | R. Nos.: | 1 | 2 | 3 | 4 | 5 | 6 | . 7 | 8 | 9 | 10 | 11 | | Marks Awarded by Examiner A: | 24 | 29 | 19 | 14 | 30 | 19 | 27 | 30 | 20 | 28 | 11 | | Marks Awarded by Examiner B: | 37 | 35 | 16 | 26 | 23 | 27 | 19 | 20 | 16 | 11 | 21 | | Marks Awarded by Examiner C: | 30 | 28 | 20 | 25 | 25 | 30 | 20 | 24 | 10 | 11 | 21 | | Marks Awar doub | | _ | - | | | 30 | 20 | 24 | 22 | 29 | 15 | [Ans. $R_{AB} = -0.027$, $R_{BC} = 0.5272$, $R_{AC} = 0.26136$] 6. From the following data, calculate Spearman's coefficient of correlation: | X: | 80 | 78 | 75 | 75 | 68 | 67 | 60 | 59 | |----|----|----|----|----|----|----|----|----| | Y: | 12 | 13 | 14 | 14 | 14 | 16 | 15 | 17 | [Ans. R = -0.928] The ranks of the same 16 students in tests in Mathematics and Statistics were as follows, the two numbers within brackets denoting the ranks of the same students in Mathematics and Statistics respectively: (1, 1), (2, 10), (3, 3), (4, 4), (5, 5), (6, 7), (7, 2), (8, 6), (9, 8), (10, 11), (11, 15), (12, 9), (13, 14), (14, 12), (15, 16), (16, 13). - (i) Calculate the rank correlation for proficiencies of this group of Math's and Statistics. - (ii) What does the value of the coefficient obtained indicates? - (iii) If you have found out Karl Pearson's simple coefficient of correlation between the ranks of these 16 students would your results have been the same as obtained in (a) or [Ans. R = 0.8, r = 0.8] any difference? 8. From the following data, calculate Spearman's coefficient of correlation: | Sr. No.: | 1 | 2 | 3 | 4 | 5 | 6 | 7. | 8 | 9 | - 10 | |-------------------|----|----|----|----|----|---|----|----|----|------| | Rank differences: | -2 | -4 | -1 | +3 | +2 | 0 | ? | +3 | +3 | -2 | [Ans. R = +0.636] 9. The coefficient of rank correlation between debenture prices and share prices is found to be 0.143. If the sum of squares of the difference in ranks is given to be 48, find the value of N. Concurrent deviation method of determining the correlation is extremely simple method. In this nethod, correlation is determined on the basis of direction of the deviations. Under this method, aking into Asking into consideration the direction of deviations, they are assigned (+) or (-) or (0) signs. The following the direction of deviations, they are assigned (+) or (-) or (0) signs. The following steps are taken to find out correlation in this method: (1) Under this method, whatever the series X and Y are to be studied for correlation, each item of series is now than its preceding value, then its series is compared with its preceding item. If the value is more than its preceding value, then its viation is assigned (i) series is compared with its preceding item. If the value is more than (a) sign and if equal to the riation is assigned (+) sign, if less than preceding value then (-) sign and if equal to the preceeding value then (0) sign is assigned. After this, third item is compared with the second, four tiem is compared with the third and this process goes on till the deviations of all items in a series item is compared with the third and this process goes on till the deviations of all items in a series item is compared with the third and this process goes on till the deviations of all items in a series item is compared with the third and this process goes on till the deviations of all items in a series item is compared with the second, four times are the second of m is compared with the control of th (الم) and ueviations (الم) مالة الم المنافعة (الم) and ((الم) and (() a - (+) (+) = +, - (-) (-) = +, - (0) (0) = +, - (-).(+) = -, - (+) (-) = -, - (0) (-)=-, - (-) (0) = -, - (0) (+)=- (0) (+)= (3) Summing the positive dxyly signs, their number is counted. This is known as the number of (3) Summing the positive day signs, their number is counted. This is known as the number of concurrent deviations. It is denoted by the sign 'C'. The deviations with minus signs are excluded from the computation. They are ignored. If all the deviations in a series have minus signs, then number of concurrent deviations will be zero i.e. C=0. (4) Finally, the following formula is used for determining coefficient of concurrent deviation $$r_c = \pm \sqrt{\pm \left(\frac{2C-n}{n}\right)}$$ Here, r_c =Coefficient of concurrent deviations; C = Number of concurrent deviations or Number of positive signs obtained after multiplying dx with dy; *n = Number of pairs of observations minus one = N-1. Note: In this formula ± sign is used both inside and outside the radical sign. If the value of (2C-n) is positive, then (+) sign will be used both inside and outside the radical sign. If the value of (2C-n) is positive, then (+) sign will be used both inside and outside the radical sign because in such case correlation will be positive. On the contrary, if (2C-n) has negative sign, then minus sign will be used both inside and outside the radical sign because correlation will be negative. The value of coefficient of concurrent deviation always lies between -1 and +1. The following examples make the procedure of concurrent deviation method clear. | * | | | - III | deviatio | n irom | the foll | owing o | lata. | - | |----|------|------|-------|----------|--------|----------|---|-------|-------| | X: | 85 | 91 | 56 | 72 | 95 | 76 | 89 | 51 | 59 | | Y: | 18.3 | 20.0 | | | - | 70 | *************************************** | | 100 1 | | | 10.5 | 20.8 | 16.9 | 15.7 | 102 | 101 | 175 | 114.9 | 18.9 | ^{*} Since there is no sign for the first value of X and Y, n is always taken to be one less than the actual number of observations. Correlation | X | Deviation signs (dx) | Υ . | Deviation signs (dy) | dxdy | |------------------|---------------------------|------------------|-------------------------|----------------| | 85 | | 18.3 | (49) | | | 91 | + | 20.8 | | | | 56 | The region of | 16.9 | | + | | 72 | + | 15.7 | | + | | 95 | + | 19.2 | Strategic Contraction | -,- | | 76 | The state of the state of | 18.1 | A THE SEC. OF | + | | 89 | + | 17.5 | The same of the same of | + | | 51 | | 14.9 | 9 00 1 4 | + | | 59 | W +01 | 18.9 | + | + | | 90 | + ' | 15.4 | - | | | n = (10 - 1) = 9 | other-plant through | h = (10 - 1) = 9 | | C=6 | 57 Here, 2C-n, i.e., $2 \times 6 - 9 = 3$ is positive, therefore we use positive (+) sign in the formula. Thus, $$r_c = \pm \sqrt{\pm \frac{(2C - n)}{n}}$$ $r_c = \pm \sqrt{\pm \frac{(2 \times 6 - 9)}{9}} = + \sqrt{\pm \frac{3}{9}} = 0.577$ Thus, there is positive correlation between X and Y. Example 43. Compute the coefficient of correlation for the following data by the concurrent deviation method: | Year: | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | |---------|------|------|------|------|------|------|------| | Demand: | 150 | 154 | 16u | 172 | 160 | 165 | 180 | | Price: | 200 | 180 | 170 | 160 | 190 | 180 | 172 | Solution: | Year Year | Demand
X | Deviation signs (dx) | Price
Y | Deviation signs (dy) | dxdy | |-----------|-------------|----------------------|------------|----------------------|------| | 1971 | 150 | Taranta and | 200 | | | | 1972 | 154 | + | 180 | -3 | - | | 1973 | 160 | + | 170 | | - | | 1074 | 172 | + . | 160 | _ | | | 1075 | 160 | | 190 | + | | | 1976 | 165 | + | 180 | - | | | 1977 | 180 | + | 172 | | | | =(7-1)=6 | | | | | C=(| Here, 2C-n, i.e., $2\times0-6=-6$ is negative, therefore we use negative (-) sign in formula. Thus, Here, $$2C - n_h L^{E_{\sigma_h}} 2^{-C_{\sigma_h}}$$ formula. Thus, $$r_e = \pm \sqrt{\pm \frac{(2C - n)}{n}}$$ $$(2 \times 0 - 6) = -\sqrt{-(-1)} = -1$$ There is perfect negative correlation between price and demand. There is perfect negative contention by concurrent deviation method from the Example 44. Calculate coefficient of correlation by concurrent deviation method from the Calculate Coefficient of | following | ig data: | | 126 | 118 | 118 | 121 | 125 | 125 | 131 | 135 | |-----------|----------|-----|-----|-----|-----|-----|-----|-----|-----|------| | X | 112 | 125 | _ | 104 | 98 | 96 | 97 | 97 | 95 | . 90 | | Y | 106 | 102 | 102 | 10. | | | - D | 2 | | - | Solution: # Calculation of Coefficient of Concurrent Deviation | X | Deviation signs (dx) | Y | Deviation signs (dy) | dxdy | |----------------|----------------------|-----|----------------------|------| | 112 | , , , | 106 | A | 1 | | 125 | +" | 102 | 10.5 (1.4) | _ | | 126 | + | 102 | 0 . | - | | 118 | - | 104 | + | | | 118 | 0 | 98 | × = - | - | | 121 | + | 96 | | 7019 | | 125 | + | 97 | + + | + | | 125 | 0 | 97 | 0 | * .+ | | 131 | + | 95 | | | | 135 | + | 90 | 1 - Sart | | | n = 10 - 1 = 9 | | | of guilage animan | C=2 | Here, 2C-n, i.e., $2\times 2-9=-5$ is negative, therefore we use negative (-) sign in the formula. Thus $$r_c = \pm \sqrt{\pm \frac{(2C - n)}{n}}; C = 2, n = 9$$ $$= \pm \sqrt{\pm \frac{(2 \times 2 - 9)}{9}} = -\sqrt{-\left(\frac{-5}{9}\right)}$$ $$= -\sqrt{0.5556} = -0.75$$ Thus, there is high degree of negative correlation between X and Y. IMPORTANT TYPICAL EXAMPLE Example 45. During the first 9 months of the financial year 1999-2000, the following changes in the price index of shares A and B were recorded as below. Calculate the coefficient of correlation by a suitable method: Changes over the previous month | Month: | April | May | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | |----------|-------|-----|------|------|------|-------|------|------|------| | Share A: | -4 | -3 | -4 | 0 | +3 | +4 | +2 | -3 | +3 | | Share B: | +3 | -3 | -2 | -4 | -3 | -4 | 0 | -2 | -3 | in: In this question changes are given in comparison to preceding month and in such a case only concurrent deviation method may be used. The value of 'C' will be calculated on the case of multiplication of signs only (very constitution). the basis of multiplication of signs only (values will be ignored) #### Calculation of Coefficient of Correlation |
Months | Share A | Deviation signs (dx) | Share B | Deviation signs (dy) | dxdy | |-----------|-----------|----------------------|---------|----------------------|---------| | April | -4 | | +3 | + | | | May | -3 | | -3 | | + | | June | -4 | | -2 | 11.5 | +. | | July . | 0 | . O ₁ | -4 | - | - | | August | +3 | 7 12 + 1 | -3 | | - 1 - 1 | | September | +4 | + | -4 | 1. C | _ | | October | .+2 | + | 0 | 0 | _ | | November | -3 | - | -2 | - | + | | December | +3 | Compt. of | -3 | 950 | بترويا | | | n = 9 | | ķ- | | C=3 | Applying the formula, $$r_c = \pm \sqrt{\pm \frac{(2C-n)}{n}}$$ Here, C = 3, n = 9 $$r_c = \pm \sqrt{\pm \frac{(2 \times 3 - 9)}{9}}$$ $$= \pm \sqrt{\pm \frac{(-3)}{9}} = -\sqrt{-\frac{(-3)}{9}} = -\sqrt{0.33} = -0.574$$ Generally, the value of 'n' is written on the basis of N-1, but in the above example, it will not be applicable because deviation sign of first item is also known. ▶ Merits and Demerits of Concurrent Deviation Method - (1) This method is simple to understand. (2) Its computations involve less time. (2) Its computations involve less time. (3) When the number of items is very large, we can use this method to have a quick idea about the computation. - (4) This method is useful in studying short term fluctuations. - nerits (1) By applying this method, we can get an idea only about the direction of correlation. Demerits (1) by approximations of the state st - (3) This method is less accurate than Karl Pearson's method. ### EXERCISE 1.10 1. Calculate the coefficent of correlation by the method of concurrent deviation from the | ollowing | g data. | | | | The same | | 40 | 00 | | |----------|---------|------|----|------|----------|------|------|-------|----------| | ** | 65 | 50 | 35 | 55 | 60 | 25 | 45 | 80 | 85 | | X: | 0.5 | - 50 | _ | - 00 | 70 | 20 | 40 | 65 | 80 | | Y: | 45 | 35 | 55 | 40 | 70 | . 30 | 40 9 | . 03 | _ | | | | | | | | | | [Ans. | r = 0.70 | exefficient of concurrent deviation from the following data: | X: | 65 | 40 | 35 | 75 | 63 | 80 | 35 | 20 | - 80 | 60 | L | |----|----|----|----|----|----|----|----|----|------|----|---| | V. | 60 | 55 | 50 | 56 | 30 | 70 | 40 | 35 | 80 | 75 | | 3. Find coefficient of correlation by concurrent deviation method of the following data: | Students: | A | В | C | D | E | F | G | |----------------------|----|----|----|----|----|------|------| | Marks in Economics: | 70 | 45 | 40 | 80 | 68 | . 85 | 40 2 | | Marks in Statistics: | 65 | 60 | 55 | 61 | 35 | 75 | 45 4 | Obtain a suitable measure of correlation from the following data regarding changes in prix index of two shares A and P during data. index of two shares A and B during the year: | | Τ. | Changes over the Previous Month | | | | | | | | | |-----------|----|---------------------------------|----|----|----|----|----|-----|-----|-------| | Shares A: | 1 | F | M | A | М | J | J | A 1 | S | 0 N | | Shares B: | 74 | +3 | +2 | -1 | -3 | +4 | -5 | +1 | +2 | -7 +2 | | ounits D. | -2 | +5 | +3 | -2 | -1 | -3 | +4 | -1 | 113 | +6 +4 | | Find | out me coe. | | | | - Luit | 1 by the | method | of concu | rrent dev | riation: | |--------|-------------|----|-----|------|--------|----------|--------|----------|-----------|----------| | , _ v. | 26 | 30 | 30 | 24 | 29 | 25 · | 25 | 22 | | | | A. | | 59 | 55 | 69 | (2 | | 23 | ; 32 | 32 | 38 | | Y: | 62 | 36 | .55 | - 08 | 0/ | 64 | 64 | 75 | 81 | 78 | [Ans. $r_c = -0.5771$ 61 # COEFFICIENT OF DETERMINATION The concept of coefficient of determination is used for the interpretation of coefficient of The contest of coefficients of coefficients. The coefficient of determination correlation and companies of the coefficient of correlation. It is denoted by r². The coefficient of is defined as the square of the coefficient of in the dependent variable Y that can be explained in terms of the independent variable X. If correlation coefficient (r) is 0.9 then coefficient of terms of the independent variable X. If correlation coefficient (r) is 0.9 then coefficient of determination (r^2) will be 0.81 which implies that 81% of the total variations in the dependent variable (Y) occurs due to the independent variable (X). The remaining 19% variation occurs due to variable (1) occurs due to outside or external factors. Thus, the coefficient of determination is defined as the ratio of the explained variance to the total variance. In terms of formula: coefficient of Determination $$(r^2) = \frac{\text{Explained Variance}}{\text{Total Variance}}$$ Coefficient of Non-Determination: By dividing the unexplained variation by the total variation, the coefficient of non-determination can be determined. Assuming the total of variation as 1, then he coefficient of determination can be determined by subtracting the coefficient of determination from 1. It is denoted by K2. In terms of formula, Coefficient of non-determination $(K^2) = 1 - r^2$ In the above example $r^2 = 0.81$, then the coefficient of non-determination will be 0.19 (1–0.81). indicates that 19% of the variations are due to other factors. Coefficient of Alientation = $$\sqrt{1-r^2}$$ Generally, the coefficient of determination (r)2 is widely used in practice. xample 46. The coefficient of correlation (r) between consumption expenditure (C) and disposable income (Y) in a study was found to be +0.8. What percentage of variation in C are explained by variation in Y? Here, $r = 0.8 \Rightarrow r^2 = (0.8)^2 = 0.64$. It means that 0.64 or 64% of the variation in consumption expenditure are explained by variation in income. uple 47. Is it true that a correlation coefficient (r) = 0.8 indicates a relationship twice as close as r = 0.4? The statement can be verified by using coefficient of determination, i.e., r^2 . Now, Ist case: $r^2 = (0.8)^2 = 0.64$ 2nd case: $r^2 = (0.4)^2 = 0.16$ 63 This shows that 64% of the variation is explained in the first case and 16% of the variation is explained in the second case. Hence r = 0.8 does not indicate the second case. This shows that 64% of the variation is explained in the first case and 16% of the variation is explained in the second case. Hence r=0.8 does not indicate relationship twice as close as r=0.4. relationship twice as close as r = 0.00. Frample 48. A correlation coefficient of 0.5 implies that 50% of the data are explained. Comment of the conficient of 0.5 implies that 50% of the data are explained. Comment of the conficient of determination (r^2) show the percentage of variation in rExample 48. A correlation coefficient of (r^2) show the percentage of variation in Y which are Coefficient of determination (r^2) show the percentage of variation in Y which are Liniard by the variation in X. explained by the variation in X. $r^2 = (0.5)^2 = 0.25$ Now, Thus, the coefficient of correlation of 0.5 shows that 25% of the data are explained by χ Thus, the coefficient of correlation in Y is due to X and the remaining various. Thus, the coefficient of correlation of 0.3 and 0 and 2 \times 3 and 0 and are explained by χ in other words, 25% of the variation in Y is due to X and the remaining variation in the forther due to other ractions. Example 49. The data relating to import price (X) and import quantity (Y) in respect of a given | commodity are as u | 1975 | '76 | '77 | '78 | '79 | '80 | '81 | '82 | '83 | *84 | |--------------------|------|------------|------------|------------|-----|------------|------------|-----|------------|-----| | Year: | 1973 | 3 | 6 | 5 | . 4 | 3 | 5 | 7 | . 8 | 7 | | Import price : | - | 5 | 4 | 5 | 7 | 10 | 9 | 7 | 8 | 9 | | Quantity imported: | 0 | , | | | _ | | | | _ | _ | - (i) Calculate Karl Pearson's coefficient of correlation. - (ii) Find the percentage of variation in quantity imported that is explained by the variation in the import price | х | $\overline{X} = \frac{5}{X}$ | x ² | Y | $\overline{Y} = \frac{7}{Y}$ $Y - \overline{Y}$ | y ² | xy | |------------------|------------------------------|-------------------|-----------------|---|-------------------|------| | 2 | -3 | 9 | 6 | -19.10 | 1. | . 3 | | 3 | -2 | 4 | 5 5 | -2 | 4 | - 4 | | 6 | . +l | -1 | 4 | -3 1 | 9 | 30.0 | | 5 | 0 | 0 | 5 | -2 | 4 | _ | | 4 | -1 | 1 | 7 | 0 | 0 | | | 3 | -2 | 4 | 10 | +3 | 9. | | | 5 | 0 | 0 | 9 | erro +2 m fro | 4 | _ | | 7 | +2 | 4 | 7 | 0 (| 0 | 1106 | | 8 | +3 | 9 | 8 | +1-34 | con-1. | _ | | 7 | +2 | 4 | 9 | +2 | 4 | Σr | | N = 10 $2X = 50$ | $\Sigma x = 0$ | $\Sigma x^2 = 36$ | $\Sigma Y = 70$ | $\Sigma y = 0$ | $\Sigma y^2 = 36$ | 2 | $$\bar{X} = \frac{\sum X}{N} = \frac{50}{10} = 5$$ $\bar{Y} = \frac{\sum Y}{N} = \frac{70}{10} = 7$ Since the actual means of X and Y are whole numbers, we should take deviations from actual means of X and Y to simplify the calculations. realists of X and Y to simplify the calculations. $$r = \frac{\sum xy}{\sqrt{\sum x^2 \times \sum y^2}} = \frac{5}{\sqrt{36}} = \frac{5}{\sqrt{36}} = 0.1389$$ (ii) Here, r = 0.1389 \Rightarrow $r^2 = \text{coefficient of determination} = (0.1389)^2 = 0.0192 \text{ or } 1.92\%$ It means that 1.92% of the variations in quantity imported are explained by the variations in the import price. # EXERCISE 1.11 - 1. The relationship between consumption (C) and disposable income (Y) is expressed by C = a + by. In this context, explain what the value of r^2 measures. - "A correlation coefficient of 0.3 implies that 30% of the data are explained." Comment. - A correlation coefficient of 0.6 indicates a relationship twice as close to as where r = 0.3. | Quantity (Y): | 69 | 76 | 52 | 56 | 57 | 77 | 58 | 55 | 67 | 63 | 72 | 64 | |---------------|----|----|----|----|----|----|----|----|----|----|----|----| | Price (X): | 9 | 12 | 6 | 10 | 9 | 10 | 7 | 8 | 12 | 6 | 11 | 8 | - (i) Calculate the Karl Pearson's coefficient of correlation between price and quantity. - (ii) Find the percentage of variation in quantity demanded that is explained by variation in the
price of the commodity. [Ans. (i) r = 0.645, (ii) 42%] - Calculate from the given information: | X: | 45 | 70 | 65 | 30 | 90 | 40 | 50 | 75 | 75 | 85 | 60 | |------|----|----|----|----|----|----|----|----|----|----|----| | Y: . | 35 | 90 | 70 | 40 | 95 | 40 | 60 | 80 | 80 | 80 | 50 | - (i) Karl Pearson's coefficient of correlation. - (ii) Probable Error and show whether 'r' is significant or not? - (iii) Coefficient of non-determination and coefficient of alientation. [Ans. (i) r = 0.904, (ii) P.E. = 0.0390, r is significant, (iii) $1 - r^2 = 0.183$, 0.4277] # MISCELLANEOUS SOLVED EXAMPLES | i) ring out th | e coefficient | of correlation | n between X and | a Y from the f | onowing data. | |----------------|---------------|----------------|-----------------|----------------|---------------| | X: | 2 | 2 | 4 | 5 | 5 | | Y: | 6 | 3 | 2 | 6 | •4 | (ii) Multiply each X value by 2 and add 3. Multiply each value of Y by 5 and subtract 4. Find the correlation coefficient between two new sets of values. Explain why do or do not obtain the same result as in (i). $\Sigma XY = 76$ $\Sigma Y^2 = 101$ $\Sigma Y = 21$ $$\sum \frac{\Sigma X^2 = 18}{N=5} \qquad \sum \frac{\Sigma X^2 = 74}{N \cdot \Sigma XY - \Sigma X \cdot \Sigma Y}$$ $$= \frac{N \cdot \Sigma XY - \Sigma X \cdot \Sigma Y}{\sqrt{N \cdot \Sigma X^2 - (\Sigma X)^2} \sqrt{N \cdot \Sigma Y^2 - (\Sigma Y)^2}} = \frac{5 \times 76 - 18 \times 21}{\sqrt{5 \times 74 - (18)^2} \sqrt{5 \times 101 - (21)^2}} = 0.036$$ white U and V as follows: # (ii) Let us define new variables U and V as follows: $$U = 2X + 3$$ and $V = 5Y - 4$ We now calculate the coefficient of correlation between two new sets of values | X | Y | U=2X+3 | V = 5Y - 4 | U^2 | V^2 | UV | |---|-----|-----------------|-----------------|--------------------|---------------------|-------| | 2 | 6 | 7 | 26 | 49 | 676 | 182 | | 2 | 3 | 7 | 11 | 49 | 121 | 77 | | 4 | 2 | 11 | 6 | 121 | 36/ | 66 | | 5 | 6 | 13 | 26 | 169 | 676 | 338 | | 5 | . 4 | 13 | 16 | 169 | 256 | 208 | | | | $\Sigma U = 51$ | $\Sigma V = 85$ | $\Sigma V^2 = 557$ | $\Sigma V^2 = 1765$ | ΣUV = | $$r = \frac{N \cdot \Sigma UV - \Sigma U \cdot \Sigma V}{\sqrt{N \cdot \Sigma U^2 - (\Sigma U)^2} \sqrt{N \cdot \Sigma V^2 - (\Sigma V)^2}}$$ $$= \frac{5 \times 871 - (51)(85)}{\sqrt{5 \times 557 - (51)^2} \sqrt{5 \times 1765 - (85)^2}}$$ $$= \frac{20}{\sqrt{184 \sqrt{1600}}}$$ $$= 0.036$$ = 0.036The value of ruv is the same as that of rxy. This is so because the coefficient is independent of the change of origin and scale and U and V are obtain from X and Y by change of origin and scale so that we have rxy and ruv. Example 51. Two variates X and Y when expressed as deviations from their respective means are given as follows: | | A STATE OF THE PARTY PAR | | | | | |----|--|----|---|----|----| | x: | 0 | -4 | 4 | -2 | 2 | | | 1 | 3 | 0 | | | | y: | 1 | , | ? | 0 | -1 | 65 Find the Karl Pearson Coefficient of correlation between them. In this question, one deviation in y series is missing. Let us denote the missing item by a. We know that the sum of deviations taken from mean is always zero. So, $$\Sigma y = 0$$ $\therefore (1) + (3) + a + (0) + (-1) = 0$ $3 + a = 0$ $\alpha = -3$ Thus the complete series is: | x: | 0 | 4 | 4 | -2 | 2 | |----|---|---|----|----|----| | v: | 1 | 3 | -3 | 0 | -1 | Now, we find the coefficient of correlation. ### Calculation of Coefficient of Correlation | x 21 8 | x ² | y | y ² | ху | |----------------|-------------------|----------------|-------------------|-------------------| | 0 | 0 | 1 | 1 | 0 | | -4 | 16 | 3 | 9 | -12 | | 4 | 16 | -3 | 9 | -12 | | -2 | 4 | 0 | 0 | 0 | | 2 | (k · · · 4 | / -I | 1 | -2 | | $\Sigma x = 0$ | $\Sigma x^2 = 40$ | $\Sigma y = 0$ | $\Sigma y^2 = 20$ | $\Sigma xy = -26$ | Applying the formula: $$r = \frac{\sum xy}{\sqrt{\sum x^2 \times \sum y^2}} = \frac{-26}{\sqrt{40 \times 20}}$$ $$= \frac{-26}{\sqrt{800}} = \frac{-26}{28.2843} = -0.9192$$ Example 52. The following table gives the distribution of production and also the relatively defective items among them, according to size groups. Find the correlation coefficient between size and defect in quality and its probable error. Is the value of 'r' | Similar Of Hot? | | | 17-18 | 18—19 | 19—20 | 20-21 | |-------------------------|-------|-------|-------|-------|-------|-------| | Size group: | 15—16 | 16—17 | | 360 | 100 | 300 | | No. of items: | 200 | 270 | 340 | | 120. | 114 | | No. of defective items: | 150 | 162 | 170 | 180 | 110 | - 12 | $[:: \Sigma a = Na]$ Solution: | Elico | Cal | 270 | 340 | 360 | 400 | | |-------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------|------------------------| | No. of items: | 150 | 162 | 170 ` | 180 | 180 | 300 | | No. of defective items: | $\frac{150}{200} \times 100$ =75 | $\frac{162}{270} \times 100$ =60 | $\frac{170}{340} \times 100$ =50 | $\frac{180}{360} \times 100$ =50 | $\frac{180}{400} \times 100$ | 114
300 ×100
≈38 | the mid value of the size group by | | A=18.5 | dx ² | . Y | A=50
dy | dy ² | dxdy | |---------------|----------------|--------------------|------------|------------------|---------------------|-----------------| | (MV) | dx | | 75 | 25 | 625 | -75 | | 15.5 | -3 | -4 | 60 | 10 | 100 | -20 | | 16.5 | -2 | 1 | 50 = A | . 0 | 0 | 0 | | 17.5 | -1 | 0 | 50 | 0 | 0 : | 0 | | 18.5 = A | ÷l | 1 | 45 | -5 | 25 | -5 | | 19.5 | +2 | 4 | 38 | -12 | 144 | -24 | | 20.5
N = 6 | $\sum dx = -3$ | $\Sigma dx^2 = 19$ | | $\Sigma dy = 18$ | $\Sigma dy^2 = 894$ | Σdxdy
= -124 | Applying the formula, $$r = \frac{N \cdot \Sigma dxdy - \Sigma dx \cdot \Sigma dy}{\sqrt{N \cdot \Sigma dx^2 - (\Sigma dx)^2} \sqrt{N \cdot \Sigma dy^2 - (\Sigma dy)^2}}$$ $$= \frac{6 \times (-124) - (-3)(18)}{\sqrt{6 \times 19 - (-3)^2} \sqrt{6 \times 894 - (18)^2}}$$ $$= \frac{-744 + 54}{\sqrt{114 - 9}\sqrt{5364 - 324}} = \frac{-690}{\sqrt{105}\sqrt{5040}} = \frac{-690}{727 \cdot 46}$$ $$= -0.948 \approx -0.95$$ Probable Error (P.E.) * $$PE = 0.6745 \times \frac{1 - r^2}{\sqrt{N}}$$ $$=0.6745 \times \left(\frac{1 - (-0.95)^2}{\sqrt{6}}\right)$$ $$=0.6745\times\frac{0.0975}{2.45}$$ = 0.027 Significance of 'r' $$\frac{|r|}{P.E.} = \frac{0.95}{0.027} = 35.18$$ $$|r| = 35.18 \ P.E.$$ As the value of |r| is more than 6 times the P.E., so 'r' is highly significant. Example 53. Calculate correlation coefficient from the following results: N = 10, $\Sigma X = 140$, $\Sigma Y = 150$ N = 10, $$\Sigma X = 140$$, $\Sigma Y = 150$ $\Sigma (X - 10)^2 = 180$, $\Sigma (Y - 15)^2 = 215$ $$\Sigma(X-10)^2 = 180, \ \Sigma(Y-15)^2 = 215$$ $$\Sigma(X-10)(Y-15)=60$$ For calculating correlation coefficient we need the values of ΣX^2 , ΣY^2 , ΣXY which we can determine from the values given: $$\Sigma (X - 10)^2 = \Sigma (X^2 + 100 - 20X) = \Sigma X^2 + \Sigma 100 - 20\Sigma X$$ = \Sigma X^2 + N \times 100 - 20\Sigma X $$= \Sigma X^2 + 1000 - 20 \times 140$$ $$= \Sigma X^2 + 1000 - 2800 = \Sigma X^2 - 1800$$ $$\Sigma X^2 - 1800 = 180 \Sigma X^2 = 1980$$ [: \Sigma (X-10)^2 = 180] $$\Sigma (Y - 15)^{2} = \Sigma (Y^{2} + 225 - 30Y) = \Sigma Y^{2} + \Sigma 225 - 30\Sigma Y$$ $$= \Sigma Y^{2} + N \times 225 - 30\Sigma Y$$ [: \Sigma a = $$= \sum Y^2 + N \times 225 - 30 \sum Y$$ $$= \sum Y^2 + 2250 - 30 \times 150$$ $$= \sum Y^2 + 2250 - 4500 = \sum Y^2 - 2250$$ $$\Sigma Y^2 - 2250 = 215$$ [: $\Sigma (Y - 15)^2 = 215$] $$\Sigma Y^2 = 2465$$ $$\Sigma(X-10)(Y-15) = \Sigma(XY-15X-10Y+150)$$ $$= \Sigma XY - 15\Sigma X - 10\Sigma Y + \Sigma 150$$ $$= \Sigma XY - 15\Sigma X - 10\Sigma Y + N \times 150$$ = \Sigma XY - 15 \times 140 - 10 \times 150 + 10 \times 150 $$= \Sigma XY - 15 \times 140 - 10 \times 150 + 10 \times 150$$ $$= \Sigma XY - 2100 - 1500 + 1500$$ $$= \Sigma XY - 2100$$ $$\Sigma XY - 2100 = 60$$ $$\Sigma XY = 2160$$ $$[:: \Sigma(X-10)(Y-15)=60]$$
Applying the formula, $$r = \frac{N.\Sigma XY - \Sigma X.\Sigma Y}{\sqrt{N.\Sigma X^2 - (\Sigma X)^2} \sqrt{N.\Sigma Y^2 - (\Sigma Y)^2}}$$ $$= \frac{10 \times 2160 - 140 \times 150}{\sqrt{10 \times 1980 - (140)^2} \sqrt{10 \times 2465 - (150)^2}}$$ $$= \frac{21600 - 21000}{\sqrt{19800 - 19600} \sqrt{24650 - 22500}}$$ $$= \frac{600}{\sqrt{200 \times 2150}} = \frac{600}{655.74} = +0.915$$ rean also be calculated in the following manner: $$\overline{X} = \frac{\Sigma X}{N} = \frac{140}{10} = 14, \overline{Y} = \frac{\Sigma Y}{N} = \frac{150}{10} = 15$$ $$\frac{\Sigma X}{N} = \frac{140}{10} = 14, \overline{Y} = \frac{\Sigma Y}{N} = \frac{150}{10} = 15$$ $$\frac{\Sigma X}{N} = \frac{100}{10} = 15$$ $$\frac{\Sigma X}{N} = \frac{100}{10} = 15$$ $\bar{X} = -10$ Thus, deviations $\Sigma(X - 10)$ and $\Sigma(Y - 15)$ are from assumed means $(A_x = 10 \text{ and } A_y = 15)$ $\Sigma(Y - 10) = \Sigma X - \Sigma 10 = \Sigma X - N \cdot 10 = 140 - 10 \times 10 = 40$ Thus, deviations $\Sigma(X - 10) = \Sigma X - \Sigma 10 = \Sigma X - N \cdot .10 = 140 - 10 \times 10 = 40$ Let, $\Sigma dx = \Sigma(X - 10) = \Sigma Y - \Sigma 15 = \Sigma Y - N \cdot .15 = 150 - 15 \cdot ...$ $\Sigma dx = \Sigma(X - 10) = \Sigma A - \Sigma 10 - \Sigma 1 - 10 \times 10 = 40$ $\Sigma dy = \Sigma(Y - 15) = \Sigma Y - \Sigma 15 = \Sigma Y - N \cdot 15 = 150 - 15 \times 10 = 0$ $\Sigma dy = \Sigma(Y - 15) = \Sigma Y - \Sigma 15 = \Sigma Y - N \cdot 15 = 150 - 15 \times 10 = 0$ Let, $$\Sigma dx = \Sigma(X - 15) = \Sigma Y - \Sigma 15 = \Sigma Y - N \cdot 13 = 130 - 13 \times 10 = 0$$ $\Sigma dy = \Sigma (Y - 15) = \Sigma Y - \Sigma 15 = \Sigma Y - N \cdot 13 = 130 - 13 \times 10 = 0$ $\Sigma dx dy = \Sigma (X - 10)(Y - 15) = 60, \Sigma dx^2 = 180, \Sigma dy^2 = 215$ (Given) Applying the formula, $$r = \frac{N. \Sigma dx dy - \Sigma dx \cdot \Sigma dy}{\sqrt{N. \Sigma dx^2 - (\Sigma dx)^2} \sqrt{N. \Sigma dy^2 - (\Sigma dy)^2}}$$ $$= \frac{10 \times 60 - 40 \times 0}{\sqrt{10 \times 180 - (40)^2} \sqrt{10 \times 215 - (0)^2}}$$ $$= \frac{600}{\sqrt{200 \times 2150}} = \frac{600}{655.744} = 0.915$$ Example 54. In two sets of variables X and Y with 50 items each, the following data were observed: $\bar{X} = 10$, $\sigma_x = 3$, $\bar{Y} = 6$, $\sigma_y = 2$, r = 0.3, N = 50 However, on subsequent verification it was found that one value of X(=10) and one value of Y(= 6) were inaccurate and hence weeded out. With the remaining 49 pairs of values, how is the original value of correlation coefficient affected? Solution: Given: N = 50, $\overline{X} = 10$, $\overline{Y} = 6$, $\sigma_x = 3$, $\sigma_y = 2$, r = 0.3 $$\therefore \quad \overline{X} = \frac{\sum X}{N} \Rightarrow \sum X = N\overline{X}$$ $$\therefore \quad \text{Incorrected } \Sigma X = N \ \overline{X} = 50 \times 10 = 500$$ $$\therefore \qquad \overline{Y} = \frac{\Sigma Y}{N} \Rightarrow \Sigma Y = N\overline{Y}$$ Incorrected $\Sigma Y = N \overline{Y} = 50 \times 6 = 300$ $$\sigma_x^2 = \frac{\Sigma X^2}{N} - (\overline{X})^2$$ $$\sigma_x^2 = \frac{2\lambda}{N} - (\overline{X})^2$$ $$\Rightarrow \Sigma X^2 = N(\sigma_x^2 + \overline{X}^2)$$ [Formula of variance of X] Incorrected $\Sigma X^2 = N(\sigma_x^2 + \overline{X}^2) = 50(9+100) = 5450$ $$\sigma_{y}^{2} = \frac{\Sigma Y^{2}}{N} - (\overline{Y})^{2}$$ $$\Rightarrow \quad \Sigma Y^{2} = N \left(\sigma_{y}^{2} + \overline{Y}^{2}\right)$$ $$\Rightarrow \Sigma Y^2 = N(\sigma_n^2 + \overline{Y}^2)$$ [Formula of variance of Y] Incorrected $$\Sigma Y^2 = N(\sigma_y^2 + \overline{Y}^2) = 50(4+36) = 2000$$ We know, $$r = \frac{Cov.(X,Y)}{\sigma_x.\sigma_{y_A}}$$ $$r.\sigma_x.\sigma_y = Cov.(x,y)$$ $$Cov.(X,Y) = \frac{1}{N}.\Sigma(X - \overline{X})(Y - \overline{Y}) = \frac{1}{N}\Sigma XY - \overline{X}\overline{Y}$$ $$r.\sigma_x.\sigma_y = \frac{1}{N}.\Sigma XY - \overline{X}.\overline{Y}$$ $$\Sigma XY = N(r.\sigma_x.\sigma_y + \overline{Y}.\overline{Y})$$ $$\Sigma XY = N[r.\sigma_x.\sigma_y + \overline{X}\overline{Y}]$$ $$\Sigma XY = 50[0.3 \times 3 \times 2 + 10 \times 6]$$ $$= 50[1.8 + 60]$$ = 50 [61.8] = 3090 Incorrected $\Sigma XY = 3090$ Thus, we have the following incorrect values: $$\Sigma X = 500$$, $\Sigma Y = 300$, $\Sigma X^2 = 5450$, $\Sigma Y^2 = 2000$ $\Sigma XY = 3090$ After dropping out the incorrect values, the corrected values for the remaining 49 pairs of items are given as: Corrected values: Corrected $\Sigma X = 500 - 10 = 490$ Corrected $\Sigma Y = 300 - 6 = 294$ Corrected $\Sigma X^2 = 5450 - 10^2 = 5350$ Corrected $\Sigma Y^2 = 2000 - 6^2 = 1964$ Corrected $\Sigma XY = 3090 - 10 \times 6 = 3030$ $$N = 49$$ Using these corrected values, we get $$r = \frac{\sum XY - \frac{\sum X \cdot \sum Y}{N}}{\sqrt{\sum X^2 - \frac{(\sum X)^2}{N} \cdot \sqrt{\sum Y^2 - \frac{(\sum Y)^2}{N}}}}$$ $$= \frac{3030 - \frac{490 \times 294}{49}}{\sqrt{5350 - \frac{(490)^2}{49} \cdot \sqrt{1964 - \frac{(294)^2}{49}}}}$$ $$= \frac{3030 - 2940}{\sqrt{450}\sqrt{200}} = \frac{90}{300} = +0.3$$ Hence the correlation coefficient is unaffected in this case. Example 55. "If two variables are independent, the correlation between them is zeronwers is not always true." Comment. 5. "If two variables are ..." Comment. Converse is not always true." Comment. If X and Y are two independent variables, then the covariance between them i.e. If X and Y are two independent $C_{\sigma V}(X,Y) = 0$ and hence $r_{\sigma y} = \frac{Cov(X,Y)}{\sigma_x.\sigma_y} = 0$. Thus, if X and Y are independent of $r_{\sigma y} = \frac{Cov(X,Y)}{\sigma_x.\sigma_y} = 0$. they are uncorrelated. The converse of this property implies that if $r_{xy} = 0$, then X and Y may not necessary the converse of this property, let the two variables X and Y are connected to the converse of the converse of the connected that $r_{xy} = r_{yy} =$ | by the relation $Y = X^2$ and considerable by the relation $Y = X^2$ and $Y = X^2$ | 0 | 1 | 2 | 3 | |--|---|---|---|-------| | $\begin{bmatrix} x \\ -3 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$ | 0 | 1 | 4 | 9 5% | | Y 9 4 1 | 0 | 1 | 8 | 27 EV | | XY -27 -8 -1 | | | | ZXY=0 | $$\begin{bmatrix} xy & -2I \\ \text{Here, } \Sigma X = 0, \Sigma Y = 28 \text{ and } \Sigma XY = 0 \\ \therefore \quad Cov(X, Y) = \frac{1}{N} \sum XYY - \frac{\Sigma X}{N} \cdot \frac{\Sigma Y}{N} = \frac{1}{7} \cdot (0) - \frac{0}{7} \cdot \frac{28}{7} = 0 \\ \text{Thus,} \quad r_{xy} = \frac{Cov(X, Y)}{\sigma_{x}, \sigma_{y}} = 0 \end{bmatrix}$$ A close examination of the data would reveal that although $r_{xy} = 0$ but X and Y are at independent. In fact, the variables are related by the equation $Y = X^2$, i.e., there is quadratic relation (i.e., non-linear relationship) between the variables. This proper implies that r_y is only a measure of the linear relationship between X and Y. If the property is non-linear the computed value of r_y is no longer a measure of the linear relationship. implies that r_{xy} is only a measure of the relationship is non-linear, the computed value of r_{xy} is no longer a measure of the degree of relationship between the two variables. ### IMPORTANT FORMULAE ### A. INDIVIDUAL SERIES 1. Karl Pearson's Coefficient of Correlation (When deviations are taken from actual mean $$r = \frac{\sum xy}{\sqrt{\sum x^2 \times \sum y^2}} \quad or \quad \frac{\sum xy}{N.\sigma_x.\sigma_y}$$ Where, $x = (X - \overline{X})$ $y = (Y - \overline{Y})$ 2. When deviations are taken from assumed mean: $$r = \frac{N.\sum dx dy - \sum dx.\sum dy}{\sqrt{N.\sum dx^2 - (\sum dx)^2} \sqrt{N.\sum dy^2 - (\sum dy)^2}}$$ $$(X - A) \text{ and } dy = (Y - A)$$ Where, dx = (X - A) and dy = (Y - A) 3. When we use actual values of X and Y: $$r = \frac{N.\Sigma XY - \Sigma X.\Sigma Y}{\sqrt{N.\Sigma X^2 - (\Sigma X)^2} \sqrt{N.\Sigma Y^2 - (\Sigma Y)^2}}$$ 4. When we are given Variance and Covariance of X and Y: Cov(X,Y) $$r = \frac{Cov(X,Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}}$$ 4. When $$r = \frac{Cov(X,Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}}$$ where, $Cov(X,Y) = \frac{1}{N} \cdot \Sigma(X - \overline{X}) (Y - \overline{Y}) = \frac{1}{N} \cdot \Sigma XY - \overline{X} \cdot \overline{Y}$ B. GROUPED SERIES GROUNDS 5, In a Bivariate or Grouped Frequency Distribution: $N\Sigma f dx dy - \Sigma f dx \Sigma f dy$ $$r = \frac{N \sum f dx dy - \sum f dy}{\sqrt{N \cdot \sum f dx^2 - (\sum f dx)^2} \sqrt{N \cdot (\sum f dy)^2 - (\sum f dy)^2}}$$ ## 6. Spearmen's Rank Correlation Coefficient: (i) When actual ranks are given: $$R = 1 - \frac{6\Sigma D^2}{N^3 - N}$$ (ii) When ranks are not repeated $$R = 1 - \frac{6\Sigma D^2}{N^3 - N}$$ (iii) When ranks are repeated $$R = 1 - \frac{6\left[\Sigma D^2 + \frac{1}{12}(m^3 - m) + \frac{1}{12}(m^3 - m) + \dots\right]}{M^3 M}$$ 7. Concurrent Deviation Method $$r_c = \pm \sqrt{\pm \left(\frac{2C - n}{n}\right)}$$ 8. Probable Error and Standard Error $$P.E. = 0.6745 \times \frac{1 - r^2}{\sqrt{N}}$$ $S.E._r = \frac{1 - r^2}{\sqrt{N}}$ 9. Coefficient of Determination $$r^2 = \frac{\text{Explained Variance}}{\text{Total Variance}}$$ # QUESTIONS DUESTIONS 1. Define correlation. Explain the various methods of studying correlation. What is the significant properties of correlation. - of studying correlation? of studying correlation? Explain various types of correlation. Does it always signify can the study of studying correlation? What is correlation? Out of additionship between the two variables? What is correlation? Explain various types of the effect relationship between the two variables? - effect relationship between unit of correlation. Interpret r when r=1,-1 and 0. 3. Define Pearsons' coefficient. How is it measured? When - Define Pearsons' coefficient of correlation. How is it measured? When is it preferred to keep Pearson's coefficient of correlation? - Pearson's coefficient of concurrent deviation? How is it measured? 5. What is meant by coefficient of concurrent deviation? What is meant by controlled the study of correlation? - Explain the
followings: - Explain the followings: (i) Probable Error (ii) Coefficient of Determination. - 8. Explain the properties of correlation coefficient. # Linear Regression Analysis # INTRODUCTION The study of regression has special importance in statistical analysis. We know that the mutual relationship between two series is measured with the help of correlation. Under correlation, the direction and magnitude of the relationship between two variables is measured. But it is not possible to make the best estimate of the value of a dependent variable on the basis of the given value of the independent variable by correlation analysis. Therefore, to make the best estimates and future estimation, the study of regression analysis is very important and useful. # MEANING AND DEFINITION According to Oxford English Dictionary, the word 'regression' means "Stepping back" or "Returning to average value". The term was first of all used by a famous Biological Scientist in 19th *Returning to a study of hereditary characteristics. He found our entire the member of the study of hereditary characteristics. He found our interesting result by making a study of the height of about one thousand fathers and sons. His conclusion was that (i) Sons of tall fathers tend to be tall and sons of short fathers tend to be short in height (ii) But mean height of the tall fathers is greater than the mean height of the sons, whereas mean height of the short sons is greater than the mean height of the short fathers. The tendency of the entire mankind to twin back to average height, was termed by Galton 'Regression towards Mediocricity' and the line that shows such type of trend was named as 'Regression Line' In statistical analysis, the term 'Regression' is taken in wider sense. Regression is the study of the nature of relationship between the variables so that one may be able to predict the unknown value of one variable for a known value of another variable. In regression, one variable is considered as an independent variable and another variable is taken as dependent variable. With the help of regression, possible values of the dependent variable are estimated on the basis of the values of the independent variable. For example, there exists a functional relationship between demand and price (12. D=17). Here, demand (D) is a dependent variable, and price (P) is a independent variable. On the basis of this relationship between demand and price, probable values of demand and price, probable values of demand and price, probable values of demand can be estimated corresponding to the different values of price. # DEFINITION OF REGRESSION Some important definitions of regression are as follows: Regression is the measure of the average relationship between two or more variables. Regression analysis measures the nature and extent of the relation between two or more variables, thus enables us to make predictions. -Hirsch In brief, regression is a statistical method of studying the nature of relationship betwee variables and to make prediction. UTILITY OF REGRESSION UTILITY OF REGRESSION The study of regression is very useful and important in statistical analysis, which is clear by the llowing points: (1) Nature of Relationship: Regression analysis explains the nature of relationship be following points: o variables. (2) Estimation of Relationship: The mutual relationship between two or more variables can be approximated to the recognition analysis. measured easily by regression analysis. asured easily by regression analysis, the value of a dependent variable can be predicated. (3) Prediction: By regression analysis, the value of a dependent variable can be predicated. (3) Prediction: By regression analysis, the value of the predicted of a commodity rises, who the basis of the value of an independent variable. For example, if price of a commodity rises, who the basis of the value of an independent variable area he predicted by regression. will be the probable fall in demand, this can be predicted by regression. the the probable tall in demand, and seement: Regression analysis is very useful in business (4) Useful in Economic and Business Regression, business and economic policies and the halo of regression. (4) Useful in Economic and Business Research and economic research. With the help of regression, business and economic policies can be ## DIFFERENCE BETWEEN CORRELATION AND REGRESSION The main difference between correlation and regression is as follows: (1) Degree and Nature of Relationship: Correlation is a measure of degree of relationship between X and Y whereas regression studies the nature of relationship between the variables so that one may be able to predict the value of one variable on the basis of another. (2) Cause and Effect Relationship: Correlation does not always assume cause and effect relationship between two variables. Though two variables may be highly correlated, yet it does not necessary follow that one variable is the cause and another variable is the effect. But regress clearly expresses the cause and effect relationship between two variables. One variable is considered independent in regression, for which the value is given and other variable is dependent. which is estimated. The independent variable is the cause and the dependent variable is effect. (3) Prediction: Correlation does not help in making prediction whereas regression enable us to make prediction. With the help of regression line of Y on X, the probable values of Y can be predicted on the basis of the values of X. (4) Symmetric: In correlation analysis, correlation coefficient (r_{xy}) is the measure of direction and degree of linear relationship between the two variables X and Y. r_{yx} and r_{yx} are symmetrical independent. In regression analysis, the regression coefficients b_{xy} and b_{yx} are symmetrical independent. In regression analysis, the regression coefficients b_{yy} and b_{yx} are not symmetric, i.e., b_{yx} and b_{yx} are not symmetric, i.e., b_{yx} and b_{yx} are not symmetric. b_{yx} and b'_{xy} are not symmetric. (5) Non-sense Correlation: Sometimes, there may exist spurious or non-sense consense two variables by change like at between two variables by chance, like the correlation, if any between rise in income and rise weight is a non-sense correlation but the correlation in the correlation but the correlation is a non-sense correlation but the correlation in the correlation is a non-sense correlation but correla weight is a non-sense correlation but in regression analysis, there is nothing like non-sense Linear Regression Analysis (6) Origin and Scale: Correlation coefficient is independent of the change of origin and scale (6) Origin and Scale: Correlation Coefficient is independent of the change of origin and scale greens on coefficient is independent of change of origin but not of scale. This implies that whereas regression are the age of regression with the no adjustment in the common factor is page of regression with the north property of the change of the common scale of the change ch (e) regression coefficient out from X and Y variable, then no adjustment in correlation formula [50]. whereas regression coefficient in correlation formula [50]. and, whereas in case of regression, we have to make an adjustment in correlation formula is implies the first property of the made, then no adjustment in correlation formula. It is implies the made, whereas in case of regression, we have to make an adjustment for it in our formula. TYPES OF REGRESSION ANALYSIS The main types of regression analysis are as follows: The main types of typ (1) Simple and the state of variables at a time, variables at a time in multiple regression. On the contrary, relationship between incomparison at a time in multiple regression. On the contrary, we study more than two variables at a time in multiple regression analysis (i.e., at least three we study more than the variables and others are independent variable. The study of variables in which one is dependent variable and others are independent variable. The study of variables) in which are independent variable effect of rain and irrigation on yield of wheat is an example of multiple regression. (2) Linear and Non-linear Regression: When one variable changes with other variable in (2) Linear and the control of co some likes taking the or a first degree equation. On the contrary, when one variable varies with by means of a stranger variable varies with other variable in a changing ratio, then it is referred to as curvi-linear/non-linear regression. This other variation in a graph paper takes the form of a curve. This is presented by way of 2nd or 3rd degree equation. (3) Partial and Total Regression: When two or more variables are studied for functional (s) Farther and state to relationship between only two variables is studied and other variables are held constant, then it is known as partial regression. On the other hand, in total regression all variables are studied simultaneously for the relationship among them #### SIMPLE LINEAR REGRESSION In practice, simple linear regression is often used and under this, Regression Lines, Regression Equations and Regression Coefficients concepts are very important to be studied, which are as #### Regression Lines The regression line shows the average relationship between two variables. This is also known as the Line of Best Fit. On the basis of regression line, we can predict the value of a dependent variable on the basis of the given value of the independent variable. If two variables X and Y are given, then ere are two regression lines related to them which are as follows: (1) Regression Line of X on Y: The regression line of X on Y gives the best estimate for the ue of X for any given value of Y. (2) Regression Line of Y on X: The regression line of Y on X gives the best estimate for the use of Y for a xue of Y for any given value of X. by x. # Nature of
Regression Lines (or Relation between Correlation and Regression) With the help of the direction and magnitude of correlation, the nature of regression lines can be The main points regarding the relationship among them are as follows: (1) The two regression lines are coincident or there will be only one regression line if refield the correlation. This is clear from the following diagrams: (2) The two regression lines intersect each other at 90° if r = 0. This is clear from the diagram given below: (3) The nearer the regression lines are to each other, the greater will be the degree of correlation (3) In enearer the regression lines are to cannot be the constraint of the control contro (4) If regression lines rise from left to right upward, then correlation is positive. On the of side, if these line move from right to left, then correlation is negative. Linear Regression Analysis 77 The regression lines cut each other at the point of intersection of \overline{X} and \overline{Y} . This is clear from # Methods of Obtaining Regression Lines - (1) Scatter Diagram Method, - (2) Least Square Method. ### (1) Scatter Diagram Method This is the simplest method of constructing regression lines. In this method, values of the related This is the samples of the related ariables are plotted on a graph. A straight line is drawn passing through the plotted points. The straight variables are plouted on a graph of the straight line is drawn with freehand. This shape of regression line can be linear or non-linear also. This line is drawn with rectangle and the line is drawn with rectangle and line this method, the decision of the person who draws the regression lines very much affects the result. ### (2) Least Square Method Regression lines are also constructed by least square method. Under this method, a regression line is fitted through different points in such a way that the sum of squares of the deviations of the observed values from the fitted line shall be least. The line drawn by this method is called as the Line of Best Fit. In other words, under this method, the two regression lines, are drawn in such a way that sum of the squared deviations becomes minimum. The regression line of Y on X is so awn such that vertically, the sum of squared deviations becomes minimum relating to the different wints and the regression line on X on Y is so drawn such that horizontally, squared deviations of different points add up to the minimum. ## ⁰ Regression Equations Regression equations are the algebraic formulation of regression lines. Regression equations refresent regression lines. Just as there are two regression lines, similarly there are two regression bations, which are as follows: (1) Regression Equation of Y on X: This equation is used to estimate the probable values of Y the basis of the collection of Y on X: This equation is used to estimate the probable values of Y he basis of the given values of X. This equation is used to estimate the probability of the given values of X. This equation is expressed in the following way: Y = a + bX Here, a and b are constants. Regression equation of Y on X can also be presented in another way as: $$y - \bar{Y} = r \cdot \frac{\sigma_y}{r} (X - \bar{X})$$ or $Y - \overline{Y} = byx(X - \overline{X})$ Here, byx = Regression coefficient of Y on X. Here, byx = Regression coefficient of Y. This equation is used to estimate the probable values of χ . 2) Regression Equation of X on Y: This equation is expressed in the following way: (2) Regression Equation of X on Y: 1 nis equation is expressed in the following way: on the basis of the given values of Y. This equation is expressed in the following way: $$X = a_0 + b_0 Y$$ Regression equation of X on Y can also be written in another way: Here, a_0 and b_0 are constants. $$X - \overline{X} = r \cdot \frac{\sigma_x}{\sigma_v} (Y - \overline{Y})$$ or $$X - \overline{X} = bxy(Y - \overline{Y})$$ Here, bxy =Regression coefficient of X on Y. ## Regression Coefficients Just as there are two regression equations, similarly there are two regression coefficients. Regression coefficient measures the average change in the value of one variable for a unit change in regression coefficient measures are average original and that the control of a unit change, the value of another variable. Regression coefficient, in fact, represents the slope of a regression line. For two variables X and Y, there are two regression coefficients, which are given as follows: (I) Regression Coefficient of Y on X: This coefficient shows that with a unit change in the Balde of X variable, what will be the average change in the value of Y variable. This is represented by byx. Its formula is as follows: $$byx = r \cdot \frac{\sigma_y}{\sigma_x}$$ The value of byx can also be determined by other formulae. 2) Regression Coefficient of X on Y: This coefficient shows that with a unit change in the value of Y variable, what will be the average change in the value of X-variable. It is represented by bxy. Its formula is as follows: bxy. Its formula is as follows: $$bxy = r \cdot \frac{\sigma_x}{\sigma}$$ The value of bxy can also be found out by other formulae. ### Properties of Regression Coefficients a distribution The main properties of the regression coefficients are as follows: (1) Coefficient of correlation is the geometric mean of the regression coefficients, i.e. $r = \sqrt{bxy \times byx}$ This property can be proved in the following manner This property can be provided as $$r = r \cdot \frac{\sigma_z}{\sigma_y}$$ Regression coefficient of X on Y $(bxy) = r \cdot \frac{\sigma_z}{\sigma_y}$...(i) Regression coefficient of Y on $$X(byx) = r \cdot \frac{\sigma_y}{\sigma_x}$$...(ii) Multiplying (i) and (ii) $$bxy \cdot byx = r \cdot \frac{\sigma_x}{\sigma_y} \cdot r \cdot \frac{\sigma_y}{\sigma_x}$$ or $$r^2 = bxy \cdot byx$$ Hence, $$r = \pm \sqrt{bxy \cdot byx}$$ Both the regression coefficients must have the same algebraic signs. The means either DY Both the regression coefficients will be either positive or negative. In other words, when one regression both regression to negative, the other would be also negative. It is never possible that one regression coefficient is negative, while the other is positive. coefficient is negative while the other is positive. (3) The coefficient of correlation will have the same sign as that of regression coefficients. If both regression coefficient are negative, then the correlation coefficient would be negative. And if byx and bxy have positive signs, then r will also take plus sign. (4) Both the regression coefficients cannot be greater than unity: If one regression coefficient of y on x is greater than unity, then the regression coefficient of x on y must be less than unity. This is because $$r = \sqrt{byx \cdot bxy} = \pm 1$$ and never greater than one. If both the regression coefficients happen to be more than 1 then their geometric mean will exceed 1 which will not give the correlation coefficients whose value never xceeds 1. Arithmetic mean of two regression coefficients is either equal to or greater than the orrelation coefficient. In terms of the formula: $$\frac{byx + bxy}{2} \ge r$$ (6) Shift of origin does not affect regression coefficients but shift in scale does affect regression coefficients. Regression coefficients are independent of the change of origin but not of Called This means if some common factor is taken out from the items of the series, then in that case, we will have to make adjustment in the regression coefficient formula which is shown below: by $$x = bvu$$. $\frac{i_y}{i_x}$ and $bxy = buv$. $\frac{i_x}{i_y}$ Where, $u = \frac{X - a}{h}$ and $v = \frac{Y - b}{k}$ i_y and i_x are common factors of Y and X series respectively. Y Intercept To Obtain Regression Equations To Obtain regression equations can be divided into two parts: (A) Regression Equations in case of Individual Series. (B) Regression Equations in case of Grouped Data. (B) Regression Equations in case of Individual Series (A) Methods to Obtain Regression Equations can be worked out by (A) Methods to Obtain Regression Equations can be worked out by two methods, which are a (1) Regression Equations using Normal Equations. (2) Regression Equations using Regression Coefficients. ► (1) Regression Equations using Normal Equations (1) Regression Equations using This method is also called as Least Square Method. Under this method, computation of regression This method is also called as Least Square Method. Under this method becomes clear by the Stu This method is also called as Least Square internations. This method becomes clear by the following equations is done by solving out two normal equations. Regression Equation of Y on X Regression Equation of Y on X is expressed as follows: Y = a + bX Where, Y = Dependent variable, X = Independent variable, a = Y-intercept, b = Slope of the line. Under least square method, the values of a and b are obtained by using the following two normal equations: $$\Sigma Y = Na + b\Sigma X$$ $$\sum XY = a\sum X + b\sum X^2$$ Solving these equations, we get the following value of a and b. g these equations, we get $$b_{yx} = \frac{N.\Sigma XY - \Sigma X.\Sigma Y}{N.\Sigma X^2 - (\Sigma X)^2}$$ $$a = \overline{Y} - b\overline{X}$$ Finally, the calculated value of a and b is put in the equation Y = a + bX. The regression equation of Y and X will be used to estimate the value of Y when the value of X is given. Note: a is the Y-intercept, which indicates the minimum value of Y for X = 0 and b is the slope of the line or called regression coefficient of Y and X, which indicates the absolute increase in Y for a unit increase in X. ### Regression Equation of X on Y normal equations: Regression Equation of X on Y is expressed as follows: $$X = a_0 + b_0 Y$$ Under least square method, the values of a_0 and b_0 are obtained by using the following a_0 and a_0 are obtained by using the following a_0 and a_0 are
obtained by using the following a_0 are obtained by using the following a_0 and a_0 are obtained by using the following a_0 and a_0 are obtained by using the following a_0 and a_0 are obtained by using the following a_0 and a_0 are obtained by using the following a_0 are obtained by using the following a_0 and a_0 are obtained by using the following a_0 are obtained by using the following a_0 and a_0 are obtained by using the following a_0 and a_0 are obtained by using the following a_0 are obtained by a_0 and a_0 and a_0 are obtained by $$\Sigma X = Na_0 + b_0 \Sigma Y$$ Solving these equations, we get the following value of $$b_0 = b_{xy} = \frac{N.\Sigma XY - \Sigma X.\Sigma Y}{N.\Sigma Y^2 - (\Sigma Y)^2}$$ $$a_0 = \overline{X} - b_0 \overline{Y}$$ Finally, the calculated value of a₀ and b₀ are put in the Finally, the calculated value of a_0 and a_0 are put in the equation $X = a_0 + b_0 X$. The regression equation of X on Y will be equation $X = a_0 + b_0 X$. Intercept up to estimate the value of X when the value of Y is given. 81 ...(i) ...(ii) ged to estimate a_0 is the X-intercept, which indicates the minimum value of X for Y = 0 and b_0 is the slope of the line or called regression coefficient of X on Y. The following examples makes the above said method more clear: The following data by the method of xample 1. Calculate the regression equation of X on Y from the following data by the method of | st square. | | · · | | | | |------------|---|-----|---|---|---| | X: | 1 | 2 | 3 | 4 | 5 | | Y: | 2 | 5 | 3 | 8 | 7 | | | | | | | | | (| Calculation of Regression Equa | |---|--------------------------------| | X | X ² | Y | Y ² | XY | |-----------------------|-------------------|-----------------|--------------------|------------------| | . 1 | 1 | 2 | 4 | 2 | | 2 | 4 | 5 | 25 | 10 | | 3 | 9 | 3 | 9 | 9 | | 4 | 16 | 8 | 64 | 32 | | 5 | 25 | 7 | 49 | 35 | | $N=5$, $\Sigma X=15$ | $\Sigma X^2 = 55$ | $\Sigma Y = 25$ | $\Sigma Y^2 = 151$ | $\Sigma XY = 88$ | ### Regression Equation of X on Y is $$X = a + bY$$ The two normal equations are: $$\sum X = Na + b \sum Y$$ $$\sum XY = a \sum Y + b \sum Y^{2}$$ Substituting the values, we get $$15 = 5a + 25b$$ $88 = 25a + 151b$ Multiplying (i) by 5 and subtracting it from (ii) $$88 = 25a + 151b$$ $$75 = 25a + 125b$$ $$13 = 26b$$ $$b = \frac{13}{26} = 0.5$$ Putting the value of b in equation (i) $15 = 5a + 25 \times 0.5$ $$15 = 5a + 25 \times 0.$$ $$15 = 5a + 12.5$$ $$5a = 2.5$$ $$a = 0.50$$ $\therefore X = 0.5 + 0.5Y$ The value of a and b can also be obtained by using the following formula: Aliter: and b can also be obtained by using the following $$b_{xy} = \frac{N.\Sigma XY - \Sigma X.\Sigma Y}{N.\Sigma Y^2 - (\Sigma Y)^2}$$ $a = \overline{X} - b\overline{Y}$ Substituting the values, we get e values, we get $$b_{xy} = \frac{5 \times 88 - (15)(25)}{5 \times 151 - (25)^2} = \frac{440 - 375}{755 - 625} = \frac{65}{130} = \frac{1}{2} = 0.5$$ $$\overline{X} = \frac{\sum X}{N} = \frac{15}{5} = 3, \overline{Y} = \frac{\sum Y}{N} = \frac{25}{5} = 5$$ $$\overline{X} = \frac{\Sigma X}{N} = \frac{15}{5} = 3, \overline{Y} = \frac{\Sigma Y}{N} = \frac{25}{5} = 5$$ $$a = \overline{X} - b\overline{Y} = 3 - \frac{1}{2} \times 5 = 3 - 2.5 = 0.5$$ $$X=0.5+0.5Y$$ Example 2. Obtain the regression equation of Y on X by the least square method for the following | | | | | | _ | |----|---|---|----|----|----| | X: | 1 | 2 | 3 | 4 | 5 | | Y: | 9 | 9 | 10 | 12 | 11 | Also estimate the value of Y when X = 10 Calculation of Dog Solution: | x | Y | XY | X ² | |---------------|----|-----|----------------| | 1 | 9 | . 9 | 1 | | 2 | 9 | 18 | 4 | | 3 | 10 | 30 | 9 | | 4 | 12 | 48 | 16 | | 5 | 11 | 55 | 25 | | V = 5 TV - 16 | | | -2. | $\Sigma XY = 160$ Regression Equation of Y on X is $$Y = a + bX$$ Linear Regression Analysis The two normal equations are $$\Sigma Y = Na + b \Sigma X$$ $$\Sigma XY = a \Sigma X + b \Sigma X^2$$ Substituting the values, we get $$51 = 5a + 15b$$ $$160 = 15a + 55b$$ Multiplying (i) by 3 and subtracting it from (ii) 160 = 15a + 55b $$153 = 15a + 45b$$ $$b = \frac{7}{10} = 0.7$$ Putting the value of b in equation (i) $$51 = 5a + 15(0.7) = 5a + 10.5$$ $$5a = 40.5$$ $$a = 8.1$$ Hence, the required regression equation of Y on X is given by $$Y = 8.1 + 0.7X$$ Estimation for Y For $$X = 10$$, $Y = 8.1 + 0.7(10) = 15.1$ Given the following data: $$N = 8, \Sigma X = 21, \Sigma X^2 = 99, \Sigma Y = 4, \Sigma Y^2 = 68, \Sigma XY = 36$$ Using the values, find - (i) Regression equation of Y on X. - (ii) Regression equation of X on Y. - (iii) Most approximate value of Y for X = 10 - (iv) Most approximate value of X for Y = 2.5 (i) Regression Equation of Y on X $$Y = a + bX$$ $$byx = \frac{N \cdot \Sigma XY - \Sigma X \cdot \Sigma Y}{N \cdot \Sigma X^2 - (\Sigma X^2)^2} = \frac{8 \times 36 - (21)(4)}{8 \times 99 - (21)^2} = 0.581$$ $$\overline{X} = \frac{\Sigma X}{N} = \frac{21}{8} = 2.625, \quad \overline{Y} = \frac{\Sigma Y}{N} = \frac{4}{8} = 0.5$$ $$a = \overline{Y} - b\overline{X} = 0.5 - (0.581)(2.625) = -1.025$$ $$Y = -1,025 + 0.581X$$ 83 (ii) Regression Equation of X on Y $$\frac{X = a_0 + b_0 Y}{b_0} = \frac{N \cdot \Sigma XY - \Sigma X \cdot \Sigma Y}{N \cdot \Sigma Y^2 - (\Sigma Y)^2} = \frac{8 \times 36 - (21)(4)}{8 \times 68 - (4)^2} = 0.386$$ $$a_0 = \overline{X} - b_0 \overline{Y} = 2.625 - (0.386)(0.5) = 2.432$$ $$X = 2.432 + 0.386Y$$ (iii) Prediction for Y When X = 10, Y = -1.025 + 0.581(10) = 4.785(iv) Prediction for X When Y = 2.5, X = 2.432 + 0.386(2.5) = 3.397 ### **EXERCISE 2.1** | | Obtain the line of regression of Y | on X by least | square method | for the follow | ing data: | |----|------------------------------------|---------------|---------------|----------------|-----------| | 1. | Obtain the line of regression of | | 2 | 4 | | | Obtain the illie | Of regression | | | | | οι . | |------------------|----------------|------------|---|---------|----------------------|---| | v. | 1 | 2 | 3 | 4 | 5 | \overline{X} = Arithmetic mean of X series = $\frac{Z}{X}$ | | Α. | | 3 | 5 | 4 | 6 | Here, $X = Aritimetre instant of Figure 1$ | | Y: | 2 | , | | Yana Y | | \overline{Y} = Arithmetic mean of Y series = $\frac{\sum Y}{Y}$ | | Also obtain an | estimate of Yw | hen X = 2. | | [Ans.] | Y = 1.3 + 0.9X; 3.1] | $\gamma = Arithmetic illean of 1 series - \frac{1}{\lambda}$ | 2. Find the regression of Y on X and X on Y by the least square method for the following data: | X: | 1 | 2 | 3 | |----|---|------------------|---------------------------| | Y: | 2 | 4 | 5 | | | 1 | 54 W 0 ((7) 1 5) | V- V- 0 2571 0 642V: ==00 | 0.9821 3. Compute the appropriate regression for the following data: | X (Independent variable): | 1 | 3 | 4 | 8 | 9. | . 11 | 14 | |---------------------------|---|-----|---|---|----|------|----| | Y (Dependent variable): | 1 | 2 . | 4 | 5 | 7 | . 8 | 9 | [Ans. Y = 0.63X + 0.64] 4. Obtain the two lines of regression from the following data: $N = 3, \Sigma X = 6, \Sigma X^2 = 14, \Sigma Y = 15, \Sigma Y^2 = 77, \Sigma XY = 31$ [Ans. $$Y = 0.5X + 4$$, $X = 0.5Y - 0.5$] 5. Given: $\Sigma X = 15, \Sigma Y = 110, \Sigma XY = 400, \Sigma X^2 = 250, \Sigma Y^2 = 3200, N = 10$ Find the following: - (i) Regression coefficient of Y on X and the Y-intercept. - (ii) X-intercept, and the regression coefficient of X on Y. - (iii) Most approximate value of Y for X = 5. (iv) Most approximate value of X for Y = 25. [Ans. (i) b = 1.033, a = 9.451, (ii) a = 0.201, b = 0.118, (iii) Y = 14.616, X = 3151 ingar Regression Analysis (2) Regression Equations using Regression Coefficients Regression equations can also be computed with the help of regression coefficients. For this, we note that the property of the first of the given data. Regression coefficients for this, we Regression equations can also be computed with the help of regression coefficients. For this, we regression find out \overline{X} , \overline{Y} , byx and bxy from the given data. Regression equations can be also the regression coefficients by any of the following methods: $_{\text{opp}}$ $_{\text{total}}$ $_{$ (1) Using deviations from Actual Means. (2) Using deviations from Assumed Means, (4) Using r, σ_x , σ_y and \overline{X} , \overline{Y} . Using the Actual Values of X and Y Series Using the Actual Values of X and Y are used to determine regression equations. With regard In this method, actual values of X and Y are used to determine regression equations. With regard In this method, actual values of Van Y Regression Equation of Y on X $$Y - \overline{Y} = byx (X - \overline{X})$$ or $Y = \overline{Y} + byx (X - \overline{X})$ Here, $$\bar{X} = \text{Arithmetic mean of X series} = \frac{\sum X}{N}$$ $$\overline{Y}$$ = Arithmetic mean of Y series = $\frac{\sum Y}{N}$ byx = Regression coefficient of Y on X Using actual values, the value of byx can be calculated as: $$byx = \frac{N \cdot \Sigma XY - \Sigma X \cdot \Sigma Y}{N \cdot \Sigma X^2 - (\Sigma X)^2} \quad \text{or} \quad byx = \frac{\Sigma XY / N - \overline{X} \cdot \overline{Y}}{\sigma_x^2}$$ te: This formula is based on the normal equations, yet its use avoids the solution of normal Regression Equation of X on Y $$X - \overline{X} = bxy (Y - \overline{Y})$$ $$X = \overline{X} + bxy(Y - \overline{Y})$$ Where bxy = Regression coefficient of X on Y. Using actual values, the value of bxy can be calculated as: $$bxy = \frac{N \cdot \Sigma XY - \Sigma X \cdot \Sigma Y}{N \cdot \Sigma Y^2 - (\Sigma Y)^2} \quad \text{or} \quad bxy = \frac{\Sigma XY / N - \overline{X} \cdot \overline{Y}}{\sigma_y^2} = \frac{Cov(X_1 Y)}{\sqrt{\sigma_y^2}}$$ The following examples make this method more clear: | outate the re | gression equ | nations of X | on Y and Y on | X from the i | onowing and | |---------------|--------------|--------------|---------------|--------------|-------------| | X: | 1 | 2 | 3 | 4 | 5 | | Y: | 2 | 5 | 3
 8 | 7 | lation of Regression Equations | Calculation | Y | Y ² | Xy | |--|-------|--------------------|--------| | X X | 2 | 4 | AY | | | 5 | 25 | 2 | | 2 4 | 3 | 9 | 10 | | 3 9 | 8 | 64 | 32 | | 4 16 | 7 | 49 | 35 | | 5 25 | ΣY=25 | $\Sigma Y^2 = 151$ | Σχγ=88 | | $\Sigma X = 5$ $\Sigma X = 15$ $\Sigma X^2 = 55$ | | | 1 -08 | $$\overline{X} = \frac{\sum X}{N} = \frac{15}{5} = 3, \quad \overline{Y} = \frac{\sum Y}{N} = \frac{25}{5} = 5$$ Regression Coefficient of Y on X (byx): Deficient of Y on X (byx): $$byx = \frac{N \cdot \Sigma XY - \Sigma Y \cdot \Sigma Y}{N \cdot \Sigma X^2 - (\Sigma X)^2}$$ $$= \frac{5 \times 88 - (15)(25)}{5 \times 55 - (15)^2} = \frac{440 - 375}{275 - 225} = \frac{65}{50} = 1.3$$ Regression Coefficient of X on Y (bxy): efficient of X on Y (bxy): $$bxy = \frac{N \cdot \Sigma XY - \Sigma X \cdot \Sigma Y}{N \cdot \Sigma Y^2 - (\Sigma Y)^2}$$ $$= \frac{5 \times 88 - (15)(25)}{5 \times 151 - (25)^2} = \frac{440 - 375}{755 - 625} = \frac{65}{130} = +0.5$$ Regression Equation of Y on X $$Y - \overline{Y} = byx (X - \overline{X})$$ g the values, Substituting the values, $$Y-5 = 1.3(X-3)$$ $Y-5 = 1.3X-3.9$ $$Y = 1.3X - 3.9 + 5$$ $$Y = 1.3X - 3.9 + 5$$ $Y = 1.3X + 1.1$ Regression Equation of X on Y $$X - \overline{X} = bxy(Y - \overline{Y})$$ $$X-3 = +0.5 (Y-5)$$ $X-3 = 0.5Y-2.5$ $$X = 0.5Y + 0.5$$ Example 5. Calculate the two regression equations from the following data: $\Sigma X = 30, \Sigma Y = 23, \Sigma XY = 168, \Sigma X^2 = 224, \Sigma Y^2 = 175, N = 7$ Hence or otherwise find Karl Pearson's coefficient of correlation. Linear Regression Analysis $$\overline{X} = \frac{\Sigma X}{N} = \frac{30}{7} = 4.286$$ $$\overline{Y} = \frac{\Sigma Y}{N} = \frac{23}{7} = 3.286$$ $$byx = \frac{N \cdot \Sigma XY - \Sigma X \cdot \Sigma Y}{N \cdot \Sigma X^2 - (\Sigma X)^2} = \frac{7 \times 168 - (30)(23)}{7 \times 224 - (30)^2} = 0.728$$ $$bxy = \frac{N \cdot \Sigma XY - \Sigma X \cdot \Sigma Y}{N \cdot \Sigma Y^2 - (\Sigma Y)^2} = \frac{7 \times 168 - (30)(23)}{7 \times 175 - (23)^2} = 0.698$$ Regression Equation of Y on X $$Y - \overline{Y} = byx (X - \overline{X})$$ $$Y - 3.286 = 0.728 (X - 4.286)$$ $$Y - 3.286 = 0.728X - 3.120$$ $$Y = 0.728X + 0.166$$ Regression Equation of X on Y $$X - \overline{X} = bxy(Y - \overline{Y})$$ $$X - 4.286 = 0.698(Y - 3.286)$$ $$X - 4.286 = 0.698Y - 2.294$$ $X = 0.698Y + 1.992$ $$r = \sqrt{byx \cdot bxy}$$ $$r = \sqrt{0.728 \times 0.698} = 0.712$$ #### MPORTANT TYPICAL EXAMPLES Example 6. In order to find the correlation coefficient between the two variables X and Y from 12 pairs of observations, the following calculations were made: $$\Sigma X = 30, \Sigma X^2 = 670, \Sigma Y = 5, \Sigma Y^2 = 285, \Sigma XY = 344$$ On subsequent verifications, it was discovered that the pair (X = 11, Y = 4) was copied wrongly, the correct values being (X = 10, Y = 14). After making necessary corrections, find: - (i) the two regression coefficients. - (ii) the two regresssion equations. - (iii) the correlation coefficient. Corrected $\Sigma X = 30 + \text{Correct value} - \text{Incorrect value}$ $$=30+10-11=29$$ Corrected $\Sigma Y = 5 + 14 - 4 = 15$ Corrected $$\Sigma X^2 = 670 + (\text{Correct value})^2 - (\text{Incorrect value})^2$$ $$= 670 + 10^2 - 11^2 = 649$$ Corrected $\Sigma Y^2 = 285 + 14^2 - 4^2 = 465$ Corrected $\Sigma XY = 344 + (10) (14) - (11) (4) = 440$ $$\overline{X} = \frac{\text{Corrected } \Sigma X}{Y} = \frac{29}{12} = 2.416$$ $$\overline{Y} = \frac{N}{N} = \frac{12}{12}$$ $$\overline{Y} = \frac{Corrected \Sigma Y}{N} = \frac{15}{12} = 1.25$$ (i) Regression Coefficients Regression Coefficients $$\frac{N \cdot \Sigma XY - \Sigma X \cdot \Sigma Y}{N \cdot \Sigma X^2 - (\Sigma X)^2} = \frac{12 \times 440 - 29 \times 15}{12 \times 649 - (29)^2}$$ $$= \frac{5280 - 435}{7788 - 841} = \frac{4845}{6947} = +0.697$$ $$\frac{N \cdot \Sigma XY - \Sigma X \cdot \Sigma Y}{N \cdot \Sigma Y^2 - (\Sigma Y)^2} = \frac{12 \times 440 - 29 \times 15}{12 \times 465 - (15)^2}$$ $$= \frac{5280 - 435}{5580 - 225} = \frac{4845}{5355} = 0.904$$ ### (ii) Two Regression Equations Y on X X on Y $Y - \overline{Y} = byx (X - \overline{X})$ $X - \overline{X} = bxy(Y - \overline{Y})$ Y - 1.25 = 0.697 (X - 2.416)X - 2.416 = 0.904(Y - 1.25)Y - 1.25 = 0.697X - 1.683X - 2.416 = 0.904Y - 1.13Y = 0.697X - 0.433X = 0.904Y + 1.286 #### (iii) Correlation coefficient $$r = \sqrt{byx \cdot bxy} = \sqrt{(0.697)(0.904)} = +0.793$$ Example 7. Given that $\overline{X} = 15, \ \overline{Y} = 12, \Sigma XY = 1500, \sigma_x = 6.4, \sigma_y = 9.0, N = 10$ Compute: (a) Two regression Coefficients (b) Correlation coefficient between X and Y. Given: $\bar{X} = 15$, $\bar{Y} = 12$, $\Sigma XY = 1500$, $\sigma_x = 6.4$, $\sigma_y = 9.0$, N = 10Solution: ## Regression Coefficient of Y on X $$byx = \frac{N \cdot \Sigma XY - \Sigma X \cdot \Sigma Y}{N \cdot \Sigma X^2 - (\Sigma X)^2}$$ The values of N and ΣXY are given and the values of ΣX^2 , ΣY^2 , ΣX and ΣY are to be calculated as follows: calculated as follows: $$\overline{X} = \frac{\Sigma X}{N} \Rightarrow \Sigma X = N.\overline{X} = 10 \times 15 = 150$$ $$\overline{Y} = \frac{\Sigma Y}{N} \Rightarrow \Sigma Y = N.\overline{Y} = 10 \times 12 = 120$$ $$\Sigma X^2 = N [\sigma_x^2 + (\overline{X})^2] = 10[6.4^2 + 15^2] = 2659.6$$ $$\Sigma Y^2 = N [\sigma_y^2 + (\overline{Y})^2] = 10[9^2 + 12^2] = 2250$$ $$byx = \frac{N \cdot \Sigma XY - \Sigma X \cdot \Sigma Y}{N \cdot \Sigma X^2 - (\Sigma X)^2} = \frac{10 \times 1500 - (150)(120)}{10 \times 2659.6 - (150)^2}$$ $$= \frac{15000 - 18000}{26596 - 22500} = \frac{-3000}{4096} = -0.73$$ Aliter: byx can also be calculated as follows: has be calculated as follows: $$byx = \frac{\sum XY}{N} - \overline{X}.\overline{Y} = \frac{1500}{10} - (15)(12)$$ $$= \frac{150 - 180}{40.96} = \frac{-30}{40.96} = -0.73$$ ### Regression Coefficient of X on Y Linear Regression Analysis $$bxy = \frac{N \cdot \Sigma XY - \Sigma X \cdot \Sigma Y}{N \cdot \Sigma Y^2 - (\Sigma Y)^2} = \frac{10 \times 1500 - (150)(120)}{10 \times 2250 - (120)^2}$$ $$= \frac{15000 - 18000}{22500 - 14400} = \frac{-3000}{8100} = -0.37$$ Aliter: bxy can also be calculated as follows: $$bxy = \frac{\sum XY}{N} - \overline{X} \cdot \overline{Y} = \frac{1500}{10} - (15)(12)$$ $$= \frac{150 - 180}{81} = \frac{-30}{81} = -0.37$$ Coefficient of Correlation $$r = \pm \sqrt{byx.bxy} = -\sqrt{(-0.73) \times (-0.37)} = -0.519$$ Find out the regression coefficients of Y on X and X on Y from the following data: $\Sigma X = 50, \overline{X} = 5, \Sigma Y = 60, \overline{Y} = 6, \Sigma XY = 350$, Variance of X = 4, Variance of Y = 9. Solution: We know that: $$\overline{X} = \frac{\Sigma X}{N} \Rightarrow 5 = \frac{50}{N} \Rightarrow N = 10$$ $\frac{N \cdot \Sigma XY - \Sigma X \cdot \Sigma Y}{N \cdot \Sigma X^2 - (\Sigma X)^2} \text{ or } \frac{\Sigma \cdot XY / N - \overline{X} \cdot \overline{Y}}{\sigma_x^2} \text{ or } \frac{Cov (X_1 Y)}{\sigma_x^2}$ $\frac{350}{byx} = \frac{10}{4} = \frac{35 - 30}{4} = \frac{5}{4}$ $= 1.25$ $\frac{N \cdot \Sigma XY - \Sigma X \cdot \Sigma Y}{N \cdot \Sigma Y^2 - (\Sigma Y)^2} \text{ or } \frac{\Sigma \cdot XY / N - \overline{X} \cdot \overline{Y}}{\sigma_y^2} \text{ or } = \frac{Cov (X_1 Y)}{\sigma_y^2}$ $\frac{N \cdot \Sigma XY - \Sigma X \cdot \Sigma Y}{N \cdot \Sigma Y^2 - (\Sigma Y)^2} \text{ or } \frac{\Sigma \cdot XY / N - \overline{X} \cdot \overline{Y}}{\sigma_y^2} \text{ or } = \frac{Cov (X_1 Y)}{\sigma_y^2}$ ### **EXERCISE 2.2** | 1. | Given the fol | lowing bivariate data: | |----|---------------|------------------------| | | Given the | tollowing | Ulvariate | T T | | | 1 | 7 | | |---|-----------|-----------|-----------|-----|---|-------|--------------------------|---------------------------------|-------------------------| | - | X: | -1 | 5 | 3 | 2 | 1 | 1 | , | . 3 | | | ν. | -6 | 1 ' | 0 | 0 | 1 . 1 | 2 | 1 | 5 | | | 1. | -0 | | | | | THE RESERVE AND ADDRESS. | The second second second second | A STATE OF THE PARTY OF | - (i) Fit a regression line of Y on X and predict Y if X=10. - (ii) Fit a regression line of X on Y and predict X if Y=2.5 [Ans. Y = -1.025 + 0.581X; X = 2.432 + 0.386Y; Y₁₀ = 4.785; X₂₅ = 3.397] - 2. By using the following data, find the regression equation of Y on X and compute the value of Y when X = 10. $$\overline{X} = 5.5$$, $\overline{Y} = 4.0$, $\Sigma X^2 = 385$, $\Sigma Y^2 = 192$, $\Sigma (X + Y)^2 = 947$ and $N = 10$ [Ans. $Y = -0.42X + 6.31$, $Y_{10} = 2.11$] 3. Given that: $\Sigma X = 250, \Sigma Y = 300, \ \sigma_x = 5, \ \sigma_y = 10, \ \Sigma XY = 7900, \ N = 10$ Compute: (i) Two regression coefficients, - (ii) Correlation coefficient between X and Y. - (iii) Most approximate value of Y when X = 55 and X when Y = 40. [Ans. byx = 1.6, bxy = 0.4, r = 0.8, $Y_{30} = 78$, $X_{40} = 29$] - 4. By using the following data, find correlation coefficient and regression equation of \hat{Y} on \hat{X} and estimated value of \hat{Y} when $\hat{Y} = 20$. by using the following data, find contribution coefficient and x = 20 and estimated value of Y when X = 20 N = 10, $\Sigma X = 140$, $\Sigma Y = 150$, $\Sigma (X - 10)^2 = 180$, $\Sigma (Y - 15)^2 = 215$, $\Sigma (X - 10)$ (Y - 15) ≈ 60 [Hint: See Example 53 on Correlation] [Ans. r = 0.915, Y = 3X - 27, $Y_{20} = 33$] Linear Regression Analysis Following information was computed through a computer: 5. Following information was computed through a computer: Following information $\Sigma X^2 = 650, \Sigma Y^2 = 460, \Sigma XY = 508, N = 25$ $\Sigma X = 123,122$ Later on it was discovered that two pairs of X and Y were miscopied as (6, 14) and (8, 6) Later on (8, 12) and (6, 8). Determine (i) the correct representation Later on it was discovered with the correct regression equations (i) and (8, b) instead of (8, 12) and (6, 8). Determine (i) the correct regression equations (ii) correct instead of correlation. [Ans. (i) X = 0.556Y+2.776, Y =
0.8X, (ii) r = 0.67] coefficient of correlation. 91 On each of 30 sets, two measurements are made. The following summaries are given: $(S_{1}^{NV} = 56 S_{2}^{N} = 61 \text{ and } S_{3}^{N} S$ On each $\Delta X = -6$, $\Sigma XY = 56$, $\Sigma X^2 = 61$ and $\Sigma Y^2 = 90$ $\Sigma X = 15$, ΣI Calculate the product moment correlation coefficient and the slope of regression line of Y on X. [Hint: See Example 52] [Ans. r = 0.856, byx = 1.10] # (2) Using Deviations taken from Actual Means When the size of the values of X and Y is very large, then the method using actual values when the size of the way w becomes very differences (\overline{X} , \overline{Y}) are used to simplify the computation process. In such a case, regression equations are expressed as follows: Regression Equation of Y on X $$Y - \overline{Y} = byx (X - \overline{X})$$ or $$Y = \overline{Y} + byx(X - \overline{X})$$ Here, $\overline{X} = \text{Arithmetic mean of } X$ \overline{Y} = Arithmetic mean of Y byx = Regression coefficient of Y on X Using deviations from actual means, the value of byx can be calculated as: $$byx = \frac{\sum xy}{\sum x^2}$$ Where, $$x = X - \overline{X}$$; $y = Y - \overline{Y}$ Regression Equation of X on Y $$X - \overline{X} = bxy(Y - \overline{Y})$$ $$X = \overline{X} + bxy(Y - \overline{Y})$$ Where, bxy =Regression coefficient of X on Y. Using deviations from actual means, the value of bxycan be calculated as: $$bxy = \frac{\sum xy}{\sum x^2}$$ Where, $$x = X - \overline{X}$$; $y = Y - \overline{Y}$ The following examples make this method more clear. Example 9. ion equations from the following data: | Obtain the two regression equa | 6 | 8 | 10 | |--------------------------------|-----|----|------| | X: 2 2 | . 5 | 10 | 3 12 | | Y: 4 | | | 6 | Solution: | x | $\overline{X} = \frac{7}{(X - \overline{X})}$ | x ² | Y | $\overline{Y} = \underline{5}$ $(Y - \overline{Y})$ y | y ² | 29 | |---------------|---|-------------------|-----------------------|---|-------------------|-------| | \rightarrow | | 25 | 4 | -1 | 1 - | +5 | | 2 | -3 | 9 | 2 | -3 | 9 | +9 | | 4 | -1 | 1 | 5 | 0 | 0 | 0 | | 6 | +1 | 1 | 10 | +5 | 25 | +5 | | 8 | +3 | 9 | 3 | -2 | 4 | 106/2 | | 10 | +5 | 25 | 6 | +1 | 1 | +: | | | $\Sigma x = 0$ | $\Sigma x^2 = 70$ | $\Sigma \lambda = 30$ | $\Sigma y = 0$ | $\Sigma y^2 = 40$ | Σry= | $$\overline{X} = \frac{\sum X}{N} = \frac{42}{6} = 7; \ \overline{Y} = \frac{\sum Y}{N} = \frac{30}{6} = 5$$ Since, the actual means of X and Y are wh from \overline{X} and \overline{Y} to simplify calculations: $$byx = \frac{\sum xy}{\sum x^2} = \frac{18}{70} = 0.257$$ $$bxy = \frac{\sum xy}{\sum y^2} = \frac{18}{40} = 0.45$$ #### Regression Equation of Y on X $Y - \overline{Y} = byx (X - \overline{X})$ Y-5=0.257(X-7) Y-5 = 0.257X - 1.799 Y = 0.257X + 3.201 ### Regression Equation of X on Y $X - \overline{X} = bxy(Y - \overline{Y})$ X-7=0.45(Y-5)X-7=0.45Y-2.25 X = 0.45Y - 2.25 + 7 X = 0.45Y + 4.75 Linear Regression Analysis The following are the intermediate results of the two series X and Y: $\bar{X} = 90, \bar{Y} = 70, N = 10, \Sigma x^2 = 6360, \Sigma y^2 = 2860, \Sigma y = 2860$ The following an expension of the two series X $\bar{X} = 90, \bar{Y} = 70, N = 10, \Sigma x^2 = 6360, \Sigma y^2 = 2860, \Sigma xy = 3900$ (Where x and y are deviations from the respective means) Find two regression equations. Regression Coefficient of Y on X $$byx = \frac{\sum xy}{\sum x^2} = \frac{3900}{6360} = 0.613$$ Regression Coefficient of X on Y $$bxy = \frac{\Sigma xy}{\Sigma y^2} = \frac{3900}{2860} = 1.363$$ Regression Equation of X on Y $X - \overline{X} = bxy(Y - \overline{Y})$ X-90 = 1.363 (Y-70) X - 90 = 1.363Y - 95.41 X = 1.363Y - 5.41 Regression Equation of Y on X $Y - \overline{Y} = byx(X - \overline{X})$ Y-70=0.613(X-90) Y-70 = 0.613X-55.17 Y = 0.613X + 14.83 Example 11. The following table gives the aptitude test scores and productivity indices of 10 workers at random: | | The second secon | |----------------|--| | Aptitude score | Productivity index | | 60 | 68 | | 62 | 60 | | 65 | 62 | | 70 | 80 | | . 72 | 85 | | 48 | 40 | | 53 | 52 | | 73 | 62 | | 65 | 60 | | 82 | 81 | Estimate: (i) the test score of a worker whose productivity index is 75. (ii) the productivity index of a worker whose test score is 92. | Aptitude | $(\overline{X} = 65)$ | Calculation x ² | Productivity
index
Y | $(\overline{Y} = 65)$ | 1 my2 | 12 | |------------|-----------------------|----------------------------|----------------------------|-----------------------|---------------------|-------| | Score
X | | 25 | 68 | + 3 | 9 | | | 60 | -5 | | 60 | -5 | 25 | -15 | | 62 | -3 | 9 | 62 | -3 | 9 | + 15 | | 65 | 0 | 25 | 80 | + 15 | 225 | 0 | | 70 | + 5 | 49 | 85 | + 20 | 400 | + 7 | | 72 o | + 7 | 289 | 40 | -25 | 625 | + 14 | | 48 | -17 | | 52 | -13 | 169 | +42 | | 53 | -12 | 144 | 62 | -3 | 9 | -2 | | 73 | +8 | 64 | 60 | -5 | 25 | 0 | | 65 | 0 | 289 | 81 | + 16 | 256 | +2 | | 82 | + 17 | 10.00 | $\Sigma Y = 650$ | $\Sigma y = 0$ | $\Sigma y^2 = 1752$ | Σxy = | | X = 650 | $\Sigma x = 0$ | $\Sigma x^2 = 894$ | 21 - 050 | | - Ly -1752 | Liy= | $$\overline{X} = \frac{\Sigma X}{N} = \frac{650}{10} = 65 : \overline{Y} = \frac{\Sigma Y}{N} = \frac{650}{10} = 65$$ Regression Equation of X on Y: $X - \overline{X} = bxy(Y - \overline{Y})$ uation of X on Y: $$X = X = 33$$ $bxy = \frac{\sum xy}{\sum y^2} = \frac{1044}{1752} = +0.596$ $$X - 65 = 0.596 (Y - 65)$$ $$X - 65 = 0.596 \text{ Y} - 38.74$$ $$X = 26.26 + 0.596 \text{ Y}$$ For finding out the test score (X) of a person whose productivity index (Y) is 75, pd Y = 75 in the above equation: $$X_{75} = 26.26 + 0.596(75) = 26.26 + 44.7 = 70.96.$$ Regression Equation of Y on X: $Y - \overline{Y} = byx(X - \overline{X})$ $$byx = \frac{\Sigma xy}{\Sigma x^2} = \frac{1044}{894} = +1.168$$ $$Y-65 = 1.168 (X-65)$$ $$Y - 65 = 1.168 \text{ X} - 75.92 \text{ or } Y = -10.92 + 1.168 \text{ X}$$ For finding out the productivity index (Y) of a worker whose test score (X) is 92, put X = 92 in the above according to the productivity of the productivity index (Y) of a worker whose test score (X) is 92, and 92 in the above according to the productivity of put X = 92 in the above equation. $$Y_{92} = -10.92 + 1.168(92)$$ = -10.92 +107.456 = 96.536 Linear Regression Analysis MPORTANT TYPICAL EXAMPLES MPON. The following table shows the number of motor registrations in a certain territory for a term of 5 years and the sale of motor tyres by a firm in that territory for the same period: | | * 1 | 2 | | Tor the same | | | |------------------------------|-------|-------|-------|--------------|-------|--| | Year:
Motor registration: | 600 | 630 | 3 | 4 | 5 | | | | 1,250 | 1,100 | 720 . | 750 | 800 | | | No. of tyres sold: | 1,230 | 1,100 | 1,300 | 1,350 | 1,500 | | Find the regression equation to estimate the sale of tyres when motor registration is known. Estimate the sale of tyres when registration is 850. Let X denotes number of motor registrations and Y denotes the number of tyres sold by a firm. To simplify the calculation, let $$x = \frac{X - \overline{X}}{i_x} \qquad \qquad y = \frac{Y - \overline{X}}{i_y}$$ | | | | , | | | | |-------------------------|-----------------------------------|--------------------|---------------------------|-----------------------------------|-------------------|---------| | X | $x = \frac{X - \overline{X}}{10}$ | x ² | Y | $y = \frac{Y - \overline{Y}}{50}$ | y ² | хy | | 600 | -10 | 100 | 1,250 | -1 | 1 | + 10 | | 630 | -7 | 49 | 1,100 | -4 | 16 | + 28 | | 720 | 2 | 4 | 1,300 | 0 | 0 | 0 | | 750 | 5 | 25 | 1,350 | +1 | 1 | + 5 | | 800 | 10 | . 100 | 1,500 | +4 | 16 | + 40 | | $\sum X = 3500$ $N = 5$ | $\Sigma x = 0$ | $\Sigma x^2 = 278$ | $\Sigma Y = 6500$ $N = 5$ | $\Sigma y = 0$ | $\Sigma y^2 = 34$ | Σxy= 83 | $$\overline{X} = \frac{3500}{5} = 700, \quad
\overline{Y} = \frac{6500}{5} = 1300$$ Here, we have the regression of Y on X. $$byx = \frac{\sum xy}{\sum x^2} \times \frac{i_y}{i_x} = \frac{83}{278} \times \frac{50}{10} = 1.4928$$ ### Regression Equation of Y on X $$Y - \overline{Y} = byx(X - \overline{X})$$ $$Y-1300 = 1.4928 (X-700)$$ $$Y-1300 = 1.4928X - 1044.96$$ $$Y = 1.4928X + 255.04$$ The estimate of sale of tyres (Y) when registration X = 850 is given by $$Y = 1.4928 \times 850 + 255.04$$ $$= 1268.88 + 255.04 = 1523.92 \approx 1524$$ since the number of tyres cannot be fractional. Example 13. Calculate the correlation coefficient from the following results: $$N = 10$$, $\Sigma X = 350$, $\Sigma Y = 310$ $\Sigma (X - 35)^2 = 162$, $\Sigma (Y - 31)^2 = 222$, $\Sigma (X - 35)(Y - 31) = 92$ Also find the regression line of Y on X. Solution: Iso find the regression in $$\overline{X} = \frac{\Sigma X}{N} = \frac{350}{10} = 35$$ $$\overline{Y} = \frac{\Sigma Y}{N} = \frac{310}{10} = 31$$ Thus, the given deviations (X-35) and (Y-31) are from actual means $(\bar{X}=35, \bar{Y}=31)$. Thus, $\Sigma(X-35)^2 = 162$ or $\Sigma x^2 = 162$ $$y = Y - \overline{Y}$$ $$\Sigma(X - 35)^2 = 162$$ of $\Sigma(X - 31)^2 = 222$, or $\Sigma(X - 31)^2 = 222$, or $\Sigma(X - 31)^2 = 222$ $$2(1-31)$$ = 92 or $\Sigma xy = 92$ $\Sigma(X-35)(Y-31)=92 \text{ or } \Sigma xy=92$ $$\frac{\sum (X-3)(1-3)}{\text{Coefficient of Correlation}} \frac{\sum xy}{\sqrt{\sum x^2} \sqrt{\sum y^2}} = \frac{92}{\sqrt{162} \sqrt{222}} = +0.485$$ Regression Equation of Y on X $$y - \overline{Y} = byx (X - \overline{X})$$ $$byx = \frac{\sum xy}{\sum x^2} = \frac{92}{162} = 0.568$$ $$y-31 = 0.568(X-35)$$ $$y-31 = 0.568X-19.88$$ $$y = 0.568X-19.88+31$$ $$y = 0.568X+11.12$$ ### • Graphing Regression Lines It is quite easy to graph the regression lines once they have been computed. The procedure unted is as follows: adopted is as follows: (i) Regression line of X on Y. The regression line of X on Y can be drawn with the help of regression equation of X on Y, i.e., $$X = a + bY$$ If we put the respective values of Y in the above regression equation, we will find the estimated values of X. If we plot estimated values of X with the actual values of Y on the graph, we can draw regression line of Y or $\frac{1}{2}$ graph, we can draw regression line of X on Y. (ii) Regression line of Y on X. The regression line of Y on X can be drawn with the help of regression equation of Y on Y : regression equation of Y on X, i.e., $$Y = a + bX$$ Linear Regression Analysis If we put the respective values of X in the above equation, we will find the estimated values of Y. If we plot estimated values of Y with the actual values of X on the graph, we can draw regression line of Y on X. regression in the following example illustrate the graphing of regression lines. Example 14. From the following data: (i) Obtain the two regression equations. (i) Draw up the two regression lines on the graph paper with the help of two regression equations. | X: | 1 | 2 | 3 | |----|---|---|---| | Y: | 5 | 4 | 6 | Calculation of Regression Equation | <i>X</i> | $\overline{X} = 2$ | x ² | Y | $\overline{Y} = 5$ | y ² | ху | |----------------------|--------------------|------------------|-------------------------|--------------------|------------------|--------| | 1 . | -1 | 1 | 5 | 0 | 0 | 0 | | 2 | 0 | 0 | 4 | -1 | 1 | 0 | | 3 | +1 | 1 | 6 | +1 | 1 | +1 | | $\sum X = 6$ $N = 3$ | $\Sigma x = 0$ | $\Sigma x^2 = 2$ | $\Sigma Y = 15$ $N = 3$ | $\Sigma y = 0$ | $\Sigma y^2 = 2$ | Σxy=+1 | $$\overline{X} = \frac{\Sigma X}{N} = \frac{6}{3} = 2; \qquad \overline{Y} = \frac{15}{3} = 5$$ $$byx = \frac{\Sigma xy}{\Sigma y^2} = \frac{1}{2} \qquad bxy = \frac{\Sigma xy}{\Sigma y^2} = \frac{1}{2}$$ Regression Equation of Y on X Regression Equation of X on Y $Y - \overline{Y} = byx (X - \overline{X})$ $X - \overline{X} = bxy(Y - \overline{Y})$ $Y-5=\frac{1}{2}(X-2)$ $Y = \frac{1}{2}X + 4$ (ii) Regression Lines: In order to draw up the two regression lines on the graph, we shall have to plot the given values of X and the computed values of Y and the given values of Y and the computed values of X Computed Values of Y Computed Values of X Regression equation of Y on X Regression equation of X on Y $$Y = \frac{1}{2}X + 4$$ $$X = \frac{1}{2}Y - \frac{1}{2}$$ when $$X = 1$$, $Y = \frac{1}{2}(1) + 4 = 4.5$ when $$X = 2$$, $Y = \frac{1}{2}(2) + 4 = 5.0$ when $$X = 3$$, $Y = \frac{1}{2}(3) + 4 = 5.5$ when $$Y = 6$$, $X = \frac{1}{2}(6) - \frac{1}{12}$ Example 15. Compute the appropriate regression equation for the following data: | X (Independent variable) | Y (Dependent variable) | |--------------------------|------------------------| | 2 | 18 | | 4 | 12 | | 5 | 10 | | 6 | 8 | | 8 | 7 | | 11 | | Solution: The appropriate regression e | Х | $\overline{X} = 6$ | x ² | Y | $\overline{Y} = 10$ | y ² xy | |-----------------|--------------------|-------------------|-----------------|---------------------|-------------------------------| | 2 | -4 | 16 | 18 | 8 | 64 -34 | | 4 | -2 | 4 | 12 | 2 | 4 | | -5 | -1 | 1 | 10 | 0 | 0 0 | | 6 | 0 | 0 | 8 | -2 | 4 -6 | | 8 | + 2 | 4 | 7 | -3 | 9 -2 | | $\Sigma X = 36$ | + 5 | 25 | 5 | -5 | 25 Exy | | 2x = 36 | $\Sigma x = 0$ | $\Sigma x^2 = 50$ | $\Sigma Y = 60$ | $\Sigma_{\nu} = 0$ | $\Sigma y^2 = 106$ Σy | Regression Equation of Y on X $Y - \overline{Y} = byx(X - \overline{X})$ Y-10=-1.34(X-6) Y-10 = -1.34X + 8.04Y = -1.34X + 18.04 ## EXERCISE 2.3 For the following data, set up regression equation and estimate sales for an advertisement expenditure of Rs. 75 lakh. | Sales (Rs. crore): | 14 | 16 | 18 | 20 | 24 | 30 | 32 | |------------------------------|------|----|----|----|----|----|----| | Adv. expenditure (Rs. lakh): | . 52 | 62 | 65 | 70 | 76 | 80 | 70 | [Hint: Let X denote sales) Y: [Ans. X = 0.621Y - 20.85, X_{75} , = 25.725] 2. Find the correlation coefficient and the equations of regression lines for the following values 11 7 8 10 8 [Ans. r = 0.884, X = 0.75 + 1.25Y, Y = 0.625 + 0.625X] 3. The following data relate to marketing expenditure and the corresponding sales: | Expenditure (X) (Rs. lac): | 10 | 10- | - 16 | 2θ | 23 | |----------------------------|----|-----|------|----|----| | Sales (V) (D | 10 | 12 | 13 | 20 | 23 | | Sales (Y) (Rs. crore): | 14 | 17 | 23 | 21 | 35 | Estimate the marketing expenditure to obtain a sales target of Rs. 40 crore. [Ans. $X = 0.59Y + 3.02; X_{60} = 26.62]$ The following are the intermediate results of the two series X and Y (Where $\bar{X} = 65, \bar{Y} = 65, N = 10, \Sigma x^2 = 894, \Sigma y^2 = 1752, \Sigma xy = 1044$ (Where x and y are deviations from the respective means) Find two regression equations. Also estimate Y when X = 92 and X when Y = 75. [Ans. Y = 1.168X - 10.92, $Y_{92} = 96.536$; X = 0.596Y + 26.26, $X_{75} = 70.96$] | data: | 11 14 | 14 | 17 | 17 | 21 | 331 | |----------------------------------|---------------|----------|---------|-----------|------------|-------| | - Intion (*000) (X): | 15 27 | 27 | 30 | 34 | 38 | 25 | | No. of T.V. sets demanded (Y): | of Y on X and | estimate | the dem | and for T | | 46 | | 1. 1. to the regression equation | 01 1 0 | | | [Ann W | . sets for | a to. | Calculate the resonant of 30 thousand. with a population of 30 thousand. with a population of 30 thousand. With a population of 30 thousand. A departmental store gives in-service training to its salesmen which is followed by a test. It is considering whether it should terminate the service of any salesman who does not do well in considering whether it should terminate the service of any salesman who does not do well in the test. The following data give the test scores and sales made by nine salesmen during a the test. The following data give the test scores and sales made by nine salesmen during a threat of the salesmen during a s | rtain period: | Γ., | 19 | 24 | 21 | 26 | 22 | 15 | 20 | |---------------|-----|----|----|----|----|----|----|----| | st scores: | 14 | 26 | 48 | 37 | 50 | 45 | 33 | 41 | Sales (90 RS.): Calculate the coefficient of correlation between the test scores and the sales. Does it indicate that the termination of services of low test scores is justified? If the firm wants a minimum that the termination of services of low test score that will ensure continuous. that the termination of services of for the state of sales volume of its. 3,000, while its sales volume of a sales man making a score of 28, service? Also estimate the most probable sales volume of a sales man making a score of 28. [Ans. r = 0.9471, justified, $X = 14.422 \approx 14$, Y = 5286.64] [Hint: See Example 57] 7. The following table gives the marks in Economics and Statistics of 10 students selected at | Marks in Economics: | 25 | 28 | 35 | 32 | 31 | 36 | 29 | 38 | 34 | 32 | |----------------------|----|----|----|----|----|----|------|------|----|----| | Marks in Statistics: | 43 | 46 | 49 | 41 | 36 | 32 | 31 - | . 30 | 33 | 39 | Find (i) The two regression equations. (ii) The coefficient of correlation between marks in Economics and Statistics. (iii) The most likely marks in statistics when marks in economics are 30. [Ans. (i) X = -0.2337Y + 40.8806, Y = -0.6643 X + 59.25% (ii) Y = -0.394, (iii) 39.3286, or 39 marks | ٠. | The profits (Y) of a compa | my in the X | th year of its | life were as | follows: | | |----|-------------------------------|-------------|----------------|--------------|----------|------| | | Years of life (X): | 1 | 2 | 3 | 4 | 5 | | | Profits (Y) (in lakh of Rs.): | 1250 | 1400 | 1650 | 1950 | 2300 | Estimate the profit of a company in the 6th year. 9. From the following data: [Ans. Y = 265X + 915, $Y_6 = \text{Rs.}2505 \text{ lakh}$] (i) Obtain the two regression equations. (ii) Draw up to | (: | 65 | 66 | (n) | ph paper. | | \top | |----|----|----|-----|-----------|-----------------|--------| | | 67 | | 67 | 68 | 69 | - | | - | 07 | 68 | 64 | 70 | 70 $X = 0.462Y$ | 1 | Linear Regression Analysis (3) Using Deviations taken from Assumed Means
Using Deviations When actual means turn out to be in fractions rather than the whole numbers like 24.69, 25.12 When actual means and countries like 24.69, 25.12 When actual means turn out to be in fractions rather than the whole numbers like 24.69, 25.12 the in it becomes difficult to take deviations from actual means and squaring them up. To avoid sign difficulty, deviations from assumed means rather than actual means are used. In such case, regression equations are expressed as follows: Regression Equation of Y on X 101 Regression Equation of Y on X $$Y - \overline{Y} = byx (X - \overline{X})$$ $$Y-Y=byx(X-X)$$ Here, byx = Regression coefficient of Y on X. Using deviations from assumed means, the value of byx can be calculated as: integrations from assumed means, the $$byx = \frac{N \times \Sigma dxdy - \Sigma dx \cdot \Sigma dy}{N \cdot \Sigma dx^2 - (\Sigma dx)^2}$$ $$byx = \frac{\sum dxdy - \frac{\sum dx \cdot \sum dy}{N}}{\sum dx^2 - \frac{(\sum dx)^2}{N}}$$ Where, $dx = X - A_x$, $dy = Y - A_y$ Regression Equation of X on Y $$X - \overline{X} = bxy(Y - \overline{Y})$$ Where, bxy= Regression coefficient of X on Y. Using deviations from assumed means, the value of bxy can be calculated as: $$bxy = \frac{N \times \Sigma dx dy - \Sigma dx \cdot \Sigma dy}{N \cdot \Sigma dy^2 - (\Sigma dy)^2}$$ or $$\Sigma dx dy - \frac{\Sigma dx \cdot \Sigma dy}{N}$$ $$bxy = \frac{\sum dx dy - \frac{\sum dx \cdot \sum dy}{N}}{\sum dy^2 - \frac{(\sum dy)^2}{N}}$$ Where, $dx = X - A_x$, $dy = Y - A_y$ The following examples will clarify this method. Example 16. Obtain the two reg | - Stati | i die ti | vo regi | ression | equat | ions to | r the f | ollowi | ng dat | a: | -27 | | | |---------|----------|---------|---------|-------|---------|---------|--------|--------|------|-----|----|----| | X: | 43 | 44 | 46 | 40 | 44 | 42 | 45 | 42 | 38 | 40 | 52 | 57 | | Y; | 29 | . 31 | 19 | 18 | 19 | 27 | 27 | .29 | . 41 | 30 | 26 | 10 | Also find the value of X when Y = 49 and Y when X = 50. Hence or otherwise find 'r', | Calculation of Regression | Equations | |---------------------------|-----------| | Calculation | | | | A = 42 | dx ² | Y | A = 27 dy | dy ² | dxdy | |-------------------------|------------------|---------------------|------------------|-------------------|---------------------|-----------| | ^ | dx | 1 | 29 | 2 | 4 | | | 43 | 1_1_ | 4 | 31 | 4 | 16 | 2 | | 44 | 2 | 16 | 19 | -8 | 64 | - | | 46 | 4 | 4 | 18 | -9 | 81 | -32 | | 40 | -2 | 4 | 19 | -8 | 64 | -16 | | 44 | - 2 | 0 | 27 = A | 0 | 0 | -16 | | 42 : | 0 | 9 | 27 | 0 | 0 | 0 | | 45 | 3 | 0 | 29 | 2 | 4 | -: 0 | | 42 = A | 0 | 16 | 41 | 14 | 196 - | -56 | | 38 | -4 | 4 | 30 | 3 | 9 | -6 | | 40 | -2 | 100 | 26 | -1 | 1 - | -10 | | 52 | 10 | 225 | 10 | -17 | . 289 | -255 | | 57 | | | $\Sigma Y = 306$ | $\Sigma dy = -18$ | $\Sigma dy^2 = 728$ | | | $N = 12$ $\sum X = 533$ | $\Sigma dx = 29$ | $\Sigma dx^2 = 383$ | 21 - 300 | | Zuy - 128 | Zaxay≡ _3 | $$\overline{X} = \frac{\Sigma X}{N} = \frac{533}{12} = 44.42,$$ $$\overline{Y} = \frac{\Sigma Y}{N} = \frac{306}{12} = 25.5$$ Since the actual means of X and Y are in fractions, we should take deviations from assumed mean to simplify the calculations. to simplify the calculations. $$byx = \frac{N \times \Sigma dxdy - \Sigma dx \cdot \Sigma dy}{N \cdot \Sigma dx^2 - (\Sigma dx)^2}$$ $$= \frac{12 \times (-347) - (29)(-18)}{12 \times 383 - (29)^2} = \frac{-4164 + 522}{4596 - 841} = \frac{-3642}{3755}$$ $$= -0.969 = -0.97$$ $$bxy = \frac{N \times \Sigma dxdy - \Sigma dx \cdot \Sigma dy}{N \cdot \Sigma dy^2 - (\Sigma dy)^2}$$ $$= \frac{12 \times (-347) - (29)(-18)}{12 \times 728 - (-18)^2} = \frac{-4164 + 522}{8736 - 324} = \frac{-3642}{8412}$$ $= \frac{12 \times 728 - (-18)^2}{12 \times 328 - (-18)^2} = 0.432 = -0.43$ Regression Equation of X on Y Regression Equation of Y on X $$X - \overline{X} = bxy(Y - \overline{Y})$$ $X - 44.42 = -0.43(Y - 25.5)$ $$Y - \overline{Y} = byx (X - \overline{X})$$ $$Y - 25.5 = -0.97 (X - 44.42)$$ $$2.07 X + 43.0874$$ $$X = -0.43(Y - 25.5)$$ $$X = -0.43Y + 10.965$$ $$X = -0.43Y + 55.385$$ $$Y-25.5 = -0.97 (\dot{X} - 44.42)$$ $$Y-25.5 = -0.97X + 43.0874$$ $$Y = -0.97X + 68.5874$$ Linear Regression Analysis When Y = 49, X = -0.43Y + 55.385= -0.43 (49) + 55.385 =-21.07+55.385 $X_{49} = 34.315$ Coefficient of Correlation When X = 50, Y = -0.97(50) + 68.5874= -48.5 + 68.5874 = 20.0874 $Y_{50} = 20.0874$ $r = \sqrt{byx.bxy}$ $$= -\sqrt{(-0.97) \times (-0.43)} = -0.645$$ Example 17. Obtain the regression equation of Y on X from the following data: | | | | | | | Guan | a. | | |----|-----|-------------|---------------|-----|-----|------|-----|-----| | X: | 78 | 89 | 97 | .69 | 59 | 79 | 68 | - | | V: | 125 | 137 | 156 | 112 | 107 | 126 | 00 | 61 | | | | and deather | - A - A - A - | - | 107 | 136 | 124 | 108 | Calculation of Regression Equations | X | A = 69 dx | dx ² | Y | A = 112 | dy ² | dxdy | |--------------------------|------------------|----------------------|-----------|-----------|----------------------|-----------------| | 78 | +9 | 81 | 125 | +13 | 169 | .+117 | | 89 | +20 | 400 | 137 | +25 | 625 | +500 | | 97 | +28 | 784 | 156 | +44 | 1936 | +1232 | | 69 = A | 0 | -0 | 112 = A | 0 | 0 | 0 | | 59 | -10 | 100 | 107 | -5 | 25 | +50 | | 79 | +10 | 100 | 136 | +24 | 576 | +240 | | 68 | -1- | 1 | 124 | +12 | 144 | -12 | | 61 | -8 | 64 | 108 | -4 | 16 | +32 | | $N = 8$ $\Sigma X = 600$ | $\Sigma dx = 48$ | Σdx^2 = 1530 | ΣY = 1005 | Σdy = 109 | $\Sigma dy^2 = 3491$ | Σdxdy
= 2159 | $$\overline{X} = \frac{\Sigma X}{N} = \frac{600}{8} = 75, \quad \overline{Y} = \frac{\Sigma Y}{N} = \frac{1005}{8} = 125.625$$ $$byx = \frac{N \cdot \Sigma dxdy - \Sigma dx \cdot \Sigma dy}{N \cdot \Sigma dx^2 - (\Sigma dx)^2}$$ $$= \frac{8 \times 2159 - (48)(109)}{8 \times 1530 - (48)^2} = \frac{17272 - 5232}{12240 - 2304} = \frac{12040}{9936} = 1.212$$ Regression Equation of Y on X $$Y - \overline{Y} = byx (X - \overline{X})$$ $$Y - 125.625 = 1.212(X - 75)$$ $$Y - 125.625 = 1.212X - 90.9$$ Y = 1.212X + 34.725 IMPORTANT TYPICAL EXAMPLES Example 18. A panel of judges A and B graded seven independently and awarded the following the following seven independently and awarded seven independently and awarded seven independently s Debator: 30 38 Marks by A: 26 Marks by B: Marks by B: An eight debator was awarded 36 marks by Judge A while Judge B was not present life to the B was also present, how many marks would you expect him to awarded B was also present, how many marks would you expect him to awarded B was also present. ear Regression Analysis An eight debator was awarden to make by studge A writte Judge B was not present if the Judge B was also present, how many marks would you expect him to award to eighth debator assuming degree of relationship exists in judgement? eighth debator assuming august. Let marks awarded by Judge A be denoted by X and marks awarded by judge B be denoted by Y. The marks expected to be awarded by Judge B can be determined by a containing of Y on X. fitting regression equations of Y on X. Calculation of Regression Equations | - | | | The second second | | 110 0 150 | | |---------|---|------------------|-------------------|---------------------|--|--| | A = 30 | dx ² | Y | A = 30
dy | dy ² | dxdy | | | _ | 100 | 32 | 2 | 4 | 20 | | | | 16 | 39 | 9 | 81 | 36 | | | - | 4 | 26 | -4 | 16 | 8 | | | | 0 | 30 = A | 0 | . 0 | 0 | | | - | 196 | 38 | 8 | 64 | 112 | | | 8 | 64 | 34 | 4 | 16 | 32 | | | 1 | 1 | 28 | -2 | 4 | -2 | | | Σdx =35 | $\Sigma dx^2 = 381$ | $\Sigma Y = 227$ | $\Sigma dy = 17$ | $\Sigma dy^2 = 185$ | Σdxdy = 206 | | | | A = 30
dx
+10
+4
-2
0
14
8 | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | $$\overline{X} = \frac{\Sigma X}{N} = \frac{245}{7} = 35, \quad \overline{Y} = \frac{\Sigma Y}{N} = \frac{227}{7} = 32.43$$ $$byx = \frac{N \cdot \Sigma dxdy - \Sigma dx \cdot \Sigma dy}{N \cdot \Sigma dx^2 - (\Sigma dx)^2}$$ $$= \frac{7 \times 206 - (35)(17)}{7 \times 381 - (35)^2}$$ $$= \frac{1442 - 595}{2667 - 1225} = \frac{847}{1442} = 0.587$$ Regression Equation of Y on X $$Y - \overline{Y} = byx (X - \overline{X})$$ $Y - 32.43 = 0.587 (X - 35)$ $Y - 32.43 = 0.587X - 20.545$ $Y = 0.587X + 11.885$ Linear Regression AL For X = 36, Y shall be y = 36, 1 shall so y = 0.587(36) + 11.885 = 21.132 + 11.885 = 33.017 or 33 approx. Thus, if the Judge B was also present, he would have awarded 33 marks to the eighth debator. Example 19. Simple observations obtained to study the relation between the measure of the waist and the length of the trousers are shown as under: | of the | 70 | 72.5 | 75 | 77.6 | - | | | | | | |----------------------------------|-----|------|-----|------|-----|------|----|------|-----|------| | Measure of the
Waist (in cm): | | 72.0 | ,,, | 77.5 | 80 | 82.5 | 85 | 87.5 | 90 | 92.5 | | Length of | 100 | 102 | 100 | 95 | 105 | - | - | | | | | Trousers (in cm): | | | | 1 23 | 105 | 110 | 95 | 98 | 100 | 105 | | Trousers (in cm): | | | | ,,, | 103 | 110 | 95 | 98 | | 100 | Obtain the line of best fit (regression) of length of trousers on measurement of the waist. Calculate the coefficient of determination. Let X = measure of waist and Y = length of trousers. Solution: Here, N = 10, $\Sigma X = 812.5$, $\Sigma Y = 1010$ $$\overline{X} = \frac{\Sigma X}{N} = \frac{812.5}{10} = 81.25$$ and $\overline{Y} = \frac{\Sigma Y}{N} = \frac{1010}{10} = 101$ Since, \overline{X} is not an integer, we will take the deviation of X from assumed value. Taking dx = X - 80 and dy = Y - 101. The calculations are: | X | dx | dx ² | Y and | dy | dy ² | dxdy | |--------------------|--------------------|------------------------|-------------------|-----------------|---------------------|----------------------| | 70 | - 10 | 100 | 100 | -1 | 1 - | 10 | | 72.5 | - 7.5 | - 56.25 | 102 | +1 | 1 | -7.5 | | 75 | -5 | 25 | 100 | -1 | 1 | + 5 | |
77.5 | - 2.5 | 6.25 | 95 | -6 | 36 | + 15 | | 80 = A | 0 | 0 | 105 | +4 | 16 | 0 | | 82.5 | 25 | 6.25 | 110 | +9 | 81 | + 22.5 | | 85 | items 5 amir | 25 | 95 | -6 | 36 | -30 | | 87.5 | 7.5 | 56.25 | 98 | 3 | 9 | - 22.5 | | 90 | 10 | 100 | 100 | -1 | 1 | -10 | | 92.5 | 12.5 | 156.25 | 105 | +4 | 16 | + 50 | | $\Sigma X = 812.5$ | $\Sigma dx = 12.5$ | $\Sigma dx^2 = 531.25$ | $\Sigma Y = 1010$ | $\Sigma dy = 0$ | $\Sigma dy^2 = 198$ | $\Sigma dxdy = 32.5$ | Regression Coefficient of Y on X: $$byx = \frac{N \times \Sigma dxdy - \Sigma dx \cdot \Sigma dy}{N \cdot \Sigma dx^2 - (\Sigma dx)^2}$$ $$= \frac{(10 \times 32.5) - (12.5 \times 0)}{(10 \times 531.25) - (12.5)^2} = \frac{325}{5312.5 - 156.25}$$ $$= \frac{325}{5156.25} = 0.06$$ Line of regression of length of trousers on the ma of regression of You X is easurement of the waist, i.e., the line Line of regression of Y on X is of regression of $$Y - \overline{Y} = byx(X - \overline{X})$$ $$Y - \overline{Y} = byx(X - \overline{X})$$ $$Y - 101 = 0.06(X - 81.25)$$ $$Y - 101 = 0.06(X - 81.25)$$ $$Y-101 = 0.06(X-61.25)$$ $Y-101 = 0.06X-4.875$ $Y = 0.06X+96.125$ Coefficient of Determination: $$r^{2} = \left[\frac{N \sum dxdy - (\sum dx) \cdot (\sum dy)}{\sqrt{N \sum dx^{2} - (\sum dx)^{2}} \sqrt{N \sum dy^{2} - (\sum dy)^{2}}} \right]^{2}$$ $$= \left[\frac{(10 \times 32.5) - (12.5 \times 0)}{\sqrt{10 \times 531.25 - (12.5)^{2}} \sqrt{10 \times 198 - 0}} \right]^{2}$$ $$= \left[\frac{325}{\sqrt{5312.5 - 156.25} \times \sqrt{1980}} \right]^{2} = \left[\frac{325}{\sqrt{5156.25} \times \sqrt{1980}} \right]^{2}$$ $$= \frac{(325)^{2}}{5156.25 \times 1980} = \frac{105625}{10209375} = 0.01$$ Example 20. For a bivariate data, you are given the following information: $$\Sigma(X-58)=46$$ $\Sigma(X-58)^2=3086$ $$\Sigma(Y-58)=9$$ $\Sigma(Y-58)^2=483$ $$\Sigma (X-58)(Y-58)=1095$$ N = 7 (Assumed means of X and Y series are both 58) You are required to determine (i) the two regression equations and (ii) the coefficient of correlation between X and Y series. Solution: Since the assumed means of X and Y series are both 58, we have, $$\begin{aligned} \sum \Delta x &= 46, & \sum \Delta x^2 &= 3086 \\ \sum \Delta y &= 9 & \sum \Delta y^2 &= 483 \end{aligned}$$ $$\sum \Delta x dy &= 1095 & N = 7$$ $$byx &= \frac{N \cdot \sum \Delta x dy - \sum \Delta x \cdot \sum \Delta y}{N \cdot \sum \Delta x^2 - (\sum \Delta x)^2}$$ $$&= \frac{7 \times 1095 - (46)(9)}{7 \times 3086 - (46)^2}$$ $$&= \frac{7665 - 414}{21602 - 2116} = \frac{7251}{19486} = 0.37$$ Linear Regression Analysis $$bxy = \frac{N \cdot \Sigma dxdy - \Sigma dx \cdot \Sigma dy}{N \cdot \Sigma dy^2 - (\Sigma dy)^2}$$ $$= \frac{7 \times 1095 - (46)(9)}{7 \times 483 - (9)^2} = \frac{7251}{3300} = 2.20$$ Further, $$\overline{X} = A + \frac{\Sigma dx}{N} = 58 + \frac{46}{7} = 64.57$$ $$\overline{Y} = A + \frac{\Sigma dy}{N} = 58 + \frac{9}{2} = 59.29$$ 107 Regression Equation of X on Y: $$X - \overline{X} = bxy(Y - \overline{Y})$$ $$X - 64.57 = 2.20(Y - 59.29)$$ $$X - 64.57 = 2.20Y - 130.44$$ $$X=2.20Y-130.44+64.57$$ $X=2.20Y-65.87$ Regression Equation of Y on X: $Y - \overline{Y} = byx (X - \overline{X})$ $$Y-59.29=0.37(X-64.57)$$ $$Y-59.29=0.37X-23.891$$ $$Y = 0.37X - 23.891 + 59.29$$ $$Y = 0.37X + 35.399$$ $$r = \sqrt{bxy \cdot byx}$$ $$r = \sqrt{2.20 \times 0.37} = 0.902$$ ### EXERCISE 2.4 1. Obtain the two regression equations for the following data: | X: ' | 8 | 6 | 4 | 7 | 5 | 3 | |------|---|-----|---|---|---|---| | Y: | 9 | . 8 | 5 | 6 | 2 | 6 | Also find the coefficient of correlation from the regression coefficients. [Ans. X = 3.1 + 0.4Y; Y = 2.23 + 0.685X; r = 0.523] | the two regre | | quation | is from | the fol | lowing | data: | | | | | |---------------------|----|---------|---------|---------|--------|-------|----|----|----|----| | Age of husband (X): | | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | | Age of wife (Y): | 17 | 17. | 18 | 18 | 18 | 19 | 19 | 20 | 21 | 21 | Also find the coefficient of correlation from the regression coefficients. [Ans. Y = 0.47X + 8.225, X = 1.99Y - 14.9, r = +0.967] | 08 | | . :00 | hes are: | | | | _ | _ | | |-------|------------------------|----------------|----------|--------|---------|-------|---------|----------|-------| | | c cathers an | d sons in inc. | T 60 T | 71 | 73 | 67 | 68 | 70 | 70 | | 3. Th | e height of fathers an | 66 68 | 69 | 70 | 69 | 70 | 68 | 68 | 12 69 | | Не | eight of Fathers: 67 | 68 64 | 12 1 | the fa | ther is | 64 in | ches, a | ind (ii) | 13 65 | Istight of Soan: Stimate (i) the height of son if the height of the father is 64 inches, and (ii) the stimate (i) the height of son is 71. Society of Soans of Spearman's coefficient of correlation between them. [Ans. (i) 66.18, (ii) 69.2 1/12-1 nd (ii) the height of f correlation between them. [Ans. (i) 66.18, (ii) 69.2, (iii) R = 0.4636 | | | of 10 un | iversity te | | | | | | | |----|---------------------|--------------------|-------------|-----|----------|-----------|------|-----|-----| | , | The age and blood I | pressure of 10 and | 6 47 | 49 | 42 | 60 | - 72 | 63 | \ | | 4. | Age: | 56 42 30 | 8 128 | 145 | 140 | 155 | 160 | 149 | 55 | | | Plood Pressure: | 147 125 11 | | - | l-land m | #0.0011#0 | | | 150 | - (i) Find the correlation coefficient between age and blood pressure. - (ii) Determine the least square regression equation of blood pressure on age. (iii) Estimate the blood pressure of a teacher whose age is 45 years. - [Ans. r = 0.89, Y = 1.11X + 83.758, $Y_{45} = 133.708 = 134$] [Hint: See Example 51] - [Hint: See Example 1] 5. The following table gives age (X) in years of cars and annual maintenance cost (Y) in - hundred rupees: - 5 X: 23 - 18 Y: Estimate the maintenance cost for a 4 year old car after finding the regression equation. [Ans. Y = 0.95X + 15.05; Y₄=18.85] | 6. | Obtain the two regression equations from the following data. | | | | | | | | | | | |----|--|----|----|---|---|----|--|--|--|--|--| | | X: | 4 | 5 | 6 | 8 | 11 | | | | | | | | V: | 12 | 10 | 8 | 7 | 5 | | | | | | Verify that the coefficient of correlation is the geometric mean of the two regression coefficients. [Hint: See Example-50] [Ans. $$X = 15.024 - 0.979Y$$; $Y = -0.929X + 14.717$; $r = -0.954$] - 7. Calculate from the following data: - (i) Two regression equations - (ii) Coefficient of correlation - (iii) Most likely value of X when Y = 10. | X:
Y: | 45 | 55 | 56 | 58 | 60 | 65 | 68 | 70 | 75 | 80 | |----------|----|----|----|----|----|----|----------------|----|----|----| | Y: | 56 | 50 | 48 | 60 | 62 | 64 | 65
84 + 0.9 | 70 | 74 | 82 | Linear Regression Analysis 10 Obtain Regression Equations from Coefficient of Correlation, Standard Deviations (4) and Arithmetic Means of X and Y: the values of \overline{X} and \overline{Y} , σ_x and σ_y are σ_y and σ_y and σ_y and σ_y and σ_y are σ_y and σ_y and σ_y are are σ_y and σ_y are σ_y are σ_y and σ_y are σ_y are σ_y are σ_y are σ_y are σ_y are σ_y and σ_y are and Arithmeter f(X) and f(X), f(X) and f(X) and f(X) and f(X) and f(X) and f(X) and f(X) are series are given, then regression after a captessed in the following manner: ustions are expression in the following to (1) Regression Equation of Y on X (1) Regression Equation (7.2) $$Y - \overline{Y} = byx(X - \overline{X})$$ where, $$byx = r \cdot \frac{\sigma_y}{\sigma_y}$$ 109 or $$\gamma - \overline{\gamma} = r \cdot \frac{\sigma_y}{\sigma_x} (X - \overline{X})$$ (2) Regression Equation of X on Y $$X - \overline{X} = bxy(Y - \overline{Y})$$ where, $$bxy = r \cdot \frac{\sigma_x}{\sigma_x}$$ or $$X - \overline{X} = r \cdot \frac{\sigma_x}{\sigma_y} (Y - \overline{Y})$$ Note: The above said form, of the regression equation is used only when the values of \overline{X} and \overline{Y} , σ_x and σ_y and r are given. The following examples makes the above said method more clear. nample 21. You are given the following information: | | 1 X | DIES THY LATE IN | |--------------------------|---------|------------------| | Arithmetic mean: | 5 | 12 | | Standard deviation: | 2.6 | 3.6 | | Correlation coefficient: | r = 0.7 | | - (i) Obtain two regression equations. - (ii) Estimate Y when X = 9. - (iii) Estimate X when Y = 12. Given, $$\overline{X} = 5$$, $\overline{Y} = 12$, $\sigma_x = 2.6$, $\sigma_y = 3.6$, $r = 0.7$. (i) Regression Equation of X on Y $$X - \overline{X} = = r \cdot \frac{\sigma_x}{\sigma_x} (Y - \overline{Y})$$ Putting the values in the equation, we get $$X-5=0.7\times\frac{2.6}{3.6}(Y-12)$$ $$X-5=0.51(Y-12)$$ $$X-5=0.51Y-6.12$$ $$X = 0.51Y - 1.12$$ $X = -1.12 + 0.51Y$ $$Y - \overline{Y} = r \cdot \frac{\sigma_y}{\sigma_x} (X - \overline{X})$$ Putting the values in the equation, we get $$y - 12 = 0.7 \times \frac{3.6}{2.6} (X - 5)$$ $$Y-12=0.97(X-5)$$ $$Y-12=0.97(X-9)$$ $Y-12=0.97X-0.97\times 5$ $$Y-12=0.97X-4.85$$ $Y-12=0.97X-4.85$ $$Y = 0.97X - 4.85 + 12$$ $$Y = 0.97X + 7.15$$ $$Y = 0.97X + 7.13$$ $Y = 7.15 + 0.97X$ (ii) Most likely value of Y when X = 9 For this purpose, we use regression of Y on X $$Y = 7.15 + 0.97X$$ Putting X = 9 in the equation, we get $$Y = 7.15 + 0.97(9) = 7.15 + 8.73 = 15.88$$ (iii) Most likely value of X when Y = 12 For this purpose, we use regression of X on Y X = -1.12 + 0.51Y Putting $$Y = 12$$ in the equation, we get $$X = -1.12 + 0.51(12)$$ $X = -1.12 + 6.12 = 5$ Example 22. You are given below the following information about advertisement and sales: | | Adv. Expenditure
(Rs. crore) | (Rs. crore) | |------|---------------------------------|-------------| | Mean | 20 | 120 | | S.D. | 5 - 1 - 1 | . 25 | (i) Calculate the two regression equations. (ii) What should be the advertisement budget if the company wants to attain sale target of Rs 150 areas target of Rs. 150 crore? (iii) Find the most likely sales when advertisement
expenditure is Rs. 25 crore. Let X = Adv. Expenditure and Y = Sales Thus, we have $\bar{X} = 20, \bar{Y} = 120, \sigma_x = 5, \sigma_y = 25, r_{xy} = 0.8$ Linear Regression Analysis (i) (a) Regression Equation of X on Y $$X - \overline{X} = r \cdot \frac{\sigma_x}{\sigma_y} (Y - \overline{Y})$$ $$X-20 = 0.8 \times \frac{5}{25} (Y-120)$$ $$X-20=0.16(Y-120)$$ $$X-20 = 0.16Y-19.2$$ $$X = 0.16Y - 19.2 + 20$$ $$X = 0.16Y + 0.8$$ (b) Regression Equation of Y on X gression Equation of Y on X $$Y - \overline{Y} = r \cdot \frac{\sigma_y}{\sigma_x} (X - \overline{X})$$ $$Y-120 = 0.8 \times \frac{25}{5} (X-20)$$ $$Y-120=4(X-20)$$ $$Y-120 = 4X-80$$ $Y = 40 + 4X$ (ii) When sales target (Y) is Rs. 150 crore, then the advertisement expenditure (X) is X = 0.8 + 0.16Y Put $$Y = 150$$, $X = 0.8 + 0.16(150)$ $$= 0.8 + 24 = 24.8$$ crore. (iii) When advertisement expenditure (X) is Rs. 25 crore, the sales (Y) is $$Y = 40 + 4X$$ Put $$X = 25$$, $Y = 40 + 4(25)$ $$=40+100=140$$ crore. Example 23. Find the regression equations when you know: $$\overline{X} = 68.2, \ \overline{Y} = 9.9, \ \frac{\sigma_y}{\sigma_x} = 0.44, \ r = 0.76$$ Given, $$\overline{X} = 68.2$$, $\overline{Y} = 9.9$, $\frac{\sigma_y}{\sigma_x} = 0.44$, $r = 0.76$ (i) Regression Equation of Y on X $$Y - \overline{Y} = r \cdot \frac{\sigma_y}{\sigma_x} (X - \overline{X})$$ Putting the values in the equation, we get 111 $$-9.9 = 0.3344X - 22.81$$ $$Y = 0.3344X - 22.81 + 9.9$$ $$Y = 0.3344X - 12.91$$ Linear Regression Analysis (ii) Regression Equation of X on Y: When $$\frac{\sigma_y}{\sigma_z} = 0.44$$ or $\frac{44}{100}$ Then $$\frac{\sigma_x}{\sigma_y} = \frac{100}{44}$$ or 2.27 $$X - \overline{X} = r \cdot \frac{\sigma_x}{\sigma_y} (Y - Y)$$ $$X-68.2 = 0.76 \times 2.27 (Y-9.9)$$ $$X-68.2 = 0.725(Y-9.9)$$ $X-68.2 = 1.725(Y-9.9)$ $$X - 68.2 = 1.725Y - 17.08$$ $$X=1.725Y-17.08+68.2$$ $$X=1.725Y+51.12$$ Example 24. Find the expected price in Mumbai when price in Calcutta is Rs. 70 using the | following data: | | Rs. 65 | |---------------------------------------|---|--| | Average Price in Calcutta | 1 | Rs. 67 | | Average Price in Mumbai | | COLUMN TO SERVICE AND ADDRESS OF THE PARTY O | | S.D. of Price in Calcutta | | 2.5 | | S.D. of Price in Mumbai | | 3.5 | | Correlation coefficient between price | | | Solution: Let X = Price in Calcutta, Y = Price in Mumbai of Mumbai and Calcutta Given: $$\overline{X} = 65, \overline{Y} = 67, \sigma_x = 2.5, \sigma_y = 3.5, r = 0.8$$ Expected Price in Munbai (Y) when price in Calcutta (X) = 70 can be found from regression according to (X)regression equation of Y on X. Regression Equation of Y on X $$Y - \overline{Y} = r \cdot \frac{\sigma_y}{\sigma} (X - \overline{X})$$ Putting the values, we get $$Y-67 = 0.8 \times \frac{3.5}{2.5} (X-65)$$ $Y-67 = 1.12(X-65)$ Y - 67 = $$1.12X - 72.8$$ Y = $1.12X - 72.8 + 67$ Y = $1.12X - 5.8$ When X = 70, Y = $1.12(70) - 5.8 = 78.4 - 5.8$ Thus, the expected price in Mumbai is Rs. 72.6 corresponding to Rs. 70 at Calcutta. The coefficient of correlation between the ages of husbands and wives in a community upple 25. June 101. The coefficient of correlation between the ages of husband and wives in a community upple 25. The coefficient of community was found to be +0.8, the average of husband age was 25 years and that of wives age 22 years. Their standard deviations were 4 and 5 years respectively. Find with the help of regression equations: (i) the expected age of husband when wife's age is 20 years and = 72.6 (ii) the expected age of wife when husband's age is 33 years. Let age of wife be denoted by Y and age of husband by X. We are given: $\overline{X} = 25, \overline{Y} = 22, \sigma_x = 4, \sigma_y = 5, r = 0.8$ (i) For estimating age of husband when wife's age is 20 years, we use regression of X on Y as follows: $$X - \overline{X} = r \cdot \frac{\sigma_x}{\sigma_y} (Y - \overline{Y})$$ $$X - 25 = 0.8 \times \frac{4}{5} (Y - 22)$$ $$X - 25 = 0.64(Y - 22)$$ $$X - 25 = 0.64Y - 14.08$$ $$X = 0.64Y + 10.92$$ $$0, \qquad X = 0.64 (20) + 10.92 = 12.8 + 10.92 = 23.72$$ When Y = 20, Thus, the expected age of husband when wife's age is 20 years shall be 23.72 years. (ii) For estimating age of wife when husband's age is 33 years, we use regression equation of Y on X as follows: $$Y - \overline{Y} = r \cdot \frac{\sigma_{y}}{\sigma_{x}} (X - \overline{X})$$ $$Y - 22 = 0.8 \times \frac{5}{4} (X - 25)$$ $$Y - 22 = 1(X - 25)$$ $$Y - 22 = X - 25 \qquad \Rightarrow \qquad Y = X - 3$$ When $X = 33$, $Y = 33 - 3 = 30$ Thus, the expected age of wife when husband's age is 33 is 30 years. IMPORTANT TYPICAL EXAMPLES Example 26. The following data based on 450 students are given for marks in Statistics at a certain Examination: Economics at a certain Examination: Mean Marks in Statistics 48 Mean Marks in Economics 12 S.D. of Marks in Statistics The variance of marks in Economics 256 The variance of marks in Economics Sum of the products of deviations of marks from their respective means is 42075. (i) Obtain the equations of two lines of regression. (i) Obtain the equations of candidates who obtained 50 marks (ii) Estimate the average marks in Economics of candidates who obtained 50 marks in Statistics. (i) Let X denote marks in Statistics and Y denote marks in Economics. We are Solution: given: $\overline{Y} = 48$ $\overline{X} = 40$, $\sigma_y^2 = 256 \Rightarrow \sigma_y = 16$ $\sigma_x=12$ $\Sigma xy = 42075$ Before we obtain the regression equations, we compute the coefficient of correlation (r) by using the formula: $$r = \frac{\sum xy}{N \cdot \sigma_x \cdot \sigma_y}$$ $$= \frac{42075}{450 \times 12 \times 16} = \frac{42075}{86400}$$ #### = +0.49 approx. Regression Equation of X on Y $$X - \overline{X} = r \cdot \frac{\sigma_x}{\sigma_y} (Y - \overline{Y})$$ $$X - 40 = 0.49 \times \frac{12}{16} (Y - 48)$$ $$X - 40 = \frac{5.88}{16} (Y - 48)$$ $$X - 40 = \frac{16}{16}(Y - 48)$$ $$X - 40 = 0.3675(Y - 48)$$ $$X - 40 = 0.3675Y - 17.64$$ $$X = 0.3675Y - 17.64 + 40$$ $$X = 0.3675Y + 22.36$$ # Linear Regression At Regression Equation of Y on X $$Y - \overline{Y} = r \cdot \frac{\sigma_y}{\sigma_x} (X - \overline{X})$$ $$Y - 48 = 0.49 \times \frac{16}{12} (X - 40)$$ $$Y - 48 = \frac{7.84}{12} (X - 40)$$ $$Y - 48 = 0.653 (X - 40)$$ $$Y - 48 = 0.653 X - 26.12$$ $$Y = 0.653 X - 26.12 + 48$$ $$Y = 0.653 X + 21.88$$ (ii) To estimate the marks in Economics when 50 marks in Statistics is given, we use regression of Y on X. $$Y = 0.653X + 21.88$$ When X = 50, $$Y = 0.653 (50) + 21.88$$ $$=32.65 + 21.88$$ Thus, the expected marks in Economics is 55. Example 27. If $\bar{X} = 25$, $\bar{Y} = 120$, bxy = 2 Estimate the value of X when Y = 130. Given, $\overline{X} = 25$, $\overline{Y} = 120$, bxy = 2 For estimating X when Y = 130, we use regression equation of X on Y as follows: or $$X - \overline{X} = bxy(Y - \overline{Y})$$ $$X = \overline{X} + bxy(Y - \overline{Y})$$ $$X = 25 + 2(130 - 120)$$ $$X = 25 + 2(10) = 45$$ Thus, the value of X is 45 when Y = 130. Example 28. If $\sigma_x^2 = 9$, $\sigma_y^2 = 1600$, $r_{xy} = 0.5$, obtain bxy. Given, $$\sigma_x^2 = 9(or \ \sigma_x = 3), \ \sigma_y^2 = 1600(or \ \sigma_y = 40), r_{xy} = 0.5,$$ = 0.0375 $$bxy = r \cdot \frac{6x}{6y}$$ $$bxy = 0.5 \times \frac{3}{40} = \frac{1.5}{40}$$