DATABASE MANAGEMENT SYSTEM LABORATORY PRACTICAL FILE

PRACTICAL - 1 INTRODUCTION OF DATA BASE
MANAGEMENT SYSTEM

Introduction of DBMS: - A Database Management System (DBMS) is a
software application that facilitates the creation, organization, retrieval, and
management of data in a database. It serves as an intermediary between the users
and the database, providing an efficient and structured way to interact with and
manipulate data. The primary goal of a DBMS is to ensure the integrity, security,
and availability of data while providing a convenient and consistent interface for
users and applications.

Software of DBMS: -

» Oracle Database: Developed by Oracle Corporation, Oracle Database is a
robust and widely used relational database management system (RDBMS). It
supports SQL and offers features such as high availability, scalability, and
advanced security options.

» Microsoft SQL Server: Developed by Microsoft, SQL Server is an
RDBMS that integrates well with Microsoft's suite of products. It supports
Transact-SQL (T-SQL) and provides features such as business intelligence,
data warehousing, and advanced analytics.

» MySQL: MySQL is an open-source relational database management system
renowned for its reliability, performance, and ease of use. Released in 1995,
it follows the relational model, organizing data into tables and providing
efficient querying capabilities. With cross-platform compatibility, scalability
options, and robust security features, MySQL accommodates both small and
large-scale applications.

» PostgreSQL: PostgreSQL is a powerful, open-source object-relational
database system. It is known for its extensibility, support for complex queries,
and adherence to SQL standards. PostgreSQL is often used for large-scale and
complex database applications.

» SQLite: SQLite is a lightweight, embedded database engine that does not
require a separate server process. It is suitable for mobile and embedded
applications due to its simplicity, small footprint, and ease of integration.

» IBM Db2: IBM Db2 is an enterprise-level relational database management
system developed by IBM. It is known for its scalability, reliability, and
support for various data types. Db2 is commonly used in large enterprises for
business-critical applications.

» MongoDB: MongoDB is a NoSQL database that uses a document-oriented
model. It i1s designed to handle large volumes of unstructured or
semistructured data and is commonly used in scenarios where flexibility and
scalability are crucial, such as in web and mobile applications.

» Redis: Redis is an open-source, in-memory data structure store that can be
used as a database, cache, and message broker. It is known for its high
performance and is often used in scenarios requiring fast data access, such as
caching and real-time analytics.

» Couchbase: Couchbase is a NoSQL, distributed database system that is
designed for interactive applications. It supports both key-value and
document-oriented data models and is known for its scalability and high
performance.

» Amazon DynamoDB: DynamoDB is a managed NoSQL database service
provided by Amazon Web Services (AWS). Itis designed for highperformance
applications and is known for its automatic scaling, low-latency access, and
seamless integration with other AWS services.

Role of DBMS

» Data Organization and Storage: DBMS helps organize and store large
amounts of data in a structured manner. It uses tables, rows, and columns to
store and retrieve information efficiently.

» Data Retrieval: Users can retrieve data from the database using queries.
The DBMS provides a query language (e.g., SQL) that allows users to interact
with the database and retrieve specific information based on their
requirements.

» Data Integrity and Security: DBMS ensures data integrity by enforcing
data constraints such as unique keys, foreign keys, and check constraints. It
helps maintain the accuracy and consistency of data.

Security features, including authentication and authorization, are
implemented to control access to the database and ensure that only authorized
users can perform specific operations.

» Transaction Management: DBMS supports transactions, which are
sequences of one or more operations that are executed as a single unit. It
ensures that transactions are either completed successfully or leaves the
database in a consistent state if an error occurs.

» Data Independence: DBMS provides a layer of abstraction between the
physical storage of data and the applications that interact with it. This allows
changes in the database structure or organization without affecting the
applications that use the data.

» Backup and Recovery: DBMS facilitates the creation of backup copies
of the database to prevent data loss in case of hardware failures, software

errors, or other unforeseen events. It also supports recovery mechanisms to
restore the database to a consistent state after a failure.

» Data Dictionary Management: DBMS maintains a data dictionary or
metadata repository that contains information about the structure of the
database, data types, relationships between tables, and other essential details.
This information is valuable for both users and the DBMS itself.

» Query Optimization: DBMS optimizes queries to improve the efficiency

of data retrieval. It analyzes the query execution plan and chooses the most
efficient way to access and retrieve data from the database.

» Scalability and Performance: DBMS is designed to handle large
volumes of data and provide efficient performance even as the database grows.

It includes mechanisms for indexing, caching, and other optimizations to
enhance performance.

Need for DBMS

The need for a Database Management System (DBMS) arises from the challenges
associated with managing large volumes of data in an organized, efficient, and secure
manner. Here are some key reasons why DBMS is essential:

» Data Organization and Management
» Data Security and Privacy

» Data Integrity and Consistency

» Concurrent Data Access

» Data Analysis and Reporting

» Scalability and Flexibility

» Cost-Effectiveness

e Data Organization and Management: One of the primary needs for a
DBMS is data organization and management. DBMSs allow data to be stored
in a structured manner, which helps in easier retrieval and analysis. A well-
designed database schema enables faster access to information, reducing the
time required to find relevant data. A DBMS also provides features like
indexing and searching, which make it easier to locate specific data within the
database. This allows organizations to manage their data more efficiently and
effectively.

e Data Security and Privacy: DBMSs provide a robust security
framework that ensures the confidentiality, integrity, and availability of data.
They offer authentication and authorization features that control access to the
database. DBMSs also provide encryption capabilities to protect sensitive data
from unauthorized access. Moreover, DBMSs comply with various data
privacy regulations such as the GDPR, HIPAA, and CCPA, ensuring that
organizations can store and manage their data in compliance with legal
requirements.

Data Integrity and Consistency: Data integrity and consistency are
crucial for any database. DBMSs provide mechanisms that ensure the
accuracy and consistency of data. These mechanisms include constraints,

triggers, and stored procedures that enforce data integrity rules.

Concurrent Data Access: A DBMS provides a concurrent access
mechanism that allows multiple users to access the same data simultaneously.
This is especially important for organizations that require real-time data
access. DBMSs use locking mechanisms to ensure that multiple users can
access the same data without causing conflicts or data corruption.

Data Analysis and Reporting: DBMSs provide tools that enable data
analysis and reporting. These tools allow organizations to extract useful
insights from their data, enabling better decision-making. DBMSs support
various data analysis techniques such as OLAP, data mining, and machine
learning.

Scalability and Flexibility: DBMSs provide scalability and flexibility,
enabling organizations to handle increasing amounts of data. DBMSs can be
scaled horizontally by adding more servers or vertically by increasing the
capacity of existing servers. This makes it easier for organizations to handle
large amounts of data without compromising performance.

Cost-Effectiveness: DBMSs are cost-effective compared to traditional
file-based systems. They reduce storage costs by eliminating redundancies
and optimizing data storage. They also reduce development costs by providing
tools for database design, maintenance, and administration.

INTRODUCTION OF SQL

SQL (Structured Query Language) is a language to operate databases; it includes
Database Creation, Database Deletion, Fetching Data Rows, Modifying & Deleting
Data rows, etc.

SQL stands for Structured Query Language which is a computer language for
storing, manipulating and retrieving data stored in a relational database. SQL was
developed in the 1970s by IBM Computer Scientists and became a standard of the
American National Standards Institute (ANSI) in 1986, and the International
Organization for Standardization (ISO) in 1987.

SQL is supported by most relational database management systems (RDBMS) such
as MySQL, Oracle, SQL Server, and PostgreSQL. With SQL, you can perform a
wide range of operations on a database, including creating tables and defining their
structure, inserting, updating, and deleting data, querying data to retrieve specific
information, and managing database constraints, indexes, and views.

The language consists of multiple components, including Data Definition Language
(DDL) statements for creating and modifying database structures, Data
Manipulation Language (DML) statements for performing operations on stored
data, and Data Control Language (DCL) statements for managing database security
and access controls.

SQL offers a powerful and flexible way to interact with databases, making it a
fundamental skill for professionals working with data. It allows for efficient data
retrieval and manipulation, enabling users to extract meaningful insights and
support decision-making processes.

[0 DDL (Data Definition Language)

DDL or Data Definition Language actually consists of the SQL commands that can
be used to define the database schema. It simply deals with descriptions of the
database schema and is used to create and modify the structure of database objects
in the database. DDL is a set of SQL commands used to create, modify, and delete

database structures but not data. These commands are normally not used by a
general user, who should be accessing the database via an application.

List of DDL commands:

CREATE: This command is used to create the database or its objects (like
table, index, function, views, store procedure, and triggers).

DROP: This command is used to delete objects from the database.

ALTER: This is used to alter the structure of the database.

TRUNCATE: This is used to remove all records from a table, including all
spaces allocated for the records are removed.

COMMENT: This is used to add comments to the data dictionary.
RENAME: This is used to rename an object existing in the database.

0 DML (Data Manipulation Language)

The SQL commands deal with the manipulation of data present in the database
belonging to DML or Data Manipulation Language and this includes most of the
SQL statements. It is the part of the SQL statement that controls access to data and
to the database. Basically, DCL statements are grouped with DML statements.

List of DML commands:

INSERT: It is used to insert data into a table.

UPDATE: 1t is used to update existing data within a table.
DELETE: It is used to delete records from a database table.
LOCK: Table control concurrency.

CALL: Call a PL/SQL or JAVA subprogram.

EXPLAIN PLAN: It describes the access path to data.

0 DCL (Data Control Language)

DCL includes commands such as GRANT and REVOKE which mainly deal with
the rights, permissions, and other controls of the database system.

List of DCL commands:

* GRANT: This command gives users access privileges to the database.

« REVOKE: This command withdraws the user’s access privileges given by
using the GRANT command.

0 TCL (Transaction Control Language)

Transactions group a set of tasks into a single execution unit. Each transaction
begins with a specific task and ends when all the tasks in the group are successfully
completed. If any of the tasks fail, the transaction fails. Therefore, a transaction has

only two results: success or failure. Hence, the following TCL commands are used
to control the execution of a transaction:

« BEGIN: Opens a Transaction.
e COMMIT: Commits a Transaction.

« ROLLBACK: Rollbacks a transaction in case of any error occurs.
« SAVEPOINT: Sets a saving point within a transaction.

PRACTICAL-2

CREATING AND MANAGING TABLES: CREATE TABLE STATEMENT;
REFERENCING ANOTHER USER’S TABLES; THE DEFAULT OPTION;
DATA TYPES; ALTER TABLE STATEMENT; ADDING A COLUMN;
MODIFYING A COLUMN; DROPPING A COLUMN; DROPPING A
TABLE; TRUNCATING A TABLE.

Part A: WRITE SQL QUERIES CREATE, INSERT AND SELECT
e Creating Table:

mysql> use clg;
Database changed

mysql> create table friends(CRN int(8) primary key, NAME varchar(20), DATE_OF_BIRTH date, PHONE_NO int(10));
Query OK, © rows affected, 2 warnings (0.11 sec)

e Inserting values in Table:

mysql> insert into friends values('2221128','Nikhil Thakur', '2000-12-12', '1234567899"');
Query OK, 1 row affected (0.01 sec)

mysql> insert into friends values('2221124', 'Chotuu’', '2012-12-12', '1234567890"');
Query OK, 1 row affected (0.07 sec)

mysql> insert into friends values('2221122', 'Vishal Rai', '2002-10-10', '123U4567891');
Query OK, 1 row affected (0.00 sec)

mysql> insert into friends values('2221113','Susuant',6 '2001-11-11"','123U4567892');
Query OK, 1 row affected (0.01 sec)

mysql> insert into friends values('2221123', 'Partap', '2004-04-04', 6 '1234567893');
Query OK, 1 row affected (0.07 sec)

¢ Selecting the table and taking output:

mysql> select * from friends;

1234567892
1234567891
1234567893
1234567890
1234567899

2221122 Vishal Rai 2002-10-10
2221123
2221124
2221128

Partap 2004-04-04
Chotuu 2012-12-12
Nikhil Thakur 2000-12-12

+
I
+
2221113 | Susuant 2001-11-11
|
|
|
I
+

f—_—

rows in set (0.00 sec)

Part B: WRITE SQL QUERIES ALTER, UPDATE, DELETE AND

DROP

* ALTERTABLE:

mysql> alter table friends add email varchar(50);
Query OK, O rows affected (0.10 sec)
Records: © Duplicates: @ Warnings: ©

mysql> select * from friends;

2221113
2221122
2221123
2221124
2221128

rows 1in

Susuant
Vishal Rai
Partap

Chotuu

Nikhil Thakur

set (0.00 sec)

« MODIFY TABLE:

mysql>

2001-11-11
2002-10-10
2004-04-04
2012-12-12
2000-12-12

F—_——— —

1234567892
1234567891
1234567893
1234567890
1234567899

alter table friends modify email varchar(100);
Query OK, 5 rows affected (0.14 sec)
Records: 5 Duplicates: © Warnings: ©

mysql> select * from friends;

2221113
2221122
2221123
2221124
2221128

rows in

+

Susuant

Partap
Chotuu

|

+

|

| Vishal Rai
|

|

| Nikhil Thakur
+

+F—_——— 4 — 4

set (0.00 sec)

2001-11-11
2002-10-10
2004-04-04
281210202
2000-12-12

1234567892
1234567891
1234567893
1234567890
1234567899

NULL
NULL
NULL

—_——

NULL
NULL
NULL

—_—— —

e DROPTABLE:

mysql> alter table friends drop column email;
Query OK, © rows affected (0.03 sec)
Records: ® Duplicates: @ Warnings: ©

mysql> select * from friends;

2221113
2221122
2221123
2221124
2221128

rows in set (0.00 sec)

Susuant
Vishal Rai
Partap
Chotuu

Nikhil Thakur

e DELETE TABLE:
mysql> delete from friends where CRN='2221128°',
Query OK, 1 row affected (0.08 sec)

2001-11-11
2002-10-10
2004-04-04
2012-12-12
2000-12-12

mysql> select * from friends;

2221113
2221122
2221123
2221124

| Susuant

| Vishal Rai
| Partap

| Chotuu

2001-11-11
2002-10-10
2004-04-04
2012-12-12

+
I

+
|
|
|
I

+

1234567892
1234567891
1234567893
1234567890
1234567899

1234567892
1234567891
1234567893
1234567890

o UPDATE TABLE:

mysql> update friends set NAME='Vishal' where NAME='Vishal rai’';
Query OK, 1 row affected (0.06 sec)
Rows matched: 1 Changed: 1 Warnings: @

mysql> select * from friends;

2221113 2001-11-11
2221122 Vishal 2002-10-10
2221123 Partap 2004-04-04
2221124 Chotuu 2012-12-12
2221128 Nikhil Thakur 2000-12-12

1234567892
1234567891
1234567893
1234567890
1234567899

+
I
+
|
|
|
|
I
+

rows in set (0.00 sec)

PRACTICAL -3

BASIC SELECT STATEMENT; SELECTING ALL COLUMNS, SPECIFIC
COLUMNS; USING ARITHMETIC OPERATORS; OPERATOR
PRECEDENCE; USING PARENTHESIS; DEFINING A NULL VALUE;
USING COLUMN ALIASES; CONCATENATION OPERATOR;
ELIMINATING DUPLICATE ROWS; DISPLAYING TABLE STRUCTURE

e SELECT STATEMENT

(i) To select all columns:

mysql> select * from friends;
+

2221113
2221122
2221123
2221124
2221128

2221113
2221122
2221123
2221124
2221128

rows in set (0.00 sec)

|

+

| Susuant
| vishal
| Partap
| Chotuu
|

+

Nikhil Thakur

set (0.00 sec)

2001-11-11
2002-10-10
2004-04-04
2012-12-12
2000-12-12

—_—_—— —

2001-11-11
2002-16-10
2004-04-04
2012-12-12
2000-12-12

1234567892
1234567891
1234567893
1234567890
1234567899

e ARITHMETIC OPERATORS

mysql> select 20/10 as ARITHMETIC_OPERATIONS;

1 row in set (0.00 sec)

mysql> select 20%10 as ARITHMETIC_OPERATIONS;

1 row in set (0.00 sec)

mysql> select 20+10 as ARITHMETIC_OPERATIONS;

1 row in set (0.07 sec)

mysql> select 20-10 as ARITHMETIC_OPERATIONS;

1 row in set (0.07 sec)

mysql> select 20*10 as ARITHMETIC_OPERATIONS;

1 row in set (0.00 sec)

e COLUMN ALIASES

mysql> select CRN as class_roll_no,DATE_OF_BIRTH as janam_tithi from friends;
+ _______________

| class_roll_no
+ ———————————————

+
I
+
2221113 | 2001-11-11
I
I
I
I
+

_____________ +
janam_tithi

2221122

I

| 2002-10-10
| 2221123

|

I

2004-04-04
A bl b= B
2000-12-12

2221124
2221128
e e

5 rows in set (0.00 sec)

e CONCATENATION OPERATOR

mysql> select concat(CRN,NAME) as STUDENT,DATE_OF_BIRTH,PHONE_NO from friends;

2221113Susuant 2001-11-11 1234567892

2221122Vishal 2002-10-10 1234567891
2221123Partap 2004-04-04 1234567893
2221124Chotuu 2012-12-12 1234567890
2221128Nikhil Thakur | 2000-12-12 1234567899

e ELIMINATING REDUNDANT DATA

mysql> select * from friends;

2221113
2221122
2221123
2221124
2221126
2221128

) rows in

+

I
+
|
|
|
|
|
I
+

set (0.00 sec)

Susuant
Vishal
Partap
Chotuu
Vishal

Nikhil Thakur

—————— i —

2001-11-11
2002-16-10
2004-04-04
2H12S0 =0
2009-09-09
2000-12-12

1234567892
1234567891
1234567893
1234567890
1234567894
1234567899

mysql> select distinct(NAME) as NAMES from friends;

Susuant
Vishal
Partap
Chotuu

Nikhil Thakur

rows in set (0.07 sec)

e DISPLAY TABLE STRUCTURE
mysql> DESC friends;

DATE_OF_BIRTH

PHONE_NO

4 rows in set (0.00 sec)

+
I

+
|
|
|
I

+

varchar(20)
date

 —— 3 — 4
F—_—— — 4

NULL
NULL

e e

PRACTICAL-4

LIMITING ROWS USING A SELECTION; CHARATER STRINGS AND
DATES; COMPARISION CONDITIONS; USING THE BETWEEN
CONDITION; IN CONDITION; LIKE CONDITION; NULL CONDITION;
LOGICAL CONDITIONS - AND, OR and NOT OPERATORS; RULES OF
PRECEDENCE ORDER BY CLAUSE; SORTING - ASCENDING,
DESCENDING ORDER.

e LIMITING ROWS USING A SELECTION
a) CHARACTER STRING

mysql> select instr('NIKHIL THAKUR',K 'T');

1 row in set (0.00 sec)

mysql> select lower('NIKHIL THAKUR');

1 row in set (0.00 sec)

mysql> select length('NIKHIL THAKUR');

1 row in set (0.00 sec)
mysql> select trim(’ NIKHIL THAKUR

NIKHIL THAKUR

1 row in set (0.00 sec)

mysql> select substr('NIKHIL THAKUR',2,10);

1 row in set (0.00 sec)

b) DATES

mysql> select now();

1 row in set (0.00 sec)

mysql> select sysdate();

1 row in set (0.00 sec)

mysql> select dayofyear('2014-12-12');

1 row in set (0.00 sec)

mysql> select curtime();

1 row in set (0.00 sec)

mysql> select monthname('2014-12-12");

1 row in set (0.07 sec)

e CONPARISION CONDITIONS
a) BETWEEN CONDITION

mysql> select * from friends where DATE_OF_BIRTH BETWEEN '2002-01-01' AND '2005-01-01';
Fm————— e B —— e ——— +

| NAME | DATE_OF_BIRTH | PHONE_NO
e ————— e e +

| 2221122 | vishal | 2002-10-10 | 1234567891 |
| 2221123 | Partap | 2004-04-04 | 1234567893 |
e e et e +

2 rows in set (0.07 sec)

b) IN CONDITION

mysql> select NAME,PHONE_NO from friends where CRN IN('2221113','2221124');
o e +

| NAME | PHONE_NO
e ———— e ——— +

| Susuant | 1234567892 |

| Chotuu | 1234567890 |
$———— o +

2 rows in set (0.00 sec)

¢) LIKE CONDITION

mysql> select * from friends where NAME Llike '_i%':

| 2221122 | Vishal 2002-10-10 1234567891 |

| 2221126 | Vishal 2009-09-09 1234567894 |
| 2221128 | Nikhil Thakur | 2000-12-12 1234567899 |
+—————————

3 rows in set (0.07 sec)

d) NULL CONDITION

mysql> select * from friends;

2221113
2221122
2221123
2221124
2221126
2221128

6 rows in

+

|

+

| Susuant
| vishal
| Partap
| Chotuu
| Vishal
|
+

Nikhil Thakur

set (0.00 sec)

2001-11-11
2002-10-10
2004-04-04
2012=12=03
2009-09-09
2000-12-12

1234567892
1234567891
1234567893
1234567890

NULL
1234567899

mysql> select * from friends where PHONE_NO is null,;
Fm—————— e —— et e ————— +

| NAME

1 row in set (0.00 sec)

e LOGICAL OPERATOR

| DATE_OF_BIRTH

PHONE_NO |

a) AND

mysql> select * from friends where PHONE_NO is null && NAME='Vishal';
F————— Fm—————— e Fm—————— +

| CRN | NAME | DATE_OF_BIRTH | PHONE_NO |
t——————— t—————— e t———————— +

| 2221126 | Vishal | 2009-09-09 NULL |

1 row in set, 1 warning (0.00 sec)

mysql> select * from friends where NAME='Chotuu' || NAME='Partap’;

o $————— o ————— o +

| NAME

| DATE_OF_BIRTH | PHONE_NO

F————— t————— e ————— F——————— +

| 2221123
| 2221124

2221113
2221122
2221123
2221126
2221128

| Partap | 2004-04-04
| Chotuu | 2012-12-12

2001-11-11
2002-10-10
2004-04-04
Vishal 2009-09-09
Nikhil Thakur | 2000-12-12
——————————————— +_—_—_—_—_—_——_—
1 warning (0.00 sec)

1234567893 |
1234567890 |

1234567892
1234567891
1234567893

NULL
1234567899

mysql> select * from friends order by NAME desc;
o —— o
DATE_OF_BIRTH

2221122
2221126
2221113
2221123
2221128
2221124

rows in

Vishal
Vishal

|

+

| 2002-10-10
|

| Susuant

|

|

|

+

+

I

+

|
2009-09-09 |
2001-11-11 |
2004-04-04 |
2000-12-12 |
2012-12-12 |
+

Partap
Nikhil Thakur
Chotuu

f—_— —

set (0.00 sec)

1234567891

NULL
1234567892
1234567893
1234567899
1234567890

e SORTING
a) ASCENDING ORDER

mysql> select NAME from friends order by NAME asc;

Chotuu
Nikhil Thakur
Partap
Susuant
Vishal
Vishal

Vishal
Vishal
Susuant
Partap
Nikhil Thakur

rows in set (0.00 sec)

PRACTICAL-5

MANIPULATING DATA : DATA MANIPULATION LANGUAGE; ADDING A
NEW ROW TO A TABLE; INSERTING NEW ROWS, ROWS WITH NULL
VALUES, SPECIFIC DATE VALUES, UPDATING ROWS IN A TABLE;
UPDATING 2 COLUMNS; UPDATING ROWS BASED ON ANOTHER
TABLE; REMOVING A ROW FROM DELETING ROWS FROM A TABLE;

DELETING ROWS BASED ON ANOTHER TABLE.

e ADDING ANEW ROW TO A TABLE
a) INSERTING NEW ROWS

mysql> select * from friends;

2221113
2221122
2221123
2221124
2221126
2221128

rows in

mysql> insert into friends(CRN, NAME) VALUES('2221114', 'sabal gang');

+

|

+

| Susuant

| vishal

| Partap

| Chotuu

| Vishal

| Nikhil Thakur
T

———— —

set (0.01 sec)

2001-11-11
2002-10-10
2004-04-04
2012-12-12
2009-09-09
2000-12-12

Query OK, 1 row affected (0.01 sec)

mysgl> select * from friends;

2221113
2221114
2221122
2221123
2221124
2221126
2221128

rows in

+

|

+

| Susuant

| sabal gang
| vishal

| Partap

| Chotuu

| vishal

| Nikhil Thakur
+

—_————— i — 4

set (0.00 sec)

2001-11-11
NULL

2002-10-10
2004-04-04
2012-12-12
2009-09-09
2000-12-12

——— —

PHONE_NO

1234567892
1234567891
1234567893
1234567890

NULL
1234567899

____________ +

____________ +

____________ +

____________ +

PHONE_NO

____________ +

1234567892

NULL
1234567891
1234567893
1234567890

NULL
1234567899

____________ +

b) ROWS WITH NULL VALUES

mysql> insert into friends(CRN, NAME,DATE_OF_BIRTH,PHONE_NO) VALUES('2221127','varun' NULL,'1234567894');
Query OK, 1 row affected (0.00 sec)

mysql> select * from friends;

____________ +

PHONE_NO |

____________ +
1234567892
NULL
1234567891
1234567893
1234567890
NULL
1234567894
1234567899

2221113
2221114
2221122
2221123
2221124
2221126
2221127
2221128

2001-11-11
NULL

2002-10-10
2004-04-04
2012-12-12
2009-09-09
NULL

Susuant

sabal gang
Vishal

Partap

Chotuu

Vishal

varun

Nikhil Thakur

rows in set (0.00 sec)

e UPDATING ROWS IN ATABLE

mysql> update friends set PHONE_NO='1234567896' where PHONE_NO='1234567897";
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: ©

mysql> select * from friends;

2221113
2221114
2221122
2221123
2221124
2221126
2221127
2221128

 rows in

Susuant

sabal gang
Vishal

Partap

Chotuu

Vishal

varun

Nikhil Thakur

+
|
+
|
|
I
|
|
|
I
|
+

set (0.00 sec)

2001-11-11
2003-10-10
2002-10-10
2004-04-04
2012-12-12
2009-09-09
NULL

2000-12-12

1234567892
1234567896
1234567891
1234567893
1234567890

NULL
1234567894
1234567899

e UPDATING TWO COLUMNS

mysql> update friends set DATE_OF_BIRTH='2003-10-10',6PHONE_NO='1234567897' where CRN='2221114';
Query OK, 1 row affected (0.01 sec)
Rows matched: 1 Changed: 1 Warnings: ©

mysql> select * from friends;

s Kttt +

| PHONE_NO

et +
2221113 | Susuant 2001-11-11 1234567892
2221114 | sabal gang 2003-16-10 1234567897
2221122 | Vishal 2002-160-10 1234567891
I
I
I
I
I
+

2221124 Chotuu 2012-12-12 1234567890

Vishal 2009-09-09 NULL

varun NULL 1234567894

Nikhil Thakur 2000-12-12 1234567899
____________ +

I
I
I
2221123 | Partap 2004-04-04 123u567893 |
I
I
I
I

set (0.00 sec)

2221113 susuant
2221122 vishal
2221124 | Chotuu
Nikhil Thakur
o —————— +-— —-—
4 rows in set (0.00 sec)

mysql> update friends INNER JOIN marks ON friends.CRN = marks.CRN set marks=marks+10 where marks=66;
Query OK, 2 rows affected (0.01 sec)
Rows matched: 2 Changed: 2 Warnings: ©

mysql> select * from marks;

2221113 | susuant

2221122 | vishal

2221124 | Chotuu

2221128 | Nikhil Thakur
e e
4 rows in set (0.00 sec)

+———— e — -

DELETING ROWS FROM A TABLE

mysql> select * from friends;

2221113
2221114
2221122
2221123
2221124
2221126
2221127
2221128

rows in

Susuant

sabal gang
Vishal

Partap

Chotuu

Vishal

varun

Nikhil Thakur

set (0.00 sec)

2001-11-11
2003-10-10
2002-10-10
2004-04-04
2012-12-12
2009-09-09
NULL

2000-12-12

1234567892
1234567896
1234567891
1234567893
1234567890

NULL
1234567894
1234567899

mysql> delete from friends where CRN='2221126";
Query OK, 1 row affected (0.01 sec)

mysql> select * from friends;

2221113
2221114
2221122
2221123
2221124
2221127
2221128

rows in

Susuant

sabal gang
Vishal

Partap

Chotuu

varun

Nikhil Thakur

set (0.00 sec)

2001-11-11
2003-10-10
2002-10-10
2004-04-04
2012-12-12
NULL

2000-12-12

1234567892
1234567896
1234567891
1234567893
1234567890
1234567894
1234567899

e DELETING ROWS BASED ON ANOTHER TABLE

mysql> delete friends, marks from friends inner join marks on friends.CRN=marks.crn where friends.CRN=
Query OK, © rows affected (0.00 sec)

mysql> select * from friends;

2221113 Susuant 2001-11-11 1234567892
2221114 sabal gang 2003-10-10 1234567896
2221122 Vishal 2002-10-10 1234567891
2221123 Partap 2004-04-04 1234567893
2221124 Chotuu 2012-12-12 1234567890
2221127 varun NULL 1234567894
2221128 Nikhil Thakur 2000-12-12 1234567899

rows in set (0.00 sec)

PRACTICAL NO 3: RESTRICTING AND SORTING DATA

AIM: Limiting rows using a selection; character strings and dates; comparison
conditions; using the BETWEEN condition; IN condition; LIKE condition; NULL
conditions; logical conditions-AND, OR and NOT operators; rules of
precedence; ORDER BY clause; sorting —ascending, descending order.

A. LIMITING ROWS USING A SELECTION
STUDENTS

2104482 Avlyn Kaur Ludhiana 9 Female
2104471 Anu grewal Chandigarh Female Computer Science
Dashyamjit Singh Ludhiana Male IT

Anmolvir Singh Samrala 0 Male Electronics
Arshnoor Patiala 1€ Female Computer Science
samiksha Chandigarh 9 Female Computer Science

78 Sumehar Gill Ludhiana Male Electronics
2104443 shashank Kumar Patiala 2 Male Electrical

e Restrict the rows returned by using the WHERE clause.
Syntax:

SELECT*|[{[DISTINCT] column/expression|[alias],...}

FROM table

[WHERE condition(s)];

EXAMPLE:

mys q SELECT SID,Name,City,Age,Gender,Branch
FROM student
WHERE Age = 19;

_________ e e e

Name

Avlyn Kaur Ludhiana
Dashyamjit Singh Ludhiana
Arshnoor Patiala 9 Computer
Samiksha Chandigarh C Computer

B. CHARACTER STRINGS AND DATES
. Character strings and date values are enclosed in single quotation marks.

. Character values are case sensitive, and date values are format sensitive.

. The default date format is DD-MON-RR.

> SELECT MName,Age,City
From student

> WHERE City = "Ludhiana’;

C. Comparison Conditions

Operator Meaning
Between Between two
values(inclusive),
In Match any of a list of values
Like Match a character pattern
Is Null Is a null value

> Using the BETWEEN Condition

Use the BETWEEN condition to display rows based on a range of values.

> SELECT Name,Age
> From student
> WHERE Age BETWEEN 19 AND 20;

Avlyn Kaur
Dashyamjit Singh

Anmolvir Singh
Arshnoor
Samiksha
sumehar GilT
Shashank Kumar

rows in set (0.00 se

> Using the IN Condition

Use the IN membership condition to test for values in a list.

mysql> SELECT SID,Name,City,Age
FROM student _
> WHERE Age IN(20,21):

2104471 Anu grewal Chandigarh
2104364 Anmolvir Singh samrala
2104478 sumehar Gill Ludhiana
2104443 Sshashank Kumar Patiala

rows in set (0.00 sec)

> Using the LIKE Condition

e Use the LIKE condition to perform wildcard searches of valid search string
values.

e Search conditions can contain either literal characters or numbers:

- %denotes zero or many characters.

- _denotes one character.
e You can combine pattern-matching characters.
e You can use the escape identifier to search for the actual % and _ symbol.

SELECT Name
> FROM student)
> WHERE Name LIKE'S%';

samiksha
Sumehar Gill
Shashank Kumar

rows in set (0.01 sec)

> Using the NULL Conditions
Test for nulls with the IS NULL operator.

myscql> SELECT Name, SID
-> FROM student

-> WHERE SID IS NULL;
mpty set (0.00 sec)

D. Logical Conditions

> Using the AND Operator

AND requires both conditions to be true.

SELECT SID,Name,Age,Branch
> FROM student
> WHERE Age = 19
- AND Branch LIKE

| Avlyn Kaur
| Dashyamjit Singh

rows in set (0.00 sec)

> Using the OR Operator

OR requires either condition to be true.

- SELECT SID,Name,Age,Branch
> FROM student

> WHERE Age = 19

> OR Branch LIKE

2104482 Avilyn Kaur

2104488 Dashyamjit Singh :

2104477 Arshnoor Computer Science
2104465 samiksha Computer Science

rows in set (0.00 sec)

> Using the NOT Operator

It returns true if the following condition is false.

~ SELECT Name,Branch
FROM student
WHERE Branch
NOT IN ('IT', "Computer Science');

Anmolvir Singh Electronics
sumehar Gill Electronics
Shashank Kumar | Electrical

E. Rules of Precedence

Order Evaluated Operator
Arithmetic Operators
Concatenation Operator
Comparison Conditions

Is [NOT] NULL,LIKE,[NOT] IN
[NOT] BETWEEN

NOT logical condition

AND logical condition

OR logical condition

g0l h BN

e Override rules of precedence by using parenthesis.

> SELECT SID,Name,Branch

- FROM student

> WHERE (Branch = "IT’

> OR Branch = 'Computer Science')
> AND Age = 19;

2104482 Avlyn Kaur

2104488 Dashyamjit Singh IT

2104477 Arshnoor Computer Science
2104465 samiksha Computer Science

F. Order By Clause
e Sort rows with the ORDER BY clause
e Ascending order is the default sort order.

> SELECT SID,Name,City,Age
> FROM student
> ORDER BY Age;

| Avlyn Kaur Ludhiana
2 | Dashyamjit Singh Ludhiana

| Arshnoor Patiala
2104465 | samiksha Chandigarh
2104364 | Anmolvir Singh Samrala
2104478 | Sumehar Gill Ludhiana

|

|

+

2104443 Shashank Kumar Patiala
2104471 Anu grewal Chandigarh

set (0.01 sec)

SELECT SID,Name,City,Age
> FROM student
> ORDER BY Age DESC;

Anu grewal Chandigarh
Anmolvir Singh Samrala
Sumehar Gill Ludhiana
Shashank Kumar Patiala
Avlyn Kaur Ludhiana
Dashyamjit Singh Ludhiana

2104364
21044738
2104443
2104482

|

|

|

|

|

|

| Arshnoor Patiala

| samiksha Chandigarh
+

rows in set {0.00 sec)

PRACTICAL NO 4: MANIPULATING DATA

AIM: Data manipulation language; adding a new row to a table; inserting-new
rows, rows with NULL values, specific date values; updating rows in a table;

updating two columns; updating rows based on another table; removing a row
from a table deleting rows from a table; deleting rows based on another table.

. Data Manipulation Language:
A DML statement is executed when you:

- Add new row to a table

- Modify existing rows in a table

- Remove existing rows from a table
A collection of DML statements that form a logical unit of work is called a
Transaction.
Consider a banking database. When a bank customer transfers money from
a savings account to a checking account, the transaction might consist of
three separate operations:

- Decrease the saving account.

- Increase the checking account.

- And record the transaction in the transaction journal.

. Adding a new row to a table
Add new rows to a table by using the insert statement.

Syntax:

INSERT INTO table [(column [, column...])]

VALUES (value [, value ...]1);

Only one row is inserted at a time with this syntax.
Example:

> INSERT INTO student (SID,Name,City,Age,Gender,Branch)
/ALUES ~ (2104365, 'Ekamjot Singh', 'Ludhiana’,20, 'Male', 'Electronics’);
1 row affected (0.03 sec)

ELECT*FROM student;

Female

Female Computer Science

Male Tl

Male Electronics

Female Computer Science

Female Computer Science

Male Electronics

Male Electrical
Electronics

Avlyn Kaur Ludhiana
Anu grewal Chandigarh

Dashyamjit Singh Ludhiana
Anmolvir Singh Samrala
Arshnoor Patiala
samiksha Chandigarh
sumehar Gill Ludhiana
Shashank Kumar Patiala
Ekamjot Singh Ludhiana

————— e —— —

9 rows in

C. Inserting rows with NULL Values
e Implicit method: Omit the column from the column list.
e Example:

mysql> INSERT INTO student (SID,Name,City) _
-> VALUES (2104366, 'Jaskaran Singh', 'Ludhiana’);
Duery 0K, 1 row affected (0.01 sec)

e Explicit method: Specify the NULL keyword in the VALUES clause, specify
the empty string (“) in the VALUES list for character strings and dates.
e Example:

> INSERT INTO student
/ALUES (2104445, 'Harshveer Kaur', 'Chandigarh',NULL ,NULL ,NULL);
1 row affected (0.01 sec)

Female
Female Computer Science
Male IT
Male Electronics
Female Computer Science
Female Computer Science
Male Electronics
Male Electrical
Male Electronics

NULL NULL NULL

NULL NULL NULL

Avilyn Kaur Ludhiana
Anu grewal Chandigarh
Dashyamjit Singh Ludhiana
Anmolvir Singh samrala
Arshnoor Patiala
samiksha Chandigarh
2104478 Sumehar Gill Ludhiana
2104443 Shashank Kumar Patiala
2104365 Ekamjot Singh Ludhiana
2104366 skar Ludhiana
2104445 vee Chandigarh

—————— e —

11 rows in set (0.00 sec)

D. Updating rows in a table:
¢ Modify existing rows with the UPDATE statement.
e Specific row or rows are modified if you specify the WHERE clause.

e Allrows in the table are modified if you omit the WHERE clause.
e Example:

UPDATE student
ET Age = 20
WHERE SID = 2104445;
Query OK, 1 row affected (0.01 sec)
ows matched: 1 Changed: 1 Warnings:

mysql> SELECT*FROM student;

2104482 Avlyn Kaur Ludhiana
2104471 Anu grewal Chandigarh

Female

Female Computer Science
Male IT

Male Electronics
Female Computer Science
Female Computer Science
Male Electronics

Male Electrical

Male Electronics

NULL NULL

2104488 Dashyamjit Singh Ludhiana
2104364 Anmolvir Singh samrala
2104477 Arshnoor Patiala
2104465 samiksha Chandigarh
2104478 Sumehar Gill Ludhiana
2104443 Shashank Kumar Patiala
2104365 Ekamjot Singh Ludhiana
2104366 Jaskaran Singh Ludhiana
2104445 Harshwve Kaur Chandigarh

—————— e —

11 rows in set (0.00 sec)

E. Updating two columns:
e Syntax:

UPDATE table_name

SET columnl = wvaluel,
column2 = valueZ2,
columnN = valueN

WHERE condition;

e Example:

-> WHERE SID =)
Query 0K, 0 rows affected (0.00 sec)
Rows matched: 1 Changed: 0 warnings: 0

student;
__________________ +
Branch |
__________________ +
Female IT
Female Computer Science
Male iT
Male Electronics
Female Computer Science
Female Computer Science
Male Electronics
Male Electrical
Male Electronics
NULL

2104482 Avlyn Kaur Ludhiana
2104471 Anu grewal Chandigarh
2104488 Dashyamjit Singh Ludhiana
Anmolvir Singh Samrala
77 Arshnoor Patiala
21044 samiksha Chandigarh
2104478 Sumehar Gill Ludhiana
2104443 Shashank Kumar Patiala
2104365 Ekamjot Singh Ludhiana
2104366 Jaskaran Singh Patiala
2104445 Harshveer Kaur Chandigarh

——————— e — ¢

[11 rows in set (0.00 sec)

Updating rows based on another table:

Use subqueries in UPDATE statements to update rows in a table based on
value from another table.

The given example updates the copy_student table based on the values
from the student table.

mysql> UPDATE copy_student
-> SET Age = (SELECT Age
FROM student
WHERE SID = 2104445)
WHERE City = (SELECT City

FROM student
5 WHERE SID = 2104366);
uery 0K, 4 rows affected (0.01 sec)
Rows matched: 6 Changed: 4 Wwarnings: 0

. Deleting rows from a table:
You can remove existing rows from a table by using the DELETE statement.

Syntax:
DELETE [FROM] table
[WHERE condition];

Example:

DELETE FROM student

ysql>

i
)

SID =

SELECT*FROM student;

Avlyn Kaur
Anu grewal
Dashyamjit Singh

'2104445 " ;
Query 0K, 1 row affected (0.01

Ludhiana
Chandigarh
Ludhiana

Female
Female
Male

Computer Scienc
IT

Electronics
Computer Scienc
Computer Scienc
Electronics
Electrical
Electronics

Male
Female
Female
Male
Male
Male
NULL

samrala
Patiala
Chandigarh
Ludhiana
Patiala
Ludhiana
Patiala

Anmolvir Singh
Arshnoor
samiksha
sumehar Gill
Shashank Kumar
Ekamjot Singh
Jaskaran Singh

2104443
2104365
2104366

. Deleting rows based on another table:
Use subqueries in DELETE statement to remove rows from the another
table based on values from another table.

Example:
mysql> DELETE FROM copy_student
> WHERE 5SID =
(SELECT SID
FROM student
WHERE Name LIKE '

Query OK, 2 rows affected (0.01 sec)

Female
Female Computer Science
Male IT

Ludhiana
Chandigarh
Ludhiana

Avlyn Kaur
Anu grewal
Dashyamjit Singh

2104478
2104443
2104365
2104445

Anmolvir Singh
Arshnoor
samiksha
Sumehar Gill
Shashank Kumar
Ekamjot Singh
Harshveer Kaur

Samrala
Patiala
Chandigarh
Ludhiana
Patiala
Ludhiana
Chandig

20

Male
Female
Female
Male
Male
Male
NULL

Electronics
Computer Science
Computer Science
Electronics
Electrical
Electronics

NUL L

PRACTICAL NO 6: SINGLE ROW FUNCTION

Aim: Character functions - case manipulation and character manipulation
functions; number functions, date functions; using arithmetic operators with
dates; date functions, conversion functions.

Single Row Function: These functions operate on single rows only and return
one result per row. There are different types of single-row functions.

A. Lower() : LOWER function converts all letters in the specified string to

lowercase.

Mysgl> SELECT name, lower {name) FROM student;

Aviyn Kaur

Anu grewal
Dashyamjit Singh
Anmolvir Singh
Arshnoor
samiksha

sumehar Gill
Shashank Kumar
Ekamjot Singh
Jaskaran Singh

|
|
|
I
|
|
|
I
|
|
+

10 rows in set (0.00

to uppercase.

mysql=>

Avlyn Kaur

Anu grewal
Dashyamjit Singh
Anmolvir Singh

samiksha
Sumehar
Shashank Kumar
Ekamjot Singh
Jaskaran Singh

Gill

|
|
|
|
Arshnoor |
|
|
|
|
|

+
0 rows in set (0.00

aviyn kaur

anu grewal
dashyamjit singh
anmolvir singh
arshnoor
samiksha

sumehar gill
shashank kumar
ekamjot singh
jaskaran singh

UPPER Function: UPPER function converts all letters in the specified string

SELECT name,UPPER(name) FROM student;

AVLYN KAUR

ANU GREWAL
DASHYAMIIT SINGH
ANMOLVIR SINGH
ARSHNOOR
SAMIKSHA
SUMEHAR GILL
SHASHANK KUMAR
EKAMIOT SINGH
JASKARAN SINGH

C. LTrim: LTRIM function removes all specified characters from the left-hand
side of a string.

» SELECT SID,LTRIM(Name) AS CleanedName

2104482
2104471
2104488
2104364
2104477
2104465
2104478
2104443
2104365
2104366

student;

CleanedName

__________________ +
Avlyn Kaur

Anu grewal
Dashyamjit Singh
Anmo lvir Singh

|
|
|
|
Arshnoor |
Samiksha I
sumehar Gill |
Shashank Kumar |
Ekamjot Singh |
Jaskaran Singh |
__________________ +

10 rows in set (0.00 sec)

D. RTrim: RTRIM function removes all specified characters from the right-
hand side of a string.

> SELECT SID,RTRIM(Name) AS CleanedName

> FROM

2104482
2104471
2104488
2104364
2104477
2104

2104478
2104443
2104365
2104366

|
|
!
|
!
|
l
|
|
]

student;

Avlyn Kaur

Anu grewal
Dashyamjit Singh
Anmolvir Singh
Arshnoor
samiksha

sumehar Gill
Shashank Kumar
Ekamjot Singh
Jaskaran Singh

0 rows in set (0.00 sec)

L Pad: left-pad a string with a specified character or characters to achieve a

desired length.

mysqgl> SELECT LPAD('Avlyn ',"'10',"'*') FROM student;

. RPad: The RPAD function is used to add a specified character (or a space)
to the right side of a string until it reaches a desired length.

. SUBSTRING: The SUBSTRING function extracts a substring (part of a string)
from a given string.

8, 5) AS ExtractedsString;

+
row in set (0.00 sec)

. COUNT: The COUNT() function returns the number of records returned by a
select query.

mysql> SELECT COUNT(SID) AS Numberofstudents FROM student;

row in set (0.01 sec)

ABS: the ABS() function is used to return the absolute (positive) value of a
number.

mysql> SELECT ABS(-243.5);

J.

MOD: The MOD() function returns the remainder of a number divided by
another number.

mysql> SELECT MOD(10, 2);
+
l

1 row in set (0.00 sec)

ROUND: The ROUND() function rounds a number to a specified number of
decimal places.

2);

1 row in set (0.00 sec)

CEIL: The CEIL() function returns the smallest integer value that is bigger
than or equal to a number.

mysql> SELECT CEIL(25.75);

+
row in set (0.00 sec)

. FLOOR: The FLOOR() function returns the largest integer value that is

smaller than or equal to a number.

mysql> SELECT FLOOR(25.75);

row in set (0.00 sec)

N. POWER: The POWER() function returns the value of a number raised to the
power of another number.

mysql> SELECT POWER(4, 2);

row in set (0.00 sec)

0. SQUAREROOT: The SQRT() function returns the square root of a
number.

1 row in set (0.00 sec)

P. ASCII: The ASCII() function returns the ASCII value for the specific character.

mysql> SELECT Name, ASCII[NamEj AS NumCodeofFirstChar
-> FROM student;

Avlyn Kaur

Anu grewal
Dashyamjit Singh
Anmolvir Singh

samiksha
sumehar Gi11
Shashank Kumar
Ekamjot Singh

I
l
|
|
| Arshnoor
|
|
|
|
| Jaskaran Singh

10 rows in set (0.00 sec)

Multiple Row Function: Multiple row functions work upon group of rows and
return one result for the complete set of rows. They are also known as Group
Functions.

A. SUM: The SUM() function calculates the sum of a set of values.

mysql> SELECT SUM(SID) AS TotalStudents FROM student;

row in set (0.00 sec)

PRACTICAL NO 7: DISPLAYING THE DATA FROM MULTIPLE TABLES

AIM: Cartesian products; different types of joins specific to the software
package; SQL compliant joins

A. INNER JOIN: The INNER JOIN keyword selects records that have matching
values in both tables.

mysq?% SELECT student.SID, STUDENTS.Name
-> FROM student
-> INNER JOIN STUDENTS ON student.SID = STUDENTS.SID;

Name

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
=

2104482
2104471
2104364

Avlyn Kaur
Anu grewal
Anmolvir Singh

e ap ————iop —
1
I
[
[
[
I
[
1
|
[
I
[
[
|
|
|
+

3 rows in set (0.00 sec)

B. NATURAL JOIN: Natural join is an SQL join operation that creates a join on
the base of the common columns in the tables. To perform natural join
there must be one common attribute(Column) between two tables.

mysql> SELECT STUDENTS.SID, Name, Branch
-> FROM STUDENTS
-> NATURAL JOIN student;

2104482 | Aviyn Kaur
2104471 | Anu grewal mputer Science
2104364 | Anmolvir Singh ectronics

rows in set (0.00 sec)

C. LEFT JOIN: The LEFT JOIN keyword returns all records from the left table
(tablel), and the matching records (if any) from the right table (table2).

SELECT student.Name, STUDENTS.SID

FROM student
> LEFT JOIN STUDENTS ON student.Branch = STUDENTS.Branch
> ORDER BY student.Name;

2104364
2104471

Anmolvir Singh |

Anu grewal |

Arshnoor | 2104471
Avlyn Kaur | 2104482
Dashyamjit Singh | 2104482
Ekamjot Singh | 2104364
Jaskaran Singh | NULL
samiksha | 2104471
Shashank Kumar | NULL
Sumehar Gill | 2104364

rows in set (0.00

. RIGHT JOIN: The RIGHT JOIN keyword returns all records from the right
table (table2), and thematching records (if any) from the left table (tablel).

mysql> SELECT STUDENTS.SID, student.Name

-> FROM STUDENTS

> RIGHT JOIN student on STUDENTS.Branch = student.Branch
> ORDER BY STUDENTS.SID;

NULL Shashank Kumar
MWULL Jaskaran Singh
2104364 Anmolvir Singh
2104364 sumehar Gill
2104364 Ekamjot Singh
2104471 Anu grewal
2104471 Arshnoor
2104471 samiksha
2104482 Avlyn Kaur
2104482 Dashyamjit Singh

10 rows in set (0.00 sec)

PRACTICAL NO 8: AGGREGATING DATA USING GROUP FUNCTIONS

AIM: Group functions for various statistical metrics; creating groups of data by
GROUP BY clause; grouping by more than one column; excluding group results-
HAVING Clause.

A. Group Functions: Unlike single-row functions, group functions operate on
sets of rows to give one result per group. Group functions are also known as
aggregate functions.

Types of Group Functions
*AVG

*COUNT

*MAX

*MIN

*SUM

Syntax:

SELECT [column,] group_function(column)
FROM table

[WHERE condition]
[GROUP BY column]
[ORDER BY colunin] ;

e Using AVG and SUM Functions:
We can use AVG and SUM for numeric data.

mysql> SELECT AVG(SID), SUM(SID)
-> FROM student;

row in set (0.01 sec)

e Using MIN and MAX Functions

We can use MIN and MAX for any datatype.

mysql> SELECT min(SID) , max(SID)
-> FROM student;

row in set (0.01 sec)

e Using the COUNT Function
COUNT(*) returns the number of rows in a table.

mysql> SELECT COUNT(*)
-> FROM student;

+
row in set (0.01 sec)

B. Creating Groups of Data: GROUP BY Clause

Divide rows in a table into smaller groups by using the GROUP BY clause.
Syntax:

SELECT column, group_function (column)

FROM table

[WHERE condition]

[GROUP BY group by]
[ORDER BY column];

Example:

. SELECT Age, AVG(SID)
> FROM student
> GROUP BY Age;

2104478.0000
21044185000
2104412.5000

rows in set (0.00 sec)

C. Grouping by More Than One Column

> SELECT SID;Mame,BranEh)
> FROM student
> ORDER BY S5SID;

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+

Branch

I
I
|
I
|
I
|
I
|
I
|
|
I
I
I
|
I
|
+

Electronics
Electronics

NULL

Electrical
Computer Science
Computer Science
Computer Science
Electronics

2104364 Anmolvir Singh
2104365 Ekamjot Singh
2104366 Jaskaran Singh

2104443 Shashank Kumar
2104465 samiksha

2104471 Anu grewal
2104477 Arshnoor

2104478 sumehar Gill
2104482 Avlyn Kaur
2104488 Dashyamjit Singh

————— e — ¢
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I

D. Excluding Group Results: HAVING Clause
Use the HAVING clause to restrict groups

- Rows are grouped.

- The group function is applied.
- Groups matching the HAVING clause are displayed.

Syntax:

SELECT column, group_ function
FROM table

[WHERE condition]

[GROUP BY group_by expression]
[HAVING group_condition]
[ORDER BY column];

> SELECT SID , max(Age)

> FROM student
> GROUP BY SID
HAVING max(Age) > 19;

2104471 21
2104364 20
2104478 20
2104443
2104365
2104366

rows in

PRACTICAL NO 9: SUBQUERIES

AIM: Single-row subqueries; multiple-row subqueries; using group function in
a subquery; HAVING clause with subqueries; usage of operators in multiple-
row subqueries.

A. Single-row Subqueries: In this the subquery returns a Single row value
or Multiple rows of values from the Subquery given after the “WHERE’
clause of the outer query.

> SELECT SID,Name,City
> FROM student
> WHERE SID = (SELECT SID FROM

| Name
R R
| 2104471 | Anu grewal
D R
1 row in set (0.01 sec)

B. Multiple —-row subqueries: Returns one or more rows to the outer SQL
statement using the IN, ANY, or ALL operator.

> SELECT SID, Name, City, Branch
> FROM student
> WHERE SID IN (

SELECT SID

FROM student

WHERE City = 'Chandigarh’

2104471 | Anu grewal Chandigarh | Computer Science
2104465 | samiksha Chandigarh | Computer Science

rows in set (0.01 sec)

C. Using Group Function in a Subquery:

mysql> SELECT Name, SID, Branch
FROM student
» WHERE SID = (SELECT MIN(SID)
FROM student);

1 row in set (0.01

D. HAVING Clause with Subqueries:

mysql> SELECT SID, MIN(Age)
> FROM student
GROUP BY S5ID
HAVING MIN(Age) >
(SELECT MIN(Age)
FROM student
WHERE SID = 2104482);

2104471
2104364
2104478
2104443
2104365
2104366

set (0.00 sec)

PRACTICAL NO 10: CREATING VIEWS

AIM: Simple views and complex views; creating a view; retrieving data from
view; querying a view; modifying a view ; removing a view; inline views.

A. Creating a view: We can create a view using CREATE VIEW statement. A
View can be created from a single table or multiple tables.

Syntax

CREATE VIEW view_name AS
SELECT columnl, column2.....
FROM table_name

WHERE condition;

B. Simple View: Simple view is view created on single table
Syntax:

Create view Viewname

as Select column_namel,Coumn_name2 from tablename.

Example:

mysql> Create view V_5tudeqt
-> as Select SID,Name from student;

Query OK, 0 rows affected (0.04 sec)

from Vv_student;

2104482 Avilyn Kaur
2104471 Anu grewal
2104488 Dashyamjit Singh
2104364 Anmolvir Singh

2104477 Arshnoor
2104465 samiksha
2104478 Sumehar Gill
2104443 Shashank Kumar
2104365 Ekamjot Singh
2104366 Jaskaran Singh

10 rows in set (0.01 sec)

C. Complex View: Complex view is created on using more than one tables.

mysql> CREATE VIEW studentBYCompanies AS
-> SELECT student.city,Companies.address,student.Name
-> FROM student, Ccmpan1e¢
> WHERE student. City = Companies.address;

Query OK, 0 rows affected (0.01 sec)

Ludhiana Ludhiana Avlyn Kaur
Chandigarh Chandigarh Anu grewal
Ludhiana Ludhiana Dashyamjit Singh
Chandigarh Chandigarh samiksha
Ludhiana Ludhiana sumehar Gill
Ludhiana Ludhiana Ekamjot Singh

rows in set (0.02 sec)

D. Modifying a View: To modify an existing view, we can use the ALTER
VIEW statement.

> ALTER VIEW studentBYCompanies

AS

> SELECT student.city, Companies.address,

> FROM student
INNER JOIN Companies

> ON student.City = Companies.address;

Query 0K, 0 rows affected (0.01 sec)

mysql> select

Ludhiana
Chandigarh
Ludhiana
Chandigarh
Ludhiana
Ludhiana

Ludhiana
Chandigarh
Ludhiana
Chandigarh
Ludhiana
Ludhiana

* from studentBYCompanies;

Avlyn Kaur
Anu grewal

Dashyamjit Singh

samiksha
sumehar Gill
Ekamjot Singh

student.Name

view.

Ludhiana
Chandigarh
Ludhiana
Chandigarh
Ludhiana
Ludhiana

Ludhiana
Chandigarh

| Aviyn Kaur
|
Ludhiana |
|
|
|

Anu grewal
Dashyamjit Singt
samiksha
Sumehar Gill
Ekamjot Singh

Chandigarh
Ludhiana
Ludhiana

rows in set (0.00 sec)

. Removing a View: To remove a view in SQL, we can use the DROP
VIEW statement.

mysql> DROP VIEW studentBYCompanies;

uery 0K, 0 rows affected (0.01 sec)

This command will delete the view from the database.

G. Inline views: Inline views are particularly useful for simplifying complex
queries without relying on JOIN operations or subqueries.
Syntax of Inline view:

SELECT columnl, columnz2, ...

FROM (
-- Your inline view query goes here
SELECT ...

) AS alias_name;

Example:
SELECT MAX(SID) AS max_SID
FROM (
SELECT 5ID
FROM student
) AS max_SID;

row in set {0.00 sec)

MINI PROJECT

AIM: Creating a table, inserting the values, updating the table by using no of
gueries, deleting the columns when not required .illustrate the use of joins.
Mandatory to use having clause in database.

A. Creating a table: To create a new table in a database, we use the CREATE
TABLE statement.

mysql> CREATE TABLE Employees (
—>> EmployeeID INT PRIMARY KEY,
FirstName VARCHAR(50),
LastName WVARCHAR(50),

Department VARCHAR(50),
Salary DECIMAL (10, 2)

->);
wery OK, 0 rows affected (0.04 sec)

B. Inserting the Values: Once the table is created, we can insert data into it
using the INSERT INTO statement.

mysql> INSERT INTO Employees (EmployeeID, FirstName, LastName, Department, Salary)
-> VALUES
-> (1, "John', 'Doe', "HR', 60000.00),
—> (2, "Jane', 'smith', 'IT', 75000.00),

-> (3, 'Alice', 'Johnson', 'Finance', 90000. 00);
Query OK, 3 rows affected (0.02 sec)
Records: 3 Duplicates: 0 Wwarnings: 0

C. Updating the table by using no of queries: We can modify existing data
using the UPDATE statement.

> UPDATE Employees
SET salary = 65000.00
-> WHERE EmployeelID = 1;
Nuery 0K, 1 row affected (0.02 sec)
Rows matched: 1 <Changed: 1 Warnings:

mysql> SELECT * FROM EMPLOYEES;

John 65000.00
Jane smith ‘ /5000.00
Johnson 90000.00

. Deleting the columns when not required: Suppose we no longer need the

“Department” column. We can remove it using the ALTER TABLE statement:

mysql> ALTER TABLE Employees

> DROP COLUMN Department;
Query OK, 0 rows affected (0.06 sec)
Records: 0 Duplicates: 0 Wwarnings: 0

mysql> select * from employees;

65000.00
smith 75000.00
Johnson 90000. 00

3 rows 1n set (0.00 sec)

lllustrate the use of joins: Joins allow us to combine data from multiple
tables.

mysql> SELECT e.FirstName, e.LastName, p.ProjectName
-> FROM Employees e

-> INNER JOIN PI"DjE‘CtS p ON e.Department = p.Department;

Having clause in database: The HAVING clause is used with aggregate
functions (e.g., SUM, COUNT, etc.).

- SELECT EmployeeID, AVG(Salary) AS AvgSalary
FROM Employees

> GROUP BY EmployeeID

> HAVING AVG(Salary) > 70000.00;

75000.000000
90000. 000000

2 rows in set (0.02 sec)

